Skip to main content

Entropy Production in Ecosystems

  • Conference paper
Advances in Artificial Life (ECAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4648))

Included in the following conference series:

Abstract

We present an extremely minimal ecosystem model which takes account of thermodynamic constraints on the organisms’ metabolism. This suggests a way to test the application of a hypothesised principle of Maximum Entropy Production to ecosystems. It also puts definite physical bounds on the rates at which matter can flow through the system and paves the way for more detailed models that have thermodynamic principles built in from the start. In providing the background for this model we point out some connections between thermodynamic principles and autopoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dewar, R.D.: Information Theory Explanation of the Fluctuation Theorem, Maximum Entropy Production and Self-Organized Criticality in Non-Equilibrium Steady States. Journal of Physics A: Mathematical and General 36, 631–641 (2003)

    Article  MATH  Google Scholar 

  2. Dewar, R.D.: Maximum Entropy Production and the Fluctuation Theorem. Journal of Physics A: Mathematical and General 38(21), 371–381 (2005)

    Article  Google Scholar 

  3. Downing, K., Zvirinsky, P.: The Simulated Evolution of Biochemical Guilds: Reconciling Gaia Theory and Natural Selection. Aritificial Life 5, 291–318 (1999)

    Article  Google Scholar 

  4. Jaynes, E.T.: Gibbs vs. Boltzmann Entropies. American Journal of Physics 33(5), 391–398 (1965)

    Article  MATH  Google Scholar 

  5. Kauffman, S.: Investigations. Oxford University Press, New York (2000)

    Google Scholar 

  6. Lorenz, R.D., Lunine, J.I., Withers, P.G.: Titan, Mars and Earth: Entropy Production by Latitudinal Heat Transport. Geophysical Research Letters 28(3), 415–418 (2001)

    Article  Google Scholar 

  7. Lotka, A.J.: Contribution to the Energetics of Evolution. PNAS 8(6), 147–151 (1922)

    Article  Google Scholar 

  8. Martyushev, L.M., Seleznev, V.D.: Maximum Entropy Production Principle in Physics, Chemistry and Biology. Physics Reports 426(1), 1–45 (2006)

    Article  Google Scholar 

  9. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living. Kluwer Academic Publishers, Dordrecht (1980)

    Google Scholar 

  10. Maturana, H.R., Varela, F.J.: The Tree of Knowledge: The Biological Roots of Human Understanding. Shambhala Publications, Boston (1987)

    Google Scholar 

  11. Moreno, A., Ruiz-Mirazo, K.: Metabolism and the problem of its universalization. BioSystems 49(1), 45–61 (1999)

    Article  Google Scholar 

  12. Morowitz, H.: Energy Flow in Biology. Academic Press, London (1968)

    Google Scholar 

  13. Paltridge, G.W.: Climate and Thermodynamic Systems of Maximum Dissipation. Nature 279, 630–631 (1979)

    Article  Google Scholar 

  14. Penn, A.S.: Modelling Artificial Ecosystem Selection: A Preliminary Investigation. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 659–666. Springer, Heidelberg (2003)

    Google Scholar 

  15. Ruiz-Mirazo, K., Moreno, A.: Searching for the Roots of Autonomy: the Natural and Artificial Paradigms Revisited. Communication and Cognition–Artificial Intelligence 17(3–4), 209–228 (2000)

    Google Scholar 

  16. Schneider, E.D., Kay, J.J.: Life as a Manifestation of the Second Law of Thermodynamics. Mathematical and Computer Modelling 19(6–8), 25–48 (1994)

    Article  Google Scholar 

  17. Schneider, E.D., Sagan, D.: Into the Cool: Energy Flow, Thermodynamics and Life. University of Chicago Press, Chicago (2005)

    Google Scholar 

  18. Schrödinger, E.: What is Life? Cambridge University Press, Cambridge (1944)

    Google Scholar 

  19. Virgo, N., Law, R., Emmerson, M.: Sequentially Assembled Food Webs and Extremum Principles in Ecosystem Ecology. Journal of Animal Ecology 75(2), 377–386 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Almeida e Costa Luis Mateus Rocha Ernesto Costa Inman Harvey AntĂłnio Coutinho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Virgo, N., Harvey, I. (2007). Entropy Production in Ecosystems. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds) Advances in Artificial Life. ECAL 2007. Lecture Notes in Computer Science(), vol 4648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74913-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74913-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74912-7

  • Online ISBN: 978-3-540-74913-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics