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Abstract. This paper extends the use of stochastic watershed, recently
introduced by Angulo and Jeulin [1], to unsupervised segmentation of
multispectral images. Several probability density functions (pdf), derived
from Monte Carlo simulations (M realizations of N rsandom markers),
are used as a gradient for segmentation: a weighted marginal pdf a vec-
torial pdf and a probabilistic gradient. These gradient-like functions are
then segmented by a volume-based watershed algorithm to define the R
largest regions. The various gradients are computed in multispectral im-
age space and in factor image space, which gives the best segmentation.
Results are presented on PLEIADES satellite simulated images.

Key words: multispectral image, unsupervised segmentation, mathe-
matical morphology, stochastic watershed

1 Introduction

Watershed transformation is one of the most powerful tools for image segmenta-
tion. Starting from a gradient, the classical paradigm of watershed segmentation
consists in determining markers for each region of interest. The markers avoid the
over-segmentation as a region is associated to each marker. When the markers
cannot be easily defined several hierarchical approaches exist. They are mainly
divided in two hierarchical techniques: 1) non-parametric waterfalls algorithm [2]
and 2) hierarchies based on extinction values, which allow to select the minima
used in the watershed according to morphological criteria (dynamics, surface
and volume) [6, 8]. Usually, the volume criteria is the most powerful.

In [1], Angulo and Jeulin, defined a new method: stochastic watershed. In
the present paper, the method involving Monte Carlo simulation on the image
is extended to multispectral images.

2 Random germs and stochastic watershed segmentation

One of the main artefacts of classical watershed is that small regions strongly
depend on the position of the markers, or on the volume, i.e. the integral of the
gray levels of the catchment basin, associated to their minima. In fact, there
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are two kinds of contours associated to the watershed of a gradient: 1st order
contours, which correspond to significant regions and which are relatively in-
dependent from markers; and 2nd order contours, associated to ”small”, ”low”
contrasted or textured regions, which depend strongly on the location of markers.
Stochastic watershed aims at enhancing the 1st order contours from a sampling
effect, to improve the result of watershed.

Let us consider {mrki(x)}Mi=1 a series of M realizations of N uniform or
regionalized random germs. Each one of these binary images is considered as the
marker for a watershed segmentation of a scalar gradient or a vector gradient.
Therefore, a series of segmentations is obtained, i.e. {sgmrki (x)}Mi=1. Starting
from the M realizations of contours, the probability density function pdf(x) of
contours is computed by the Parzen window method [9]. The smoothing effect
of the Gaussian convolution kernel (typically σ = 3 working on contours of one
pixel width) is important to obtain a function where closed contours, such as
textured regions or associated to small regions, are added together. The pdf(x)
is thresholded to obtain the most prominent contours.

Moreover, we segment the pdf(x) image, using a watershed segmentation
with a volume criteria in order to select the largest regions.

3 Multispectral image space (MIS) vs. factor image space
(FIS)

In the current paper, multispectral images are used. Multispectral images are
multivariate discrete functions with typically fewer than ten bands. In a formal
way, in each pixel of a 2D multispectral image is considered a vector with values
in wavelength. To each wavelength corresponds an image in two dimensions
called channel. The number of channels depends on the nature of the specific
problem under study (satellite imaging, microscopic images, etc).

Let fλ : E → T L (x→ fλ(x) = (fλ1
(x), fλ2

(x), . . . , fλL(x))), be a multispec-
tral image, where: E ⊂ R2, T ⊂ R and T L = T × T × . . . × T ; x = xi \ i ∈
{1, 2, . . . , P} is the spatial coordinates of a vector pixel fλ(xi) (P is the pixels
number of E); fλj \ j ∈ {1, 2, . . . , L} is a channel (L is the channels number);
fλj (xi) is the value of vector pixel fλ(xi) on channel fλj .

Due to the redundancy of channels, a data reduction is usually performed
using Factor Correspondence Analysis (FCA) [3]. We prefer a FCA in place of
a Principal Component Analysis (PCA), because image values are positive and
the spectral channels can be considered as probability distributions. As for PCA,
from selected factorial FCA axes the image can be partially reconstructed. The
metric used in FCA is the chi-squared, which is adapted to probability laws
and normalized by channels weight. FCA can be seen as a transformation going
from image space to factorial space. In factorial space the coordinates of the
pixels vector on each factorial axis are called pixels factors. The pixels factors
can be considered as another multispectral image whose channels correspond to
factorial axes: ζ : T L → T K/K < L (fλ(x)→ cfα(x) = (cfα1

(x), . . . , cfαK (x)))
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A limited number K of factorial axes is usually chosen. It is smaller than
the channels number L. Therefore FCA can be seen as a projection of initial
vector pixels in a factor space with a lower dimension. Moreover FCA can be
used to reduce noise in the image [5, 7]. Consequently, we have two spaces for the
multivariate segmentation: the multispectral image space (MIS) and the factor
image space (FIS). Fig. 1 gives an example of a five bands satellite simulated
image PLEIADES, acquired by the CNES (Centre National d’Etudes Spatiales,
the French space agency) and provided by Flouzat [4], and its corresponding
FCA representation. Its channels are the following: fλ1 blue, fλ2 green, fλ3 red,
fλ4 near infrared and fλ5 panchromatic. The panchromatic channel, initially of
size 1460× 1460 pixels with a resolution of 0.70 meters, was resized to 365× 365
pixels. Therefore, the resolution is 2.80 meters in an image of 365×365×5 pixels.
In order to represent a multispectral image in a synthetic way, we have created
a synthetic RGB image using channels fλ3 red, fλ2 green and fλ1 blue.

fλ1 blue fλ2 green fλ3 red fλ4 near inf.-red fλ5 panchrom.
Copyright c©CNES Copyright c©CNES Copyright c©CNES Copyright c©CNES Copyright c©CNES

Synthetic RGB cfα1
cfα2

cfα3

Fig. 1. Channels of multispectral image fλ ”Roujan”, synthetic RGB representation,
FCA factors pixels cfα on axes 1,2 and 3 with respective inertias 84.1 %, 8.7 %, 6.2 %

4 Spectral distances and gradients for MIS and FIS

In order to segment images according to watershed-based paradigms, a gradi-
ent is needed. Intuitively, a gradient is an image which quantifies the values
of contours between regions. A gradient image, in fact the norm, is a scalar
function with values in the reduced interval [0, 1], i.e. %(x) : E → [0, 1]. In or-
der to define a gradient, two approaches are considered: the standard symetric
morphological gradient on each marginal channel and a metric-based vectorial
gradient on all channels. The morphological gradient can only be applied on
scalar images and is defined as the difference between dilation and erosion with
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a unit structuring element B [2], i.e. %(fλj (x)) = δB(fλj (x)) − εB(fλj (x)). The
metric-based gradient is a vectorial gradient defined as the difference between
the supremum and the infimum of a defined distance on a unit neighbourhood
B(x): %d(fλ)(x) = ∨[d(fλ(x), fλ(y)), y ∈ B(x)] − ∧[d(fλ(x), fλ(y)), y ∈ B(x)],
where d : T L × T L → [0,∞[ is the metric distance used to calculate the dif-
ference between points in the neighborhood B. Various metric distances, use-
ful for multispectral images, are available for this gradient such as: the Eu-

clidean distance: dE(fλ(x), fλ(y)) =
√∑L

j=1(fλj (x)− fλj (y))2 and the Chi-

squared distance: dχ2(fλ(xi), fλ(xi′)) =

√∑L
j=1

S
f.λj

(
fλj (xi)

fxi.
− fλj (xi′ )

fx
i′ .

)2
with

f.λj =
∑P
i=1 fλj (xi), fxi. =

∑L
j=1 fλj (xi) and S =

∑L
j=1

∑P
i=1 fλj (xi).

Besides, marginal gradients from spectral bands can be combined (by ad-
dition or supremum) to define new gradients. If all factor axes are kept, the
chi-squared distance in MIS is equivalent to the Euclidian distance in FIS [3].
Therefore, the vector metric-based gradient is more appropriate in MIS, with
the chi-squared distance dχ2 and in FIS, with the Euclidian distance dE .

%(fλ3) %χ
2

(fλ) %E(cfα) %(cfα1
) %(cfα2

) %(cfα3
)

Fig. 2. Morphological gradient %(fλ3) on channel 3, metric-based vectorial gradient

in image space %χ
2

(fλ), the same in factor space %E(cfα) (3 axes) and morphological
gradients of each components of factor space %(cfα1

), %(cfα2
), %(cfα3

).

In the example of figure 2, we notice that the morphological gradients of the
pixels factors on the axes 2, %(cfα2

), and 3, %(cfα3
), contain less information than

the morphological gradient of the pixels factors on axis 1, %(cfα1
). Besides, the

inertia of axes 2 and 3, 8.7 % and 6.2 % respectively, are very small. Therefore,
we will only keep the first factor axis.

5 Weighted marginal pdf, vectorial pdf and probabilistic
vectorial gradient

In the sequel, we define functions used as gradients g for segmentation: the
weighted marginal probability density function mpdf , the vectorial pdf vpdf and
the probabilistic vectorial gradient %prob. The weighted marginal pdf mpdf is
computed as follows:

• For the morphological gradient of each channel %(fλj ), j ∈ [1, . . . , L], throw

M realizations of N uniform random germs, i.e. the markers {mrkji }
j=1...L
i=1...M ,
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generatingM×L realizations. Get the series of segmentations, {sgji (x)}j=1...L
i=1...M ,

by watershed associated to morphological gradients of each channel %(fλj ).

• Get the marginal pdf on each channel pdfj(x) = 1
M

∑M
i=1 sg

j
i (x) ∗Gσ.

• Obtain the weighted marginal pdf mpdf(x) =
∑L
j=1 wjpdfj(x), with wj =

1/L, j ∈ [1, . . . , L] in MIS and wj equal to the inertia axes in FIS.

The vectorial pdf vpdf is obtained as follows:

• For the vectorial gradient %d(fλ), throw M × L realizations of N uniform
random germs, i.e. the markers {mrki}i=1...M×L, with L the channels num-
ber. Get the segmentation, {sgi(x)}i=1...M×L, by watershed associated to
the vectorial gradient %d(fλ), with d = dχ2 in MIS or d = dE in FIS.

• Obtain the probability density function vpdf(x) = 1
M×L

∑M×L
i=1 sgi(x) ∗Gσ.

The probabilistic vectorial gradient is defined as %prob = mpdf + %d: after nor-
malization in [0, 1] of the weighted marginal pdf mpdf and the metric-based
gradient %d.

After computing them, these three functions are used as a gradient g of a new
watershed with volume constraint R, i.e. the R regions with the largest volume,
to obtain the segmentation contours of the image.

6 Application: unsupervised segmentation of multi-band
satellite images

We compare 4 methods of segmentation in MIS based on the volume-based wa-
tershed on functions used as a gradient g. g takes several values, giving the
associated watershed segmentations, such as: the chi-squared metric based gra-
dient %χ

2

: segvol(%χ
2

(fλ), R) (the reference segmentation), the weighted marginal
pdf mpdf : segvol(mpdf(fλ), R), the vectorial pdf vpdf : segvol(vpdf(fλ), R), and
the probabilistic gradient %prob: seg

vol(%prob(fλ), R). The results are presented
in synthetic RGB images made with channels fλ3 red, fλ2 green and fλ1 blue.
Besides, more details are available in [1] about the execution time and the in-
fluence of the three parameters on the number: of realizations M , of regions R
and of germs N .

In figure 3, we notice that the segmentation results are much better (i.e. more
homogenous in space) for the watershed on probabilistic functions (mpdf , vpdf ,

%prob) than on the standard vector gradient %χ
2

, which is used for the classical
watershed. Therefore the stochastic watershed is better than the classical one.
Besides, the probabilistic gradient %prob, which combines a vectorial gradient
%d and the weighted marginal pdf mpdf , is adapted to segment the 1st order
contours (the largest regions) and recover some of the 2nd order contours (the
”small”, ”low” contrasted or textured regions).

Moreover, we have tested in the factor image space (FIS) the watershed
with a volume constraint (fig. 4). As explained before, we will only use the first
factor axis. As we keep only the first factor axis, the Euclidian metric based
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%χ
2

(fλ) mpdf(fλ) vpdf(fλ) %prob(fλ)

segvol(%χ
2

(fλ), R) segvol(mpdf(fλ), R) segvol(vpdf(fλ), R) segvol(%prob(fλ), R)

Fig. 3. Top: Gradients and pdf; bottom: associated watershed segmentations on image
”Roujan”, in MIS, with N = 50 points , M = 100 realizations, R = 50 regions.

gradient %E is very close to the morphological gradient. We compute the wa-
tershed segmentation on the functions used as gradients g: the morphological
gradient %: segvol(%(cfα1

), R), the weighted marginal pdf mpdf (i.e; the morpho-
logical gradient pdf): segvol(mpdf(cfα1

), R) and the probabilistic gradient %prob:
segvol(%prob(c

f
α1

), R).
We notice that the contours on morphological gradient % are comparable

to those on weighted marginal pdf mpdf and on probabilistic gradient %prob.
In fact, due to FCA, the noise is rejected on the factor axes of smaller inertia
[5, 7]. However segmentations of 1st order contours on mpdf and %prob visually
seems a bit better than on %. Therefore, working on the firsts axes improves the
segmentation as they contain less noise.

%(cfα1
) mpdf(cfα1

) %prob(c
f
α1

)

segvol(%(cfα1
), R) segvol(mpdf(cfα1

), R) segvol(%prob(c
f
α1

), R)

Fig. 4. Segmentation watershed in FIS with N = 50 points, M = 100 realizations and
R = 50 regions.
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Besides, by observing several segmentation results in various images (fig. 5),
we notice that segmentations on weighted marginal pdf mpdf have contours more
regular than on vectorial pdf vpdf . Consequently, the weighted marginal pdf
mpdf seems to be the best approach for extracting area with smooth contours,
like roads, buildings, fields, ... in satellite images.

7 Conclusions and perspectives

We have shown the interest of using stochastic watershed segmentation to unsu-
pervised segment multispectral images. Several variants are available to calcu-
late the functions used as gradient g for the watershed segmentation: a weighted
marginal pdf mpdf , a vectorial pdf vpdf or a probabilistic gradient %prob. These
gradients like functions are used for stochastic watershed to improve the classi-
cal watershed applied on a vector gradient. In fact, the weighted marginal pdf
gives the best segmentation results and the probabilistic gradient is useful to
find the principal and the secondary contours. Moreover, working in factorial
image space FIS is generally better for segmentation than working in multispec-
tral image space MIS. In the future we are thinking of using regionalized germs
to build the pdf in order to segment a target in an image.
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ratoire de Télédétection à Haute Résolution, LTHR/ ERT 43 / UPS, Université
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Spatiales, the French space agency).

References

1. Angulo, J., Jeulin, D.: Stochastic watershed segmentation. Submit. to Int. Symp.
Mathematical Morphology (ISMM’07) Rio, Brazil, October 10-13 (2007)

2. Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm, Proc.
Int. Symp. Mathematical Morphology ISMM’94 (1994) 69–76

3. Benzécri, J.P.: L’Analyse Des Données. L’Analyse des Correspondances, Vol. 2, Paris
Dunod (1973) 1–166.
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%χ
2

(fλ) %(cfα1
) %χ

2

(fλ) %(cfα1
)

segvol(%χ
2

(fλ), R) segvol(%(cfα1
), R) segvol(%χ

2

(fλ), R) segvol(%(cfα1
), R)

mpdf(fλ) mpdf(cfα1
) mpdf(fλ) mpdf(cfα1

)

segvol(mpdf(fλ), R) segvol(mpdf(cfα1
), R) segvol(mpdf(fλ), R) segvol(mpdf(cfα1

), R)

segvol(vpdf(fλ), R) segvol(vpdf(fλ), R)
(a) (b) (c) (d)

Fig. 5. Watershed segmentations and associated gradients like functions in MIS or FIS
on other images. (a) image ”Toulouse” (5 channels) N= 100, M=100, R = 75 (b) Factor
axis 1 cfα1

(inertia 77.4%) of image ”Toulouse”(c) ”Salon de Provence” (4 channels) N=
50, M=100, R = 20 (d) Factor axis 1 cfα1

(inertia 82.2%) of image ”Salon de Provence”.


