Skip to main content

Synthesizing Physically-Realistic Environmental Models from Robot Exploration

  • Conference paper
Book cover Advances in Artificial Life (ECAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4648))

Included in the following conference series:

Abstract

In previous work [4] a framework was demonstrated that allows an autonomous robot to automatically synthesize physically-realistic models of its own body. Here it is demonstrated how the same approach can be applied to empower a robot to synthesize physically-realistic models of its surroundings. Robots which build numerical or other non-physical models of their environments are limited in the kinds of predictions they can make about the repercussions of future actions. In this paper it is shown that a robot equipped with a self-made, physically-realistic model can extrapolate: a slow-moving robot consistently predicts the much faster top speed at which it can safely drive across a terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, R.C.: Behavior-based Robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Bongard, J., Lipson, H.: Nonlinear system identification using coevolution of models and tests. IEEE Transactions on Evolutionary Computation 9(4), 361–384 (2005)

    Article  Google Scholar 

  3. Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proceedings of the National Academy of Science (to appear, 2007)

    Google Scholar 

  4. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314, 1118–1121 (2006)

    Article  Google Scholar 

  5. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–160 (1991)

    Article  Google Scholar 

  6. Cliff, D., Husbands, P., Harvey, I.: Evolving visually guided robots. In: Meyer, J.-A., Roitblat, H., Wilson, S. (eds.) Proceedings of the Second International Conference on the Simulation of Adaptive Behaviour, MIT Press, Cambridge (1993)

    Google Scholar 

  7. Danforth, C.M., Yorke, J.A.: Making Forecasts for Chaotic Physical Processes. Physical Review Letters 96(14), 144102 (2006)

    Article  Google Scholar 

  8. Floreano, D., Mondada, F.: Hardware solutions for evolutionary robotics. In: Husbands, P., Meyer, J.-A. (eds.) EvoRobots, pp. 137–151 (1998)

    Google Scholar 

  9. Gloye, A., Wiesel, F., Tenchio, O., Simon, M.: Reinforcing the driving quality of soccer playing robots by anticipation. IT - Information Technology 47(5), 250–257 (2005)

    Article  Google Scholar 

  10. Jakobi, N.: Evolutionary robotics and the radical envelope of noise hypothesis. Adaptive Behavior 6(1), 131–174 (1997)

    Article  Google Scholar 

  11. Keymeulen, D., Iwata, M., Kuniyoshi, Y., Higuchi, T.: Online evolution for a self-adapting robotics navigation system using evolvable hardware. Artificial Life 4, 359–393 (1998)

    Article  Google Scholar 

  12. Nilsson, N.: Shakey the Robot. SRI International, Menlo Park (1984)

    Google Scholar 

  13. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Boston (2000)

    Google Scholar 

  14. Pollack, J.B., Lipson, H., Ficici, S., Funes, P., Hornby, G., Watson, R.: Evolutionary techniques in physical robotics. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 175–186. Springer, Heidelberg (2000)

    Google Scholar 

  15. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  16. Strogatz, S.H.: Nonlinear Dynamics and Chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books, Reading (1994)

    Google Scholar 

  17. Tedrake, R., Zhang, T., Seung, H.: Learning to walk in 20 minutes. In: Proceedings of the Fourteenth Yale Workshop on Adaptive and Learning Systems. Yale University, New Haven, CT (2005)

    Google Scholar 

  18. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Almeida e Costa Luis Mateus Rocha Ernesto Costa Inman Harvey António Coutinho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bongard, J. (2007). Synthesizing Physically-Realistic Environmental Models from Robot Exploration. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds) Advances in Artificial Life. ECAL 2007. Lecture Notes in Computer Science(), vol 4648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74913-4_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74913-4_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74912-7

  • Online ISBN: 978-3-540-74913-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics