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Abstract. For users to trust and interpret the data in scientific digital libraries, 
they must be able to assess the integrity of those data. Criteria for data integrity 
vary by context, by scientific problem, by individual, and a variety of other 
factors. This paper compares technical approaches to data integrity with 
scientific practices, as a case study in the Center for Embedded Networked 
Sensing (CENS) in the use of wireless, in-situ sensing for the collection of large 
scientific data sets. The goal of this research is to identify functional 
requirements for digital libraries of scientific data that will serve to bridge the 
gap between current technical approaches to data integrity and existing 
scientific practices.  

Keywords: data integrity, data quality, trust, user centered design, user 
experience, scientific data. 

1   Introduction 

Digital libraries of scientific data are only as valuable as the data they contain. Users 
need to trust the data, which in turn depends on notions such as data integrity and data 
quality. Users also need the means to assess the quality of data. Scholarly publications 
are vetted through peer review processes, but comparable mechanisms to evaluate 
data have yet to emerge. Data that are reported in publications are evaluated in the 
context of those publications, but that is not the same as evaluating the data per se for 
reuse. When data are submitted to repositories such as the Protein Data Bank [1], they 
are evaluated rigorously. When data are made available through local websites or 
local repositories, mechanisms for data authentication are less consistent. Scientific 
researchers often prefer to use their own data because they are intimately familiar 
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with how those data were collected, the actions that were taken in the field to collect 
them, what went wrong and what was done to fix those problems, the context in 
which the data were collected, and local subtleties and quirks. Such knowledge of 
data integrity is difficult to obtain for data collected by other researchers. Researchers 
(or teachers or students) who wish to reuse data rely on a variety of indicators such as 
reputation of the data collector and the institution, quality of papers reporting the data, 
and documentation. Standardized criteria and methods that users can apply to assess 
data quality are essential to the design of digital libraries for eScience [2]. 

Enabling reuse of scientific data can be of tremendous future value as such data are 
often expensive to produce or impossible to reproduce. Data associated with specific 
times and places, such as ecological observations, are irreplaceable. They are valuable 
to multiple communities of scientists, to students, and to nonscientists such as public 
policy makers. Research on scientific data practices has concentrated on big science 
such as physics [3, 4] or on large collaborations in areas such as biodiversity [5-7]. 
Equally important in understanding scientific data practices is to study small teams 
that produce observations of long-term, multi-disciplinary, and international value, 
such as those in the environmental sciences. The emergence of technology such as 
wireless sensing systems has contributed to an increase in the volume of data that can 
be generated by small research teams. Scientists can perform much more 
comprehensive spatial and temporal in situ sensing of environments than is possible 
with manual field methods. The “data deluge” resulting from these new forms of 
instrumentation is among the main drivers of e-Science and cyberinfrastructure [8]. 
Data produced at these rates can be captured and managed only with the use of 
information technology. If these data can be stored in reusable forms, they can be 
shared over distributed networks.  

Research reported here is affiliated with the Center for Embedded Networked 
Sensing (CENS), a National Science Foundation Science and Technology Center 
established in 2002 [http://www.cens.ucla.edu/]. CENS supports multi-disciplinary 
collaborations among faculty, students, and staff of five partner universities across 
disciplines ranging from computer science to biology. The Center’s goals are to 
develop and implement wireless sensing systems as described above, and to apply this 
technology to address questions in four scientific areas: habitat ecology, marine 
microbiology, environmental contaminant transport, and seismology. Application of 
this technology already has been shown to reveal patterns and phenomena that were 
not previously observable. CENS’ immediate concerns for data management, its 
commitment to sharing research data, and its interdisciplinary collaborations make it 
an ideal environment in which to study scientific data practices and to construct 
digital library architecture to support the use and reuse of research data. 

Digital library tools and services will be important mechanisms to facilitate the 
capture, maintenance, use, reuse, and interpretation of scientific data. This paper 
draws together studies of data practices of CENS researchers and analyses of 
technical approaches to managing data integrity and quality, with the goal of 
establishing functional requirements for digital libraries of scientific data that will 
serve this community. Two of the authors of this paper are involved primarily in 
studies of data practices, two primarily in systems design for data integrity, and two 
primarily in the development of digital libraries. 
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Section 2 discusses the characteristics of scientific sensor data collected by CENS. 
Section 3 presents the research methods used to study data integrity practices of 
CENS researchers. Research results are presented in Section 4 and discussed in 
Section 5. Our findings address ways in which digital libraries can assist in improving 
the integrity of scientific data and in facilitating their reuse. 

2   The Data Integrity Problem Redefined 

CENS’ scientific sensor deployments are generating far more data than can be 
managed by the traditional methods used for field research. CENS researchers are 
committed in principle to making their data available for reuse by others. However, 
they are finding that substantial effort is required to capture and maintain these large 
volumes of data for their own use, and that even more effort appears to be required to 
make them available for reuse by others. These data are an important end product of 
scientific research. They can be leveraged for future analyses by the same or other 
investigators, whether for comparative or longitudinal research or for new research 
questions. The ability to interpret data collected by others depends, at least in part, on 
the ability to assess the integrity and quality of those data. Criteria for data integrity 
vary by context and by individual, however.  

As data production becomes an end unto itself, instead of solely another step 
towards a publication, and researchers use data produced by others in their own 
publication, consistent methods are needed to document data integrity and quality 
criteria in ways that will facilitate data interpretation. The variety of practices 
associated with data management and range of understanding of what constitutes 
“data,” which are well known issues in social studies of science [9], present practical 
problems in the design of digital libraries for wireless sensing data.  

2.1   Static vs. Dynamic Embedded Sensor Networks 

Sensing systems are not a new technology, per se. Common applications of sensing 
networks in the environmental sciences include monitoring of water flow and quality, 
for example. Most applications of wireless sensing systems in the environmental 
sciences are static deployments: sensors are placed in appropriate positions to report 
data continuously on local conditions. Sensors are monitored, both by humans and by 
computers, to determine changes in conditions. Autonomous networks can rely on 
machine actuation to capture scientifically relevant data, to alter data collection (e.g., 
capture data more frequently if excessive pollution is suspected), or to report 
emergencies that require intervention (e.g., faults in dams, water contamination).  

While the initial framework for CENS was based on autonomous networks, early 
scientific results revealed the difficulty of specifying field requirements in advance 
well enough to operate systems remotely. Most CENS’ research is now based on 
dynamic “human in the loop” deployments where investigators can adjust monitoring 
conditions in real time. In addition to conducting extended “static” sensor 
deployments, where sensing systems are installed and left for weeks or months at a 
time with only intermittent physical monitoring, CENS teams regularly conduct short 
term “campaigns” to collect data, in which they deploy a wireless sensing system in 
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the field for a few hours or a few days with constant human presence. They may 
return to the same site, or a similar site, repeatedly, each time with slightly different 
equipment or research questions.  

Discrete field deployments offer several advantages to the scientific researchers, 
allowing the deployment of prototype, delicate, or expensive equipment. Scientists 
also can alter the position of their sensors and the frequency of sampling while in the 
field, and collect samples for in-field verification. However, the dynamic nature of 
these deployments poses additional challenges to data integrity, as the conditions, 
context, and sensor technology may vary by deployment.  

2.2   Data Diversity 

One of the biggest challenges in developing effective digital libraries in areas such as 
habitat ecology is the “data diversity” that accompanies biodiversity [5]. Habitat 
ecologists observe phenomena at a local scale using relatively ad hoc methods [10]. 
Observations that are research findings for one scientist may be background context 
to another. Data that are adequate evidence for one purpose (e.g., determining 
whether water quality is safe for surfing) are inadequate for others (e.g., government 
standards for testing drinking water). Similarly, data that are synthesized for one 
purpose may be “raw” for another [2, 9]. For example, CENS technology researchers 
may view the presence or absence of data as an indicator of the functionality of the 
equipment, whereas the application science researchers may require data that 
accurately reflect the environment being measured [11]. 

2.3   Wireless Sensing Data 

While researchers in process control have studied faults, failures, and malfunctions of 
sensors for many years [12], the problem is significantly harder in the case of wireless 
sensing systems. First, the scale is larger in wireless sensing systems in terms of 
number of sensors and areas of coverage. Second, the phenomena being observed in 
many applications of wireless sensing systems are far more complex and unknown 
than the manufacturing and fabrication plants studied in classical process control. 
Consequently, model uncertainty is higher, and often the model is unknown. Third, 
the sensors used in scientific experiments are often in nascent stages of development 
and not yet designed for robust field use. Frequent calibration and sensor damage are 
among the faults that affect the quality of sensor data. Fourth, whereas sensors in 
factories obtain power and connectivity over wires, resulting in a robust data-delivery 
infrastructure, wireless sensing systems rely on batteries and wireless channels. Even 
well planned deployments experience high rates of packet loss [13], resulting in 
largely incomplete datasets. Lastly, in process control, inputs to the plant are 
controlled and measured, which is not the case with many phenomena observed by 
wireless sensing systems (e.g., environmental phenomena; inhabited buildings or 
other structures). Together, these differences make the problems of detecting, 
isolating, diagnosing, and remediating faults and failures, and being resilient to their 
occurrence, more difficult in wireless sensing systems than in traditional plant control. 
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2.4   Digitizing the Oral Culture 

CENS has relied on a largely oral culture for the exchange of information about how 
data are collected, the equipment used, and the state of the equipment. As the Center 
has grown, an oral culture is no longer sufficient to capture and retain institutional 
memory. The student research population turns over rapidly and tacit knowledge 
needs to be exchanged within and between a larger number of research teams. These 
are but two reasons for communication breakdowns to occur in the data lifecycle. 
Research deployment practices were identified as a critical area that required more 
consistent documentation and better means of information exchange.  

Data sharing is often an interpersonal exchange between data collectors and data 
requestors. This can be a time- and labor-intensive process to describe and document 
data appropriately for use by others. Interpersonal exchanges do not scale well to 
large research centers and frequent data requests [2]. Much of our research is devoted 
to developing tools, services, and policies that will facilitate data capture, 
management, use, and sharing, while respecting rights and preferences of researchers 
in determining what data to release to whom, in what formats, and under what 
conditions [11, 14, 15]. 

3   Research Methods 

The goal of our research initiative within CENS is to provide researchers with a 
transparent framework of tools that will allow them to create, describe, store, and 
share data resources efficiently. The design of these tools, and associated digital 
library services and policies, is based on studies of data practices. We have applied a 
variety of research methods over a five-year period, including survey studies, field 
observation, and documentary analyses [11, 14]. 
    In this paper we compare technical approaches to data integrity with scientists’ 
practices associated with data integrity. We draw upon multiple sources to identify 
functional requirements for digital libraries, including analysis of documents 
produced by the CENS data integrity group, interviews with members of that group, 
interviews with domain scientists, computer scientists, and engineering researchers in 
CENS, and analysis of existing data sets and data archives. 

3.1   Studies of Scientific Data Practices 

The interview data reported here are drawn from a study of five environmental 
science projects within CENS. For each project we interviewed a complementary set 
of science and technology participants, including faculty, post-doctoral fellows, 
graduate students and research staff. We interviewed 22 participants, each for 45 
minutes to two hours; interviews averaged 60 minutes [14, 15]. Results from 
interviews with computer science and engineering researchers are included in the 
section on technical approaches to data integrity; results from interviews with the 
scientists are reported in the section on scientific practices. 

Interviews were audiotaped, transcribed, and complemented by the interviewers' 
memos on topics and themes [16]. Initial analysis identified emergent themes. A full 
coding process, using NVIVO, was used to test and refine themes in the interview 
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transcripts. With each refinement, the remaining corpus was searched for confirming 
or contradictory evidence, using the methods of grounded theory [17]. Interview 
questions were grouped into four categories: data characteristics, data sharing, data 
policy, and data architecture. In this paper we report only responses that discussed 
data integrity, quality, trust, or related issues about data interpretation. Most of the 
responses reported here were elicited by questions about data characteristics or data 
architecture.  

3.2   Integrity Research Group 

As CENS research has matured and many basic technical challenges of sensor 
systems have been addressed, data integrity and quality have become driving 
concerns of all parties in this multidisciplinary collaboration. The Integrity Group, 
consisting of ten students and three faculty from computer science, engineering, and 
statistics, addresses technical approaches to data integrity. This group has surveyed 
existing approaches to data integrity, implemented both rule-based and statistical 
learning algorithms, and initiated data integrity experiments, either leveraging 
existing CENS field deployments or designing original experiments. Members of this 
group are routinely included in pre-deployment design discussions and consulted 
during post-deployment analysis, for applications as diverse as aquatic sensing [18], a 
soil observing system for examining CO2 flux [19], and a short-term deployment in a 
rice paddy in Bangladesh to study groundwater arsenic content [20]. 

4   Results 

Results are reported in two sections. First we summarize current scientific practices to 
ensure data integrity. Evidence of these practices is drawn from the interviews with 
domain scientists within CENS; most of these respondents are faculty or doctoral 
students in the biological sciences. Second we present technical approaches to 
ensuring data integrity, drawing upon the observations and expertise of CENS 
researchers in computer science, engineering, and statistics. Of the many systems 
approaches being pursued at CENS, we have identified these as having the most 
direct impact on digital library design for CENS research. 

4.1   Needs of CENS Application Scientists 

“We have to have confidence…in what the measurements are collecting for 
information.” This simple statement by a CENS scientist belies the complexity of 
achieving trust in one’s own data. Many factors influence a researcher’s confidence in 
data, most of which arise from the complexities of generating and capturing data. 
Confidence in data depends upon trust in the entire data life cycle, from the selection 
and calibration of equipment, to in-field setups and equipment tests, to equipment 
reliability once it is in the field, to human reliability. Trust can be enhanced by 
documentation of each step in the process and by recording of tacit knowledge that 
may be exchanged orally in the field. Lab and field notebooks also are essential forms 
of documentation, whether in paper or digital form. Results reported in this section 
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address questions of what scientists need to know about the data collection process to 
interpret and trust the data, which in turn depends upon data integrity and quality. 
 
Equipment Selection. As with any task, the equipment used must be able to perform 
the task adequately. Thus it is necessary to understand the capabilities or limitations 
of a given sensor to determine whether it is appropriate to capture the desired 
observations. As one scientist put it, “you really need to know what its limitations are, 
what are its confounding factors, so that you can be relatively confident that your 
reading is correct.” Each model of sensor has a level or range of sensitivity, and 
some applications require a very fine level of sensitivity and others require a more 
gross reading. Understanding where and how the sensor is to be used informs the 
choice and use of equipment. 

Sensors can measure variables in multiple ways. Some sensing methods are direct 
and others are proxy-based. The method chosen will influence both the interpretation 
of the resulting data and one’s trust in them, as illustrated by the following comment 
of a biologist:  

“There are hundreds of different ways of measuring temperature. If you just say, 
‘The temperature is…,’ then that’s really low-value compared to, ‘The temperature 
of the surface measured by the infrared thermal pile, model number XYZ, is…’. 
From this I know that it is measuring a proxy for a temperature, rather than being 
in contact with a probe. And it is measuring it from a distance. I know that its 
accuracy is plus or minus .05 of a degree based on the instrument itself. I want to 
know that it was taken outside versus inside in a controlled environment.” 
 

Equipment Calibration. Off-the-shelf sensors presumably have been tested for 
quality before being sold. Such testing normally includes calibration against the 
standards described in the technical specifications. The majority of off-the-shelf 
sensing equipment used by CENS researchers are also calibrated by the investigators 
and their technical staff. Sensing equipment that can only be calibrated by the 
manufacturer must be returned periodically for recalibration, as described by this 
researcher:  

“We calibrate against a standard. So it depends on the instrument. If it’s 
something simple we can calibrate it here. If it’s a more high-tech instrument, like 
a lot of what we use are infrared gas analyzers for measuring photosynthesis and 
they’re factory calibrated. We’ve got to send it back to the factory… once or twice 
a year to get it calibrated… the complicated things we definitely send back." 

Each sensor model has a specific process for calibration and specific standards for 
calibration, as reflected in this comment:  

"The [four] parameters that we collect for each sensor [are] the upper and lower 
detection limit...and the slope and the Y-intercept for the calibration equation…the 
calibration equation is just a linear Y = MX + B.” 

Calibration information for sensors such as these can be captured in a succinct 
manner. Other important information to capture is the date of the most recent 
calibration, because once calibrated, equipment does not necessarily remain 
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calibrated. As another scientist said, "there is no way to measure in laboratory 
conditions and have it apply to the field."  Thus an important part of interpreting the 
data includes knowledge of how the calibration parameters change over time. One 
approach to capturing changing calibration parameters is periodically to calibrate the 
sensor in-situ (i.e., without extracting it from the soil or water) by providing a known 
input and recording the reported output.  
 
Ground-truthing. Unfortunately data from many sensors cannot be blindly trusted. 
This is partly due to the uncertainty of field conditions and partly to frailty of 
equipment. Calibration accuracy is known to degrade over time. When possible, 
scientists periodically validate sensor data by applying a known perturbation to a 
sensor, over-sampling the phenomena, and capturing physical samples (e.g., water, 
dirt, leaves, plankton) to validate measures. 

4.2   Technical Approaches to Data Integrity 

The Integrity Group has led two significant development efforts within CENS that 
influence the design of digital libraries. First is a move toward in-field analysis of data 
to support both system design and monitoring. This project is diffuse, branching 
across several Ph.D. projects and not yet producing a unified platform, but essential 
because methods to access models and data in the field are becoming part of most 
CENS systems. Second is SensorBase.org, a database platform for data from short-
term, rapidly deployed experiments and from longer-lived, continuously operating 
installations [21, 22]. SensorBase.org is a central component of CENS’ data ecology. 
 
Real-Time, Adaptive Fault Detection. Fault detection is an important technical 
component of data integrity for embedded networked sensing systems. Often fault 
detection is viewed solely as a component of post-deployment analysis. Instead of 
identifying faults in real-time, many users assume they can wait until all the data have 
been collected, discarding faulty data later. This assumption is flawed for two reasons. 
First, it is not always easy to tell which data are faulty once the collection process is 
complete. Researchers may need specific information about the context (e.g., an 
irrigation event occurred at 3PM during the data collection), or need to take physical 
measurements (e.g., extracting physical samples to validate the sensor data) to 
determine if the sensor data are faulty. If scientists interact with the network while in 
the field to perform data analysis and modeling, data quality can be improved 
significantly. For example, physical soil samples taken at specific times were useful 
in validating questionable chloride and nitrate data collected by the network of 
sensors in Bangladesh. Second, especially for soil sensor deployments, where sensors 
are short-lived and require frequent calibration, the amount of data available is so 
small that none can be spared. For example, during one deployment, 40% of the data 
had to be discarded, limiting the amount of scientific analysis possible. 

In addition to detecting faults in real-time, systems must be dynamic. Simple fault 
detection includes applying statically defined thresholds to data in order to separate 
good and bad data. This approach is not ideal because environments are dynamic, and 
notions of what it means to be faulty change over time, both as the sensor ages and as 
environmental processes develop. Further, notions of faults vary by deployment, so 
users often must set their own thresholds for each new sensor and environment.  
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Tools to Improve Data Quality. The above lessons are being incorporated into the 
design of Confidence, a system to improve the quality of data collected from large 
sensor networks. Confidence enables field researchers to administer sensors more 
effectively by automating key tasks and intelligently guiding a user to take actions 
that demonstrably improve the data quality. The system uses a carefully chosen set of 
features to group similar data points and to identify actions a user can take to improve 
system quality. As users take actions and manually validate sensor data, the system 
adjusts how data are grouped, thus learning to modify parameters for good and faulty 
data.  

Confidence includes tools to annotate data with actions users have taken and to 
perform other types of data validation. However, this approach is a primitive 
implementation of a more complete documentation system; much more information is 
needed to document the context of sensor data collection adequately.  
 
Building an Information Ecology. A set of complimentary tools and services is 
being developed by CENS to capture sensor data and metadata, which together form a 
CENS information ecology. These include Confidence, described above, to improve 
the initial data capture in the field, SensorBase to capture, analyze, and visualize data, 
the CENS Deployment Center (CENSDC) to capture and share information about 
deployments, and a bibliographic database of CENS publications. 

SensorBase provides the sensing research community with a framework for sharing 
data and for experimenting with models and computation to support data integrity. 
SensorBase allows for the “slogging” of sensor data directly from the field into the 
database. Many of its diagnostics and alerting capabilities, leveraging RSS and email, 
facilitate research by the Integrity Group. Sensorbase acts as a data digital library, but 
currently lacks metadata crucial for the interpretation of CENS data. SensorBase will 
rely on in-field tools such as fault detection to increase the quality of data as they 
enter the database, and will provide other tools to add necessary metadata. 

The CENS Deployment Center is a planning tool for documenting field 
deployments. It attempts to supplement the “oral culture” of deployments through 
simple interfaces to record equipment requirements, calibration requirements, 
personnel requirements, and other contextual information, as well as lessons learned 
from individual field deployments.  

The bibliographic database of CENS publications complements SensorBase and 
CENSDC. Publications traditionally have served as access points to data and as 
wrappers containing descriptions of equipment, data collection methods, and other 
information necessary to interpret results. The internal CENS bibliographic database 
has been ported over to the University of California eScholarship Repository with its 
own home page [http://repositories.cdlib.org/cens/], greatly improving public access. 

Our goal is a tight integration of SensorBase, CENSDC, and the CENS 
eScholarship repository. CENSDC will document the SensorBase datasets such that 
deployment records will link to resulting datasets and vice versa. As research results 
are published, links can be established between the publication, dataset, and 
deployment records. This tight coupling will establish a rich value chain through the 
life cycle of CENS data, documentation, and publications [2]. 
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5   Discussion and Conclusions 

The early years of wireless sensing research were focused largely on the problems 
associated with resource-constrained communications, processing of sensed data, and 
metrics such as quantity and timelines of data collected. Not much attention was paid 
to the quality of information returned by the system or the integrity of the system 
itself. As deployment experience increases, data integrity has become a core concern. 
Researchers now recognize that data and system integrity are limiting factors in 
scaling these technologies. The focus of data integrity activities has shifted from post-
deployment to concurrent processes within deployments. By capturing cleaner data 
upstream, later problems in identifying potentially errant data are minimized. These 
techniques facilitate greater trust in those data and enable scientists to analyze data 
with the assurance that data are complete and of high quality.  

A set of complimentary tools and services are being developed to capture sensor 
data, metadata, and publications, which together form a CENS information ecology. 
The information ecology described here can be leveraged before, during, and after 
deployments to collect contextual information, to provide access to an array of 
information about CENS research, and to follow the life cycle of a research project. 

In sum, we are developing an architecture for data integrity and quality in wireless 
sensing systems. Through interviews, observation, consultation, and systems 
development, we are learning enough about scientific data practices to build digital 
libraries that will facilitate data integrity and will improve the ability of current and 
future researchers to interpret and trust those data. Wireless sensing systems have 
advanced to the point where the technology is producing data of real scientific value. 
Data integrity problems must be addressed if these data are to be useful to the larger 
scientific community.  

Digital libraries can facilitate data integrity by recognizing and accounting for the 
scientific practices and requirements identified here. Scientists have established 
methods for describing the network, sensors, and calibrations, but often this 
information is documented separately from the data, if it is documented at all. Among 
the many research questions provoked by our research are how digital libraries can 
store essential contextual information and associate it with relevant data points. 
Sensor faults have a huge impact on the quality and quantity of data generated by 
wireless sensing system deployments. Similarly, we are concerned with how sensor 
fault detection can be reflected in digital libraries. Calibration information is essential 
to post-deployment data analysis, but calibration information varies for each type of 
sensor, and in some circumstances even between sensors of the same type on the same 
deployment. Issues arise such as what level of granularity in the calibration 
information needs to be associated with each data set. Future architecture for wireless 
sensing systems must address capturing, organizing, and accessing this information. 
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