Skip to main content

Approximate Discovery of Random Graphs

  • Conference paper
Stochastic Algorithms: Foundations and Applications (SAGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4665))

Included in the following conference series:

Abstract

In the layered-graph query model of network discovery, a query at a node v of an undirected graph G discovers all edges and non-edges whose endpoints have different distance from v. We study the number of queries at randomly selected nodes that are needed for approximate network discovery in Erdős-Rényi random graphs G n,p. We show that a constant number of queries is sufficient if p is a constant, while Ω(n α) queries are needed if p = n ε/n, for arbitrarily small choices of ε = 3 / (6 ·i + 5) with i ∈ ℕ. Note that α> 0 is a constant depending only on ε. Our proof of the latter result yields also a somewhat surprising result on pairwise distances in random graphs which may be of independent interest: We show that for a random graph G n,p with p = n ε/n, for arbitrarily small choices of ε> 0 as above, in any constant cardinality subset of the nodes the pairwise distances are all identical with high probability.

Work partially supported by European Commission - Fet Open project DELIS IST-001907 Dynamically Evolving Large Scale Information Systems, for which funding in Switzerland is provided by SBF grant 03.0378-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DIMES: Mapping the Internet with the help of a volunteer community (2004), http://www.netdimes.org

  2. Oregon RouteViews: University of Oregon RouteViews project (1997), http://www.routeviews.org

  3. Beerliová, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihal’ák, M., Ram, L.S.: Network discovery and verification. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 127–138. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Barrat, A., Hall, A., Mihal’ák, M.: Network discovery on snapshots of the Internet graph. Technical Report DELIS-TR-465, DELIS – Dynamically Evolving, Large-Scale Information Systems (2006)

    Google Scholar 

  5. Beerliová, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihal’ák, M., Ram, L.S.: Network discovery and verification. IEEE Journal on Selected Areas in Communications 24(12), 2168–2181 (2006)

    Article  Google Scholar 

  6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  7. Cheswick, B., Burch, H.: Internet mapping project (1998), http://www.cs.bell-labs.com/who/ches/map/

  8. Govindan, R., Reddy, A.: An analysis of Internet inter-domain topology and route stability. In: Proc. IEEE INFOCOM, April 1997, pp. 850–857. IEEE Computer Society Press, Los Alamitos (1997)

    Chapter  Google Scholar 

  9. Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In: Proc. IEEE INFOCOM, March 2000, pp. 1371–1380. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  10. Gao, L.: On inferring autonomous system relationships in the Internet. IEEE/ACM Trans. Networking 9(6), 733–745 (2001)

    Article  Google Scholar 

  11. Barford, P., Bestavros, A., Byers, J., Crovella, M.: On the marginal utility of deploying measurement infrastructure. In: Proc. ACM SIGCOMM Internet Measurement Workshop, November 2001, ACM Press, New York (2001)

    Google Scholar 

  12. Subramanian, L., Agarwal, S., Rexford, J., Katz, R.: Characterizing the Internet hierarchy from multiple vantage points. In: Proc. IEEE INFOCOM, IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  13. Di Battista, G., Erlebach, T., Hall, A., Patrignani, M., Pizzonia, M., Schank, T.: Computing the types of the relationships between autonomous systems. IEEE/ACM Transactions on Networking 15(2), 267–280 (2007)

    Article  Google Scholar 

  14. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute sampling; or, power-law degree distributions in regular graphs. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005), pp. 694–703. ACM Press, New York (2005)

    Chapter  Google Scholar 

  15. Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vázquez, A., Vespignani, A.: Statistical theory of Internet exploration. Phys. Rev. E 71 (2005)

    Google Scholar 

  16. Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vázquez, A., Vespignani, A.: Exploring networks with traceroute-like probes: theory and simulations. Theoret. Comput. Sci. 355(1), 6–24 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70, 217–229 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Erlebach, T., Hall, A., Hoffmann, M., Mihal’ák, M.: Network discovery and verification with distance queries. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 69–80. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Harary, F., Melter, R.A.: The metric dimension of a graph. Ars Combin., 191–195 (1976)

    Google Scholar 

  20. Chartrand, G., Zhang, P.: The theory and applications of resolvability in graphs: A survey. Congr. Numer. 160, 47–68 (2003)

    MATH  MathSciNet  Google Scholar 

  21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  22. Sebő, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)

    Article  MathSciNet  Google Scholar 

  23. Lindström, B.: On a combinatory detection problem I. Magyar Tud. Akad. Mat. Kutató Int. Közl. 9, 195–207 (1964)

    MATH  Google Scholar 

  24. Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of cartesian products of graphs. SIAM J. Discrete Math. 21(2), 423–441 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chung, F., Lu, L.: The diameter of random sparse graphs. Adv. in Appl. Math. 26, 257–279 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bollobás, B.: Random graphs. Academic Press, New York (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juraj Hromkovič Richard Královič Marc Nunkesser Peter Widmayer

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erlebach, T., Hall, A., Mihal’ák, M. (2007). Approximate Discovery of Random Graphs. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds) Stochastic Algorithms: Foundations and Applications. SAGA 2007. Lecture Notes in Computer Science, vol 4665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74871-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74871-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74870-0

  • Online ISBN: 978-3-540-74871-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics