Skip to main content

A Computational System for Investigating Chemotaxis-Based Cell Aggregation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4648))

Abstract

We have developed a software system that simulates chemotaxis-based cell aggregation in 2D. The model implemented within the system consists of such cell behaviors as chemical diffusion/detection, motility, proliferation, adhesion and life cycle stages. Each virtual cell detects the state of the environment, and responds to the environment based on a pre-defined “program” and its own internal state. Cells are discrete units that are located on a grid, exist in discrete states (e.g. active or dying) and perform discrete tasks (e.g. divide and attach), but they also contain and are affected by continuous quantities (e.g. chemoattractant concentrations, gradients, age and velocities). This paper provides an overview of our chemotaxis-based aggregation model and details the algorithms required to perform chemotaxis-based cell aggregation simulation. A number of biological studies are being conducted with the system. They include fine-tuning the model parameters to reproduce in vitro PC12 cell aggregation experiments and parametric studies that demonstrate the effect that the model’s components have on cell aggregation dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fernandis, A., Prasad, A., Band, H., Klösel, R., Ganju, R.: Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23(1), 157–167 (2004)

    Article  Google Scholar 

  2. Olson, M., Ford, R., Smith, J., Fernandez, E.: Mathematical modeling of chemotactic bacterial transport through a two-dimensional heterogeneous porous medium. Bioremediation Journal 10, 13–23 (2006)

    Article  Google Scholar 

  3. Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended potts model. Physical Review Letters 69, 2013–2016 (1992)

    Article  Google Scholar 

  4. Chaturvedi, R., Huang, C., Kazmierczak, B., Schneider, T., Izaguirre, J.A., Newman, S.A., Glazier, J.A., Alber, M.: On multiscale approaches to three-dimensional modeling of morphogenesis. Journal of the Royal Society 2, 237–253 (2005)

    Google Scholar 

  5. Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Physical Review E 47, 2128–2154 (1993)

    Article  Google Scholar 

  6. Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C., Freyer, J.: A multiscale model for avascular tumor growth. Biophysical Journal 89, 3884–3894 (2005)

    Article  Google Scholar 

  7. Merks, R.M.H., Glazier, J.A.: A cell-centered approach to developmental biology. Physica A 352, 113–130 (2005)

    Article  Google Scholar 

  8. Hogeweg, P.: Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. Journal of Theoretical Biology 203, 317–333 (2000)

    Article  Google Scholar 

  9. Hogeweg, P.: Computing an organism: on the interface between informatic and dynamic processes. Biosystems 64, 97–109 (2002)

    Article  Google Scholar 

  10. Tozeren, A., Coward, C.W., Petushi, S.P.: Origins and evolution of cell phenotypes in breast tumors. Journal of Theoretical Biology 233, 43–54 (2005)

    Article  MathSciNet  Google Scholar 

  11. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  12. Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419–424 (1984)

    Article  Google Scholar 

  13. Dormann, S., Deutsch, A.: Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biology 2(3), 393–406 (2002)

    Google Scholar 

  14. Patel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A.: A cellular automation model of early tumor growth and invasion: the effects of native tissue vascularity and increase in anaerobic tissue metabolism. Journal of Theoretical Biology 213, 315–331 (2001)

    Article  MathSciNet  Google Scholar 

  15. Longo, D., Peirce, S.M., Skalak, T.C., Davidson, L., Marsden, M., Dzamba, B., Simone, D.W.D.: Multicellular computer simulation of morphogenesis: blastocoel roof thinning and matrix assembly in xenopus laevis. Developmental Biology 271, 210–222 (2004)

    Article  Google Scholar 

  16. Bagchi, P., Johnson, P.C., Popel, A.S.: Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. Transactions of the ASME 127, 1070 (2005)

    Google Scholar 

  17. Song, H., Jain, S.K., Enmon, R.M., O’Connor, K.C.: Restructuring dynamics of DU 145 and lncap prostate cancer spheroids. In Vitro Cellular and Developmental Biology-Animal 40, 262–267 (2004)

    Article  Google Scholar 

  18. Ascencio, S.F., Meana, H.P., Miyatake, M.N.: Two and three dimensional computer simulation of cancer growth. In: Proc. XXI Int. Conference of the Chilean Computer Science Society, pp. 73–79 (2001)

    Google Scholar 

  19. Fleischer, K.W., Barr, A.H.: A simulation testbed for the study of multicellular development: the multiple mechanisms of morphogenesis. In: Artificial Life III, pp. 389–408 (1994)

    Google Scholar 

  20. Fleischer, K.W.: Investigations with a multicellular developmental model. In: Artificial Life V, pp. 229–236 (1996)

    Google Scholar 

  21. Jabbarzadeh, E., Abrams, C.F.: Chemotaxis and random motility in unsteady chemoattractant fields: A computational study. Journal of Theoretical Biology 235, 221–232 (2005)

    Article  MathSciNet  Google Scholar 

  22. Palsson, E., Othmer, H.: A model for individual and collective cell movement in dictyostelium discoideum. Proceedings of the National Academy of Science USA 97, 10448–10453 (2000)

    Article  Google Scholar 

  23. N’Dri, N.A., Shyy, W.: Tran-Son-Tay: Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophysical Journal 85, 2273–2286 (2003)

    Article  Google Scholar 

  24. Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Newman, S., Glazier, J.A.: Compucell, a multi-model framework for simulations of morphogenesis. Bioinformatics 20, 1129–1137 (2004)

    Article  Google Scholar 

  25. Cickovski, T., et al.: A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2, 273–288 (2005)

    Article  Google Scholar 

  26. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology, 2nd edn. Garland Publishing, New York (2003)

    Google Scholar 

  27. Savinell, J.M., Lee, G.M., Palsson, B.O., Arbor, A.: On the orders of magnitude of epigenic dynamics and monoclonal antibody production. Bioprocess Engineering 4, 231–234 (1989)

    Article  Google Scholar 

  28. Serini, G., et al.: Modeling the early stages of vacular network assembly. The EMBO Journal 22(8), 1771–1779 (2003)

    Article  Google Scholar 

  29. Watanabe, O., Torda, M., Meldolesi, J.: The effect of α-latrotoxin on the neurosecretory PC12 cell line: Electron microscopy and cytotoxicity studies. Neuroscience 10(3), 1011–1024 (1983)

    Article  Google Scholar 

  30. Hirata, Y., Adachi, K., Kiuchi, K.: Activation of JNK pathway and induction of apoptosis by manganese in PC12 cells. Journal of Neurochemistry 71, 1607–1615 (1998)

    Article  Google Scholar 

  31. Manley, P., Lelkes, P.: A novel real-time system to monitor cell aggregation and trajectories in rotating wall vessel bioreactors. Journal of Biotechnology 125(3), 416–424 (2006)

    Article  Google Scholar 

  32. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Almeida e Costa Luis Mateus Rocha Ernesto Costa Inman Harvey António Coutinho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eyiyurekli, M., Lelkes, P.I., Breen, D.E. (2007). A Computational System for Investigating Chemotaxis-Based Cell Aggregation. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds) Advances in Artificial Life. ECAL 2007. Lecture Notes in Computer Science(), vol 4648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74913-4_104

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74913-4_104

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74912-7

  • Online ISBN: 978-3-540-74913-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics