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Abstract. We analyze the antecedents of affective states in a simulation 
problem-solving environment, The Incredible Machine: Even More 
Contraptions, through quantitative field observations of high school students in 
the Philippines using that system. We investigate the transitions between 
affective states over time, finding that several affective states, including flow, 
boredom, and frustration, but not surprise, tend to persist over for relatively 
long periods of time. We also investigate how students’ usage choices influence 
their later affect, finding that gaming the system leads to reduced confusion but 
increased boredom. 

1   Introduction  

In recent years, researchers of intelligent tutoring systems and interactive learning 
environments have investigated ways in which these systems can be made to 
recognize and respond to differences in students’ affect. Researchers in these areas 
have developed systems which attempt to recognize differences in student affect, 
using a variety of types of data, from biometric sensors [1,6], to posture data [15], to 
interaction patterns in system logs [11]. Work towards developing systems that can 
reliably detect affect has sparked progress in developing systems that can respond to 
differences in affect.  For instance, pedagogical agents have been designed with social 
intelligence that takes account of a learner’s emotional state [13], in order to guide the 
learner to an optimal emotional state for learning [4].  The goal of learning 
environments that respond to differences in affect is to influence and improve each 
student’s affect, and through doing so boost students’ learning gains and enhance their 
overall learning experience. 

However, until recently, there has been relatively little consideration of the natural 
dynamics and shifts in students’ affect, in learning environments that do not explicitly 
attempt to monitor and alter affect. Understanding affective dynamics in non-affective 
learning environments will be useful to researchers in many fashions. First of all, it 
will help us set goals for the design of affective learning environments. For instance, 
the elimination of common affective transitions, where both the start and end affective 
states are considered negative (what D’Mello et al [10] refer to as vicious cycles), 
may be as important as creating positive affective transitions. In addition, if we know 



which transitions between negative and positive affective states are reasonably 
common, we may more easily be able to improve students’ affect by strengthening 
naturally occurring beneficial affective transitions, as opposed to attempting to create 
transitions which seldom occur naturally.  

Second, understanding and modeling affective dynamics will provide a baseline to 
use in understanding the impact of systems that attempt to influence affect. If a 
common affective transition disappears or a previously unseen transition develops in 
an affective learning environment, it will be easier to infer how the environment has 
influenced students’ affect. 

Third, a model of affective dynamics will provide evidence on the base rate of an 
affective state in a given situation beyond just the overall frequency of that affective 
state. Understanding affective dynamics may therefore make it possible to develop 
more successful detectors of affect. 

Hence, modeling and understanding affective dynamics may lead to the 
development of more accurate and useful affective learning environments.  

However, there has only been limited research, thus far, into affective dynamics. 
In one early paper on this subject, Guastello and his colleagues [12] studied the 
dynamics of a single affective state, flow [8], over time. Two more recent papers have 
investigated specific aspects of affective dynamics. D’Mello, Taylor, and Graesser 
[10] studied the transition between affective states in an intelligent tutoring system, 
AutoTutor. They computed the likelihood that learners would transition between a set 
of affective states thought to be relevant to learning: boredom, flow, confusion, 
frustration, delight, and surprise.  They found that learners experiencing negative 
affective states such as boredom and frustration were likely to remain in these states.  
They were not likely to transition out of them and into more positive states such as 
flow or delight, nor to potentially more positive states such as confusion or surprise.     

A second recent paper, by Rodrigo et al [16], examined the relationship between 
these same affective states and a set of potential usage choices drawn from [3]: on-
task, on-task conversation, off-task conversation, off-task solitary, inactive, and 
gaming the system, focusing on how affective states influence later usage choices.  
Baker, et. al [3] define gaming the system as “attempting to succeed in an educational 
environment by exploiting properties of the system rather than by learning the 
material and trying to use that knowledge to answer correctly.” This study, conducted 
within a simulation problem-solving environment, The Incredible Machine, found that 
boredom, confusion, and the affective state coded as neutral were antecedents to 
gaming.  Frustration, flow, and delight were not found to be antecedents to gaming 
the system.  

The findings from [10] and [16] lead to further questions: Are the affective state 
transitions found in D’Mello et al [10] generalizable? Are they particular to intelligent 
tutoring systems, or do they hold true for other types of interactive learning 
environments?  And, do usage choices influence affective states to the same extent 
that affective states influence usage choices?   

In this paper, we study these questions within the context of a simulation problem-
solving environment, The Incredible Machine. We will consider data relevant to these 
questions, and discuss the implications for the design of affective learning 
environments. 



2   Study Methods 

We studied affective dynamics within a high school mathematics class in a private 
school in urban Manila, in the Philippines. Student ages ranged from 14 to 19, with 
an average age of 16. Thirty-six students participated in this study (17 female, 19 
male). 

Each student used The Incredible Machine: Even More Contraptions [18] (shown 
in Figure 1), a simulation environment where the user completes a series of logical 
“Rube Goldberg” puzzles. In each puzzle, the student has a pre-selected set of objects 
to use, such as scissors, ropes, and pulleys, electrical generators, and animals. The 
student must combine these objects in order to accomplish a pre-defined goal, such as 
lighting a candle or making a mouse run. If a student is stuck, he or she can ask for a 
hint; hint messages display where items should be located in a correct solution to the 
current problem (but do not show which item should be placed in each location). 

Each student used The Incredible Machine for ten minutes, and each student’s 
behavior and affect was observed several times as he or she used The Incredible 
Machine. The observations were conducted using a method which incorporated 
aspects of Baker et al’s [3] quantitative field observations of student behavior 
categories, and Craig et al’s [7] laboratory observations of affect. The observations 
were carried out by a team of six observers, working in pairs. The observers were 
Masters students in Education or Computer Science, and all but one had prior 
teaching experience. Observations were conducted according to guide that gave 
examples of actions, utterances, facial expressions, or body language that would 
imply a behavior or an affective state, and practiced the coding categories in another 
school prior to this study. 

As in Baker et al, each observation lasted twenty seconds, and was conducted 
using peripheral vision, i.e. observers stood diagonally behind or in front of the 
student being observed and avoided looking at the student directly, in order to make it 
less clear exactly when an observation was occurring. If two distinct behaviors were 
seen during an observation, only the first behavior observed was coded, and any 
behavior by a student other than the student currently being observed was not coded.  

During the laboratory sessions in which the data was gathered, it was not possible 
for the entire class to use the software at the same time, due to the size of the school 
computer laboratory; hence, students used the software in groups of nine (one student 
per computer), during their class time. Each pair of observers was assigned to three 
students and alternated between them. Since each observation lasted twenty seconds, 
each student was observed once per minute.  

Observing students more frequently than in [3,7] made it possible to directly 
analyze the relationship between a student’s affective state at a given time and their 
usage choices shortly thereafter.  

Within an observation, each observer coded both the student’s behavior and 
affective state, using coding schemes developed in prior research. The observers 
trained for the task through a series of pre-observation discussions on the meaning of 
the usage and affective categories. 

The usage categories coded were adapted from [3], and are as follows: 
 

1. On-task – working within The Incredible Machine 



 

 
Figure 1. A screen shot from The Incredible Machine: Even More Contraptions. 

 
2. On-task conversation – talking to the teacher or another student about The 

Incredible Machine, or its puzzles 

3. Off-task conversation – talking about any other topic  

4. Off-task solitary behavior –behavior that did not involve The Incredible 
Machine or another person (such as reading a magazine or surfing the web) 

5. Inactivity – instead of interacting with other students or the software, the 
student stares into space or puts his/her head down on the desk. 

6. Gaming the System – sustained and/or systematic guessing, such arranging 
objects haphazardly or trying an object in every conceivable place. Also, 
repeatedly and rapidly requesting help in order to iterate to a solution. 

The affective categories coded were drawn from [9,10]. Since many behaviors can 
correspond to an emotion, the observers looked for students’ gestures, verbalizations, 
and other types of expressions rather than attempting to explicitly define each 
category. The categories coded were:  
 

1. Boredom – behaviors such as slouching, and resting the chin on his/her 
palm; statements such as “Can we do something else?” and “This is boring!” 

 
2. Confusion – behaviors such as scratching his/her head, repeatedly looking at 

the same interface elements; statements such as “Why didn’t it work?” 
 

3. Delight – behaviors such as clapping hands or laughing with pleasure; 
statements such as “Yes!” or “I got it!” 

 
4. Surprise – behaviors such as jerking back suddenly or gasping; statements 

such as “Huh?” or “Oh, no!” 



 
5. Frustration – behaviors such as banging on the keyboard or pulling at 

his/her hair; statements such as “This is annoying!” or “What’s going on?!?”  
 

6. Flow – complete immersion and focus upon the system [cf. 8]; behaviors 
such as leaning towards the computer or mouthing solutions to him/herself 
while solving a problem  

 
7. The Neutral state, which was coded when the student did not appear to be 

displaying any of the affective states above, or the student’s affect could not 
be determined for certain. 

 
Some of these affective categories may not be mutually exclusive (such as 

frustration and confusion), though others clearly are (delight and frustration). For 
tractability, however, the observers only coded one affective state per observation.  

Past research has suggested that brief observations can be reliable indicators of a 
student’s affective state, whether carried out live [9] or by watching screen-capture 
videos [11]. 706 observations were collected, for an average of 19.6 observations per 
student. Inter-rater reliability was acceptably high across all observations — Cohen’s 
[4] κ=0.71 for usage observations, κ=0.63 for observations of affective state. 

3   Prior Research with this Data Set 

Data from this study was previously used in order to analyze how affect 
influences students’ behavior [16]. In this section, we will briefly recapitulate the 
results reported in that paper, in order to inform the analyses we present within the 
current paper. 

Within this data, the most common affective state was flow, coded in 61% of the 
observations. The dominance of the flow state was similar to results seen in prior 
studies of affect in students using intelligent tutoring systems [7,10]. The second most 
common category was confusion, observed 11% of the time. Boredom (7%), 
frustration (7%), delight (6%), and the neutral state (5%) were each seen in a small 
but definite proportion of the observations. Boredom was less common than in 
previous work studying affect in intelligent tutoring systems [7,10], but frustration 
was more common. Surprise was the rarest category, but was still observed (3%). 

The two most common behaviors observed were working on-task with the 
software (80% of observations), and talking on-task (9% of observations). Gaming the 
system was the third most common category of behavior, observed 8% of the time. 
Off-task conversation and off-task solitary behavior were quite rare, occurring 0.5% 
and 0.3% of the time — this frequency is much lower than the frequency of off-task 
behavior in intelligent-tutor classrooms [3] but comparable to the frequency of off-
task behavior among students playing non-educational action games [20]. 

Gaming the system was strongly associated with boredom and confusion — a 
student who was bored or confused was significantly more likely to game the system 
both at the time he or she was bored/confused, and one minute afterwards. Frustration 



significantly co-occurred with gaming, but was not associated with later gaming. The 
neutral state was associated with gaming one minute later, but did not co-occur with 
gaming. Delight never co-occurred with gaming or preceded gaming. 

4   The Antecedents of Affective States  

In this section, we will analyze how affect and usage choices influence a 
student’s later affect, specifically looking at how given affective states and usage 
choices influence the probability of a student being in a specific affective state one 
minute later.  

In conducting these analyses, it is important to take into account the base rates of 
each affective category. Flow was the dominant category within our observations; 
hence, flow is likely to be the most common affective state that follows any other 
affective state. In order to appropriately account for the base rate of each affective 
category in assessing how likely a transition is, we adopt D’Mello et al’s [10] 
transition likelihood metric, L, which is statistically equivalent to Cohen’s [5]    κ    . 
D’Mello et al’s L    gives the probability that a transition between two affective states 
will occur, given the base frequency of the destination state, and is computed: 
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L is scaled between 1 and - ∞. A value of 1 means that the transition will always 
occur; a value of 0 means that the transition’s likelihood is exactly what it would be 
given only the base frequency of the destination state. Values above 0 signify that the 
transition is more likely than it could be expected to be given only the base frequency 
of the destination state, and values under 0 signify that the transition is less likely than 
it could be expected to be given only the base frequency of the destination state.  

For a given transition, we calculate a value for L for each student, and then 
calculate the mean and standard error across students. We can then determine if a 
given transition is significantly more likely than chance (0), given the base frequency 
of the next state, using the two-tailed t-test for one sample.  
 
 
4.1  Transitions Between Affective States 
 

In this section, we will examine how a student’s affective state at a given time 
influences their affective state at a later time, within the Incredible Machine. Within 
the data, four transitions were significantly or marginally significantly (p<0.10) more 
likely than chance, and five transitions were significantly or marginally significantly 
less likely than chance. Ten transitions did not occur with sufficient frequency for it to 
be possible to compute a standard error value, and thus will be excluded from formal 
statistical analysis (however, it can therefore be inferred that these transitions are 
quite rare). With seven affective states, 49 transitions are theoretically possible. Nine 



of the 39 transitions with sufficient data were significant or marginally significant; by 
chance, one would expect 3.9 transitions to be significant or marginally significant. 
The probability of 9 of 39 transitions being significant or marginally significant is 
0.014 (computed by Monte Carlo simulation [14], 100,000 runs), so it appears quite 
unlikely that the pattern of results is due to chance.  

One very clear pattern that emerged from the data is that affective states are 
persistent — if a student is in a given affective state at a given time, he or she is likely 
to be in that state one minute later as well. This pattern is true of the transition 
boredom � boredom (Mean L = 0.26, SE = 0.11, t(7)=2.27, p=0.06), confusion � 
confusion (Mean L = 0.10, SE = 0.06, t(20)=1.68, p=0.11), delight � delight (Mean 
L = 0.10, SE = 0.06, t(14)=1.71, p=0.11), flow � flow (Mean L = 0.20, SE = 0.12, 
t(33)=1.75, p=0.09),  and neutral � neutral (Mean L = 0.41, SE = 0.09, t(5)=4.59, 
p=0.01). It is not clearly true of the transition frustrated � frustrated (Mean L = 0.12, 
SE = 0.08, t(12)=1.56, p=0.14), and appears not to be true of the transition surprised 
� surprised (Mean L = 0.03, SE = 0.06, t(7)=0.54, p=0.61). Interestingly, D’Mello et 
al [10] found a similar degree of persistence and for more or less the same affective 
states, studying affective transitions within an intelligent tutoring system. Both our 
results and D’Mello et al’s results found persistent transitions for boredom � 
boredom, flow � flow, confusion � confusion, and delight � delight (at the edge of 
marginal significance in both studies), and did not find significant persistent 
transitions for frustrated � frustrated and surprised � surprised.  

Beyond the state-to-itself transitions, six relationships were significant or 
marginally significant. The neutral state was significantly more likely than chance to 
transition to boredom (Mean L = 0.23, SE = 0.10, t(5)= 2.44, p=0.06), but 
significantly less likely than chance to transition to flow (Mean L = -1.22, SE = 0.37,  

 
 BOR CON DEL FLO FRU NEU SUR 
BOR 0.26 

(0.11) 
0.00 
(0.13) 

-0.03 
(0.03) 

-0.58 
(0.42) 

0.01 
(0.06) 

0.03 
(0.08) 

 

CON 0.03 
(0.05) 

0.10 
(0.06) 

0.00 
(0.03) 

-0.23 
(0.23) 

-0.03 
(0.02) 

-0.03 
(0.02) 

0.03 
(0.03) 

DEL   -0.02 
(0.08) 

0.10 
(0.06) 

0.33 
(0.23) 

  -0.01 
(0.02) 

FLO -0.05 
(0.02) 

-0.04 
(0.02) 

-0.03 
(0.01) 

0.20 
(0.12) 

0.03 
(0.03) 

0.01 
(0.03) 

0.00 
(0.01) 

FRU 0.00 
(0.05) 

0.15 
(0.11) 

-0.05 
(0.01) 

-0.29 
(0.32) 

0.12 
(0.08) 

  

NEU 0.23 
(0.10) 

-0.02 
(0.07) 

 -1.22 
(0.37) 

-0.03 
(0.04) 

0.41 
(0.09) 

 

SUR   -0.02 
(0.04) 

0.09 
(0.38) 

0.09 
(0.12) 

0.06 
(0.12) 

0.03 
(0.06) 

Table 1. The transitions between affective states. Horizontal rows represent previous affective states, and 
vertical columns represent affective states one minute later. The first number in each cell is the mean value 
of D’Mello’s L across students, the number in parantheses is the standard error. Cells with insufficient  
sample size are left blank (but can be inferred to be quite rare). Statistically significant relationships are in 
dark grey. Marginally significant relationships are in light grey.  



t(5)= -3.29, p=0.02). Flow was significantly less likely than chance to transition to 
boredom (Mean L    = -0.05, SE = 0.02, t(33)= -3.10, p<0.01), confusion (Mean L =      
-0.04, SE = 0.02, t(33)= -1.86, p=0.07), or delight (Mean L = -0.03, SE = 0.01, t(33)= 
-2.18, p=0.04).  Frustration was significantly less likely than chance to transition to 
delight (Mean L = -0.05, SE = 0.01, t(12)= -6.50, p<0.001). None of these 
relationships were significant in D’Mello et al’s study of affective transitions within 
an intelligent tutor. The complete pattern of transitions is shown in Table 1.  

 
4.2 Usage Choices as an Antecedent to Affect 

 
In this section, we will analyze how a student’s choice of how to use a learning 
environment at a given time influences their affective state at a later time. In our 
earlier work [16], we found that certain affective states are antecedents to certain 
usage choices. Specifically, boredom, confusion, and the neutral state served as 
antecedents to the choice to game the system, and that delight and flow are negative 
antecedents to the choice to game the system (i.e. a student in flow or delight is less 
likely to game one minute later). In the analysis presented here, we ask:  Does a 
student’s current usage choice influence his or her affect, the next time it is observed?   

Within the data from our study on students using The Incredible Machine, one 
antecedent relationship was significantly more likely than chance, and three 
antecedent relationships were significantly or marginally significantly less likely than 
chance. Sixteen antecedent relationships did not occur with sufficient frequency for it 
to be possible to compute a standard error value, and thus will be excluded from 
formal statistical analysis (though these relationships can be inferred to be quite rare). 
With 7 affective states and 6 usage categories, 42 antecedent relationships are 
theoretically possible. Four of the 26 antecedent relationships with sufficient data 
were significant or marginally significant; by chance, one would expect 2.6 
antecedent relationships to be significant or marginally significant. The probability of 
4 of 26 antecedent relationships being significant or marginally significant is 0.28 
(computed by Monte Carlo simulation [14], 100,000 runs), so it appears that the 
pattern of results could be due to chance. However, it is still possible to trust that an 
individual antecedent relationship is significant if that antecedent relationship is still 
significant after applying a Bonferroni procedure [17], which takes the number of 
tests run into account. In this case, we find that p must be less than 0.0018 for the test 
to be truly significant. Antecedent relationships which are not significant, given a 
Bonferroni procedure, must be considered suggestive rather than statistically 
significant.  

As mentioned, four antecedent relationships are statistically significant or 
marginally statistically significant. Two involve gaming the system. First, a student 
who games the system is significantly less likely to be confused a moment later; this 
result is significant even after the Bonferroni procedure is applied (Mean L = -0.11, 
SE = 0.02, t(11)= -6.37, p<0.001). Since confusion is an antecedent to gaming 
behavior, this suggests that a student who is confused games the system to get past a 
confusing problem and that the gaming strategy generally succeeds in bypassing the 
confusing problem, enabling a transition out of the confused affective state.  

A student who games the system also appears to be more likely to be bored a 
moment later, though this second result does not hold after applying the Bonferroni 



procedure (Mean L = 0.26, SE = 0.12, t(11)= 2.18, p=0.05). If this relationship is 
confirmed by later studies, it will have interesting implications. Since boredom is also 
an antecedent to gaming behavior, this result would suggest that a student who is 
bored games the system to alleviate their boredom, but that this strategy backfires, 
because the student’s chance of being bored a minute after gaming is actually 
increased relative to the general incidence of the affective state.  

It is worth noting that a student who games the system does not appear to be 
more likely to be frustrated a moment later (Mean L = 0.005, SE = 0.05, t(11)= 0.12, 
p=0.91). In our earlier work, we found that frustration is also not an antecedent to 
gaming behavior, but that gaming behavior and frustration co-occur more than would 
be expected by chance. If frustration neither proceeds nor follows gaming, but co-
occurs with gaming, it may be the case that that a student who attempts to game the 
system but does not immediately succeed becomes frustrated until he or she succeeds 
in gaming the system, and that his or her frustration ends as soon as the attempt to 
game the system is successful.  

Two other antecedent relationships are marginally statistically significant — both 
involve students who are on-task, working with the system. On-task behavior is 
marginally significantly negatively associated with a reduction in both frustration 
(Mean L = -0.026, SE = 0.014, t(34)= -1.85, p=0.07) and delight (Mean L = -0.020, 
SE = 0.012, t(34)= -1.68, p=0.10). Neither of these results hold after applying the 
Bonferroni procedure. The complete pattern of transitions is shown in Table 2. 

 
 BOR CON DEL FLO FRU NEU SUR 
GAMING 
THE 
SYSTEM 

0.26 
(0.12) 

-0.11 
(0.02) 

-0.02 
(0.04) 

-0.47 
(0.29) 

0.01 
(0.05) 

0.09 
(0.08) 

 

STARING 
INTO 
SPACE 

0.03 
(0.11) 

-0.05 
(0.08) 

0.15 
(0.21) 

-0.90 
(0.50) 

0.21 
(0.21) 

0.05 
(0.11) 

 

SOLITARY 
OFF-TASK 

       

TALKING 
OFF-TASK 

       

ON-TASK 0.00 
(0.02) 

0.00 
(0.03) 

-0.02 
(0.01) 

0.06 
(0.12) 

-0.03 
(0.01) 

0.01 
(0.03) 

0.00 
(0.01) 

ON-TASK 
CONVERS. 

-0.03 
(0.05) 

-0.07 
(0.05) 

0.10 
(0.07) 

-0.14 
(0.24) 

0.04 
(0.06) 

-0.01 
(0.03) 

0.02 
(0.04) 

Table 2. Usage choices as antecedents to affective states. Horizontal rows represent usage choices, and 
vertical columns represent affective states one minute later. The first number in each cell is the mean value 
of D’Mello’s L across students, the number in parantheses is the standard error. Cells with insufficient  
sample size are left blank (but can be inferred to be quite rare). Statistically significant relationships are in 
dark grey. Marginally significant relationships are in light grey.  



5   Discussion and Conclusions 

In this exploratory study, we have investigated the antecedents of affective states, 
both in terms of how affective states precede other affective states, and in terms of 
how usage choices influence later affective states, within the context of the use of a 
simulation-based learning environment, The Incredible Machine: Even More 
Contraptions. The first of these issues, how affective states influence later affective 
states, was previously studied by D’Mello and his colleagues [10], in the context of a 
very different type of learning environment, an intelligent tutoring system, and using 
quite different experimental methods. Their main finding was that if a student is in 
any affective state at a given time, they are likely to be in the same affective state a 
minute later. We replicated this finding over the majority of the affective states 
studied: flow, boredom, confusion, frustration, and delight (both studies found that 
delight � delight was almost significant). At the same time, both our study and 
D’Mello et al’s study found that being surprised at a given time is not associated with 
being surprised a moment later. This result is not counter-intuitive — how long can 
someone genuinely be surprised? — but this result suggests that it is probably 
mistaken to conceptualize surprise as being part of the same category of affective 
states as flow, boredom, confusion, frustration, and delight. Instead, perhaps surprise 
should be conceptualized as a “transient affective state”, as distinguished from other 
“durable affective states”.  

An interesting area for future research will be to determine if the other five 
affective states are all persistent to the same degree — if some affective states 
predominate for 20 minutes in a row whereas others tend to dissipate after 3 or 4 
minutes, it will suggest that some affective states may actually be “moods” [cf. 17; 
personal communication, Sidney D’Mello], which last for considerably longer than 
other types of affective states. The data used in this paper was neither lengthy enough 
nor did it have a large enough sample to answer this question; addressing this 
question will be an important focus of future research in the field. It will be 
interesting, as well, to determine if the distinctions between moods and affective 
states apply across multiple types of learning environments, as the distinction between 
surprise and other affective states did.  

The second major issue investigated in this paper, how usage choices within 
interactive learning environments influence later affect, has not to our knowledge 
been explicitly addressed in prior research, though the converse question, how 
affective states influence usage choices, was studied in [16].  Our results in this paper 
found that relatively few usage choices appeared to influence later affect. This forms 
an interesting contrast to the pattern of results in [16], where almost every affective 
state significantly influenced whether a student would later game the system. The 
combined pattern of results suggests that affect and usage choices may form a mostly 
one-way relationship — affect appears to influence usage much more than usage 
influences affect. However, we should obtain data similar to the data obtained in this 
paper for a system where off-task behavior is a more common choice (such as 
intelligent tutors [cf. 3]) before concluding that this pattern is generally true; off-task 
behavior may have stronger implications for future affect than the usage choices 
common in the Incredible Machine.  



However, the primary relationships between usage choice and affect found in this 
study provide insight as to the implications of students’ usage choices. Given existing 
knowledge that both boredom and confusion lead to the choice to game the system 
[16], it is interesting that gaming the system is positively associated with future 
boredom but negatively associated with future confusion. This result suggests that 
gaming the system can be an effective strategy for alleviating confusion (albeit a 
strategy that carries with it the cost of significantly poorer learning [3]), but not an 
effective strategy for alleviating boredom. To the extent that students game the system 
for different reasons, and with different results, a system’s responses to gaming 
behavior should likely vary depending on why the student is gaming.  

If we acknowledge that gaming the system does relieve students’ confusion, 
perhaps we can develop systems to take advantage of the engagement with the task 
that confusion implies, and that attempt to respond to gaming by helping students to 
find more constructive ways to alleviate their confusion (such as, for instance, 
supplementary exercises [2]).  On the other hand, since gaming the system does not 
successfully alleviate boredom, perhaps a system faced with a bored student should 
attempt to prevent gaming behavior entirely by taking immediate measures to 
alleviate the student’s boredom. Since such a system may address boredom more 
effectively than the student could by gaming, this approach could completely 
eliminate bored students’ incentive to game the system.  

Overall, by studying how affect changes over time, and how usage choices and 
affect influence one another, we will be able to come to a full and rich picture of 
learners’ experiences as they use interactive learning environments. This knowledge 
will be essential to the project of developing intelligent affective environments which 
can assess differences in students’ affect and behavior and can respond to those 
differences in effective and constructive fashions. 
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