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Abstract. We present a method of integrating linear rational arithmetic into su-
perposition calculus for first-order logic. One of our main results is completeness
of the resulting calculus under some finiteness assumptions.

1 Introduction

In this paper we consider superposition calculus extended with rules for rational lin-
ear arithmetic such as Gaussian Elimination for reasoning with equality and Fourier-
Motzkin Elimination for reasoning with inequalities. These rules are similar to super-
position and ordered chaining rules in first-order reasoning.

There are a number of approaches to integrate arithmetical reasoning into superpo-
sition calculus. Most of these approaches are based on approximation of arithmetical
reasoning by considering an axiomatisable theory such as Abelian groups or divisible
Abelian groups [4, 12–14]. Although this provides a sound approximation it is generally
not complete w.r.t. reasoning in usual arithmetical structures such as rational numbers
Q. In our approach we consider Q as a fixed theory sort in the signature containing the-
ory symbols +, >, = together with non-theory sorts and function symbols. We present
a sound Linear Arithmetic Superposition Calculus (LASCA) for this language based
on a standard superposition calculus extended with rules for linear arithmetic. As we
show, the validity problem for first-order formulas of linear arithmetic extended with
non-theory function symbols is Π1

1-complete even in the case when there are no vari-
ables over the theory sort. Therefore, there is no sound and complete calculus for this
logic. Nevertheless, one of the main results of this paper is that under some finiteness
assumptions it is possible to show completeness of our calculus. In particular, we can
show that a finite saturated set of clauses (with variables over non-theory sorts) S is sat-
isfiable if and only if S does not contain the empty clause. For this, we need to assume
that a simplification ordering we use in our calculus is finite-based (a notion defined
later in the paper). In this paper we also show how to construct such an ordering.

Our calculus LASCA is closely related to [4, 13], but here we are dealing directly
with the structure Q rather than with axiomatisations. One of the differences with [13] is
that we do not apply abstraction for theory terms. Such abstraction introduces new vari-
ables and can increase the number of inferences. On the other hand, in order to show
our completeness result we impose additional restrictions on the ordering and vari-
able occurrences. In our completeness proof we adapt the model generation technique
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(see [2, 9]). We use some ideas from normalised rewriting, symmetrisation [4, 7, 8] and
many-sorted reasoning [3, 5].

2 Preliminaries

We consider a many-sorted language. Let Σ be a signature consisting of a non-empty set
of sorts S, a set of function symbols F , a set of predicate symbols P and an arity func-
tion arity : F ∪ P → S+, where S+ denotes the set of finite non-empty sequences of
sorts. For a function symbol f with arity arity(f) = 〈s0, . . . , sn〉, we call s0, . . . , sn−1

argument sorts and sn the value sort of f . In this paper we are mainly dealing with
extensions of rational arithmetic. We write ΣQ for a signature such that SQ consists of
a designated theory sort sQ of rationals, theory predicate symbols PQ = {>, =}, and
theory function symbols FQ = {+} ∪ {q, ·q |q ∈ Q} where Q is the set of rationals.
We assume that Σ extends ΣQ with non-theory sorts and non-theory function symbols
(note that non-theory functions can have arguments and values of the theory sort sQ).
We assume that the only non-theory predicates in Σ are equalities on non-theory sorts,
denoted as 's, we also write ' if there is no confusion, and we use = for equality over
the theory sort sQ. Variables, terms, atoms, literals, clauses and first-order formulas are
defined in the standard way. We use the standard semantics for many-sorted logic: a Σ-
structure consists of a disjoint union of domains indexed by sorts with defined functions
and predicates respecting their arities. In addition, we always assume that the domain
of the theory sort sQ is the rational numbers Q with the usual interpretation of >, =, +
and where elements of Q are also constants in our language and ·q is a unary function
symbol interpreted as multiplication by q for each q ∈ Q. We use convenient abbrevia-
tions qt for ·q(t) where t is a term of sort sQ and −t for −1t. We use on to denote one
of theory predicates > or =.

We are interested in the question of whether a given first-order formula is (un)sat-
isfiable in a Σ-structure. This question can be reformulated in a standard way as a
question of (un)satisfiability of sets of clauses in a Herbrand interpretation which is
defined later.

A non-variable term is called a theory term (non-theory term) if its top function
symbol is a theory symbol (non-theory symbol respectively) and similarly for atoms.
We assume that > and = occur only positively in clauses (for example ¬(t > s) can be
replaced by s > t ∨ s = t and ¬(t = s) by t > s ∨ s > t).

Q-Normalised terms. Define a relation =AC on terms, called AC-congruence, as the
least congruence relation generated by associativity and commutativity axioms for +.
We assume + to be variadic and define Q-normalised terms as follows.

Definition 1. A term t is Q-normalised if t is either:

1. a theory constant q, or
2. a non-theory term f(t1, . . . , tn) where t1, . . . , tn are Q-normalised, or
3. q1t1+· · ·+qntn where n ≥ 1, and for each 1 ≤ i ≤ n, the term ti is a Q-normalised

non-theory term, qi 6= 0 and ti 6=AC tj for i 6= j, and
4. q1t1 + · · ·+ qntn + q where n and qi, ti for 1 ≤ i ≤ n are as in 3 above and q 6= 0.



It is not hard to argue that for every ground term t there is a unique, up to AC-
congruence, Q-equivalent term which is Q-normalised. This term is called a Q-normal
form of t and denoted by t ↓Q. We say that s is an AC-subterm of a Q-normalised term
t if either: (i) t =AC s, or (ii) t = f(t1, . . . , tn) and s is an AC-subterm of ti for
some 1 ≤ i ≤ n, where f is a non-theory function symbol, or (iii) t = qt′ and s is an
AC-subterm of t′, or (iv) t =AC u + v and s is an AC-subterm of u or v. For example,
3d + 5a is an AC-subterm of 4f(5a + 2b + 3d).

In this paper we deal with orderings satisfying several properties defined below.

Definition 2. Let � be an ordering on Q-normalised terms. It is said to have a subterm
property if s[t] � t whenever t is a proper AC-subterm of s[t]. We say that � is AC-
compatible if it satisfies the following property: if s � t, s =AC s′ and t =AC t′,
then s′ � t′. We say that � is Q-monotone if for any Q-normal form t[s] where s is a
non-theory term, from s � s′, it follows that t[s] � (t[s′]) ↓Q.

An ordering � is called Q-total, if for all ground Q-normal forms s, t, if s 6=AC t,
then either s � t or t � s.

We say that an ordering � has a sum property if for any non-theory term t and any
finite family of non-theory terms s1, . . . , sn of sort Q, such that t � si for 1 ≤ i ≤ n,
it follows that t � (q1s1 + · · ·+ qnsn + q) ↓Q for any coefficients q1, . . . , qn, q ∈ Q. �

From now on � will denote an AC-compatible, Q-monotone, Q-total and well-
founded ordering on Q-normal forms which has sum and subterm properties. We show
an example of such an ordering in Section 5. We use � for � ∪ =AC .

Let t be a Q-normalised ground term of sort Q, then the leading monomial m of t
is defined as follows: if t is a theory constant then m = t, otherwise m is the greatest
w.r.t. � non-theory subterm of t. Let > denote the literal 0 = 0 and ⊥ the literal 0 > 1.
We call a ground literal L Q-normalised if L is of one of the forms l = s, l > s,
−l > s, l ' r, l 6' r, >, ⊥ where l is a non-theory term and l � r, we also call l the
leading term of L. A clause is Q-normalised if all of its literals are Q-normalised and
the leading term of a clause is the greatest leading term of its literals. It is easy to see
that every ground clause can be Q-normalised into an equivalent clause. From now on
we consider only Q-normalised ground terms, literals and clauses.

In order to extend the ordering � to literals we represent literals as multisets as
follows m(t = s) = {t, s}, m(t > s) = {t, t, s, s}, m(t ' s) = {t, s}, m(t 6' s) =
{t, t, s, s}. Now we define L � L′ iff m(L) �m m(L′) where �m is the multiset
extension of �. We compare clauses in the two-fold multiset extension of �.

Herbrand Interpretation. An evaluation function is a mapping from ground non-theory
terms of sort sQ into Q. Let ν be an evaluation function, then define ν̄ to be an extension
of ν to the theory terms as follows: ν̄(q1t1+· · ·+qntn+q) = q1ν(t1)+· · ·+qnν(tn)+q.

In order to define a Herbrand interpretation we need a congruence relation ∼ on
ground Q-normalised terms and an evaluation function ν, such that the following com-
patibility conditions are satisfied.
Compatibility Conditions:

1. If t ∼ s then ν(t) = ν(s), for any non-theory terms t, s of sort sQ.
2. If ν̄(u) = ν̄(v) then u ∼ v, for any terms u, v of sort sQ.



We call a pair 〈ν,∼〉, satisfying Compatibility Conditions above, a Herbrand interpre-
tation. A theory atom tons is true in 〈ν,∼〉 if Q � ν̄(t)onν̄(s), and otherwise false in
〈ν,∼〉. A non-theory atom t ' s is true in 〈ν,∼〉 if t ∼ s, and otherwise false in 〈ν,∼〉.

3 The calculus for ground clauses

The inference rules of our Linear Arithmetic Superposition Calculus (LASCA) are
presented in Table 1 (page 15). We assume that all inference rules are applied to Q-
normalised clauses and after application of an inference rule we implicitly Q-normalise
the conclusion. Note that if we write, e.g., C ∨ l = r then implicitly l � r, since the
clause is assumed to be Q-normalised. For a term t, we write t � C (t � C)if t � s
(t � s) for any term s in C and similarly for literals. For a non-theory term l of sort sQ,
we use ±l to denote l or −l, and assume that the choice of the sign is the same for a
context, e.g., a rule and its conditions (we use ∓ to refer to the opposite sign).

Theorem 1. Linear Arithmetic Calculus is sound: if the empty clause is derivable in
LASCA from S then S is unsatisfiable.

We say that a set of clauses S is saturated (w.r.t. LASCA) if S is closed under
all inferences in LASCA. As we will see in Section 6 there is no sound and complete
calculus for Linear Arithmetic extended with non-theory functions. Hence, our LASCA
calculus is also incomplete in general: a saturated set of clauses S such that � 6∈ S can
still be unsatisfiable. Let us characterise some cases when from the fact that the set S is
saturated and � 6∈ S it follows that S is indeed satisfiable.

Definition 3. Let M be a set of terms or clauses. We say that M satisfies Finiteness of
Coefficients condition if the following holds. There exists a finite set of coefficients P
such that if a term qt or q is a subterm of a term in M then q ∈ P . �

In the sequel we impose the following assumption on sets of clauses.

Assumption 1 Let S be a set of clauses. We assume that S satisfies Finiteness of Co-
efficients condition.

Let us note that under Assumption 1, the number of occurrences of a non-theory term
(or a theory constant) in S can be infinite. In Section 4 we show that the set of all
ground instances of a finite set of clauses with variables over variable-safe sorts, satisfies
Assumption 1. This will be used to show that if a finite set S of (possibly non-ground
clauses) is saturated, then S is satisfiable if and only if � 6∈ S (Theorem 3).

Definition 4. Consider a finite set of coefficients P , then TP denotes the set of all Q-
normalised terms t such that any non-theory subterm of t of sort sQ occurs in t with
coefficients from P . An ordering on Q-normalised terms is called finite-based if for any
finite set of coefficients P and any ground term t the set of all terms in TP less than t
is finite. �

Assumption 2 The ordering � is finite-based.

In Section 5 we show how to construct an appropriate ordering satisfying Assumption 2.
Now we will show how to construct a candidate model 〈ν,∼〉 for a set of clauses S such
that under Assumptions (1,2) if S is saturated and � 6∈ S then S is true in 〈ν,∼〉.



Model Construction. For simplicity of exposition we consider the case when all func-
tions have arguments and values in Q. Let S be a set of ground clauses satisfying Finite-
ness of Coefficients Assumption 1. We consider terms modulo AC-congruence, and in
particular all rewrite rules are implicitly applied modulo AC. Denote TS the set of all
AC-subterms of terms occurring in S and T nth

S all non-theory AC-subterms of terms
in S. Note that TS and T nth

S satisfy Finiteness of Coefficients condition. An equation
l = r, where l � r and l is a non-theory term, can be seen as a rewrite rule l → r,
replacing l with r (and applying Q-normalisation to the resulting term). Any system
R of such rules is terminating, and if the left-hand sides of any two rules in R are not
overlapping then the system is also convergent. Let us construct a rewriting system R
and an evaluation function ν for all terms in T nth

S . The evaluation function ν will be
represented via a convergent term rewriting system Υ such that the following holds:
(i) Υ consists of rules of type f(q1, . . . , qn) → q, where f is a non-theory function
symbol q1, . . . , qn, q ∈ Q, (ii) R∪Υ is a convergent term rewriting system. We say that
a term t is evaluated by Υ if t ↓Υ∈ Q. We construct R and Υ by induction on terms
in T nth

S ordered by � as follows. For each term l ∈ T nth
S we define a set of rewrite

rules εl and a set of evaluation rules δl. We define Rl = ∪l�t∈T nth
S

εt; Rl = Rl ∪ εl;

Υl = ∪l�t∈T nth
S

δt; Υ l = Υl ∪ δl.

Consider a term l in T nth
S . We inductively assume that we have constructed εt, δt

for every t ≺ l, t ∈ T nth
S such that the following invariants hold.

Invariants (Inv):

1. either εt = ∅, or εt = {t → r} where t � r, r ∈ TS , and
2. either δt = ∅, or δt = {f(q1, . . . , qn) → q} and t = f(t1, . . . , tn), where ti ∈

TS , q, qi ∈ Q for 1 ≤ i ≤ n, 0 ≤ n, and
3. Rt, Υ t and Rt ∪ Υ t are convergent term rewriting systems, and
4. t is evaluated by Υ t, and
5. if t is Rt-irreducible then t is not evaluated by Υt, and
6. if t is Rt-irreducible then for any u, v ∈ TS such that t is the leading monomial of

u, u is Rt-irreducible and u � v, we have u ↓Υ t 6= v ↓Υ t (note u ↓Υ t , v ↓Υ t∈ Q by
Inv 4).

Let us note that since � is finite-based, there are only a finite number of terms less
than l in T nth

S . Therefore Rl = Rl′ and Υl = Υ l′ for some l′ ≺ l. We also have that Rl

and Υl are finite. Now we show how to define εl, δl.
Consider the case when l can be reduced by Rl. If l is evaluated by Υl then we define

εl = δl = ∅. If l is not evaluated by Υl, then l = f(t1, . . . , tn) for a non-theory symbol
f . We have f(t1 ↓Υl

, . . . , tn ↓Υl
) = f(q1, . . . , qn) for some qi ∈ Q, 1 ≤ i ≤ n, (since

l � ti we have that all ti are evaluated by Υl). Let us show that f(q1, . . . , qn) does not
occur in the left-hand sides of rules in Rl. Indeed, otherwise, f(q1, . . . , qn) ∈ T nth

S and
l � f(q1, . . . , qn), therefore f(q1, . . . , qn) and l would be evaluated by Υl. Now we
define εl = ∅ and δl = {f(q1, . . . , qn) → q} where q ∈ Q is selected arbitrary. It is
straightforward to check that εl and δl satisfy all invariants above.

Now we assume that l is irreducible by Rl.



Claim. Let us show that l is not evaluated by Υl. Let l = f(t1, . . . , tn), then f(t1 ↓Υl
,

. . . , tn ↓Υl
) = f(q1, . . . , qn). Assume that l is evaluated, then f(q1, . . . , qn) → q ∈ Υl

for some q ∈ Q. Consider s ∈ T nth
S , such that l � s and δs = {f(q1, . . . , qn) → q}.

We have s = f(s1, . . . , sn) for some terms si ∈ TS , 1 ≤ i ≤ n (see Inv 2). Since
l � s, from monotonicity of � it follows that ti � si for some 1 ≤ i ≤ n. Let
ti = α1u1 + . . . + αkuk + αk+1 and si = β1v1 + . . . + βmvm + βm+1 where we
assume summands are ordered in a descending order (w.r.t. �). Let j be the smallest
index such that αjuj 6=AC βjvj . If j = k + 1 then m = k and αk+1 6= βm+1, we
obtain a contradiction: 0 = ti ↓Υl

−si ↓Υl
= α−β 6= 0. If j ≤ k then αjuj � βpvp for

j ≤ p ≤ m + 1. Since uj is irreducible w.r.t. Rl (and therefore w.r.t. Ruj ) from Inv 6 it
follows that (αjuj + . . . + αkuk + αk+1) ↓Υ

uj 6= (βjvj + . . . + βmvm + βm+1) ↓Υ
uj .

But then ti ↓Υl
6= si ↓Υl

, which is a contradiction.

We say that a literal ±l′ont with the leading term l′ ≺ l is true w.r.t. Υl if Q �

±l′ ↓Υl
ont ↓Υl

and false otherwise (note that l′ ↓Υl
, t ↓Υl

∈ Q).
Let Sl be the set of all clauses in S with the leading term l. For a clause C ∈ S l

define Vl
C , Dl

C such that C = V l
C ∨ Dl

C and V l
C consists of all literals in C with the

leading term l (note Dl
C can be empty). We say that a clause C ∈ S l, C = C ′ ∨ l = r

weakly produces a rewrite rule l → r, if the following holds.

– l = r is a strictly maximal literal in C, and
– Dl

C is false w.r.t. Υl, and
– there is no l = r′ ∈ C ′ such that Q � r ↓Υl

= r′ ↓Υl
.

If there is a clause in Sl weakly producing a rewrite rule then we take the smallest
(w.r.t. �) such clause C. Let l → r be the rewrite rule weakly produced by C, then we
say that l → r is produced by C. We define εl = {l → r} and δl = {l ↓Υl

→ r ↓Υl
}.

Now we check that all Inv are satisfied. It follows immediately from the construction
that Inv (1,2,4,5,6) are satisfied. Let us show that Rl ∪ Υ l is convergent. First we note
that there are no critical pairs between l → r and Rl. Indeed, l is irreducible by Rl and
l is greater (w.r.t. �) than all left-hand sides of rules in Rl. Likewise, from the Claim
above it follows that that l is not evaluated by Υl and therefore there are no critical pairs
between l ↓Υl

→ r ↓Υl
and rules in Υl. The only new critical pairs possible are between

l → r and rules in Υ l, but they are joinable since l ↓Υ l= r ↓Υ l .
Now we assume that there is no clause in S l producing a rewrite rule. We define

εl = ∅, and now we need to find an appropriate evaluation for l. Let us fix a numerical
variable xl. We say that a clause C ∈ Sl, C = C ′ ∨ ±l > r weakly produces a bound
±xl > r ↓Υl

, if the following holds.

– ±l > r is a strictly maximal literal in C, and
– Dl

C is false in Υl, and
– there is no literal ±l > r′ in C ′, and
– if there is a literal ∓l > r′ in C ′, then Q � r ↓Υl

≥ −r′ ↓Υl
.

Let Bl be the set of all bounds weakly produced by clauses in S l, (Bl can be the
empty set). It is not difficult to see that Assumptions 1 and 2 imply that Bl is finite. Let
Bl

− be the set of lower bounds in Bl (i.e. bounds of the type xl > q) an Bl
+ be the set of



upper bounds in Bl (i.e. bounds of the type −xl > q). We have Bl = Bl
− ∪ Bl

+. Since
Bl is finite we have that each Bl

− and Bl
+ are satisfiable. Let xl > qglb be the greatest

w.r.t. > lower bound in Bl
−, (since Bl

− is finite such a bound always exists). Let Ul be
the set of upper bounds −xl > q in Bl

+ such that −qglb > q. Define Bl
± = Bl

− ∪ U l.
We have Bl

± is satisfiable and the set of solutions to Bl
± is an open interval. Moreover,

if Bl
+ 6= U l then Bl

− together with any bound from Bl
+ \ U l is unsatisfiable. Clauses

weakly producing bounds in Bl
± are called productive.

In order to satisfy Inv 6 we impose additional constraints on evaluation of l defined
below. We say that a pair of terms u, v ∈ TS , such that l is the leading monomial of
u and u � v produces a disequality constraint duv if the following holds. Assume that
u = αl + u′, α 6= 0. If l is not a subterm of v and therefore l � v, then duv = {xl 6=
(v ↓Υl

−u′ ↓Υl
)/α} (note that u′ ↓Υl

, v ↓Υl
∈ Q). If l is a subterm of v then v = βl + v′

and we need to consider the following possible cases. Case (i): β = α. Then we have
u′ � v′ and we can apply Inv 6 to the leading term of u′, obtaining u′ ↓Υl

6= v′ ↓Υl
. In

this case we have that under any evaluation of l, evaluation of u will be different from
evaluation of v and therefore we define duv = ∅. Case (ii): β 6= α. Then we define
duv = {xl 6= (v′ ↓Υl

−u′ ↓Υl
)/(α − β)}. We define Dl to be the union of all duv

where u, v ∈ TS , l is the leading monomial of u and u � v. From Assumptions (1, 2)
it follows that Dl is finite, therefore Dl is satisfied by all but possible a finite number
of rationals. We have Bl

± ∪ Dl is satisfiable. Define δl = {l ↓Υl
→ q}, where q is any

rational satisfying Bl
± ∪ Dl. It is straightforward to check that all Inv are satisfied by

εl, δl.
We have shown how to construct εl, δl for every l ∈ T nth

S . Now we define RS =
∪l∈T nth

S
εl and ΥS = ∪l∈T nth

S
δl. We have RS ∪ ΥS is a convergent term rewriting system

such that every term in T nth
S is evaluated by ΥS . Finally we need to extend evaluation ΥS

to all non-theory terms. We can do it by induction over all non-theory terms as follows.
For each term t we define a set of evaluation rules κt as follows. Assume, by induction,
that we have defined κs for non-theory terms s ≺ t. Define Λt = ΥS

⋃
∪t�sκs. If t is

evaluated by Λt then we define κt = ∅, otherwise we define κt = {t ↓Λt
→ q} where

q ∈ Q is selected arbitrary. Define Λt = Λt ∪ κt and ΛS = ∪Λt. It is not difficult to
check that RS ∪ ΛS is a convergent term rewriting system such that every non-theory
term is evaluated by ΛS.

Let us define a Herbrand interpretation 〈ν,∼〉, where ν(t) = t ↓ΛS
and t ∼ s iff

t ↓ΛS
= s ↓ΛS

. We call 〈ν,∼〉 the candidate model for S. �

Lemma 1. In the Model Construction above if a clause C is productive then C is true
in the candidate model 〈ν,∼〉.

Proof. Immediately follows from the Model Construction. �

Lemma 2. In the Model Construction above if a clause C = C ′ ∨ ±lonr produces a
rule or a bound ±lonr then C ′ is false in the candidate model 〈ν,∼〉.

Proof. Consider first when ±lonr is l = r and C generates the rule l → r. We have
C ′ = V l

C′ ∨ Dl
C′ where V l

C′ consists of all literals in C ′ with the leading term l. From
the conditions on productiveness of C we have that Dl

C′ is false in 〈ν,∼〉. From the
definition of the ordering on atoms Vl

C′ does not contain any atoms with >. If V l
C′



contains an atom l = r′ then we have r ↓ΥS
6= r′ ↓ΥS

and l ↓ΥS
= r ↓ΥS

therefore l = r′

is false in 〈ν,∼〉.
Now we consider the case when ±lonr is ±l > r and C produces the bound ±xl >

r ↓ΥS
. We have that Dl

C′ is false in 〈ν,∼〉. If V l
C′ contains an atom l = r′, then by

construction l is irreducible w.r.t. Rl. Since l � r′, Inv 6 implies that l ↓ΥS
6= r′ ↓ΥS

. If
V l

C′ contains an atom ∓l > r′ then we have ±l ↓ΥS
> r ↓ΥS

≥ −r′ ↓ΥS
and therefore

r′ ↓ΥS
> ∓l ↓ΥS

implying that ∓l > r′ is false. Also, by conditions on productiveness,
there is no atom ±l > r′ in V l

C′ . We have shown that all atoms in V l
C′ , and therefore in

C ′, are false in 〈ν,∼〉. �

Theorem 2. LASCA is complete under Assumptions (1,2). Let S be a set of ground
clauses such that Assumptions (1,2) are satisfied. If S is saturated and � 6∈ S then S is
true in the candidate model 〈ν,∼〉.

Proof. Let S be a saturated set of clauses satisfying Assumption 1. We apply Model
Construction above to obtain RS , ΥS , ΛS and the candidate model 〈ν,∼〉. In order to
show that 〈ν,∼〉 satisfies all clauses in S it is sufficient to show that ΥS satisfies all
clauses in S. Assume otherwise. Let C be the smallest clause in S that is false under
ΥS . Let C = C ′ ∨±lonr, where ±lonr be a maximal literal in C. First we show that l is
irreducible by RS . Indeed, assume that l[l′] is reducible by a rule l′ → r′. Consider the
clause D = D′ ∨ l′ = r′ producing l′ → r′. Then, there is an inference by Gaussian
Elimination with the premise C, D and the conclusion G = D′ ∨ C ′ ∨ ±l[r′]onr. We
have that C � G and from Lemma 2 it follows that G is false in ΥS . This contradicts
minimality of C.

By Lemma 1 all productive clauses are true in ΥS , therefore we assume that C is
not productive. Consider possible cases.

Case (1): C = C ′ ∨ l = r. If C is not weakly productive then C ′ = C ′′ ∨ l = r′

and r ↓ΥS
= r′ ↓ΥS

. Therefore, inference rule Theory Equality Factoring is applicable
to C with the conclusion D = C ′′ ∨ r > r′ ∨ r′ > r ∨ l = r′. We have C � D and D
is false in ΥS , contradicting minimality of C. Now assume that C is weakly productive,
then there is a clause C ′ � C which produces a rule l → r′ to RS . This contradicts that
l is irreducible by RS , which is shown above.

Case (2): C = C ′∨−l > r. If C is not weakly productive then either (i) there exists
D = D′ ∨ l = r′ and D produces l → r′, but this contradicts that l is irreducible by
RS , or (ii) there is a literal −l > r′ in C ′, or (iii) there is a literal l > r′ in C ′ such that
−r′ ↓ΥS

> r ↓ΥS
.

Case (2.ii). Assume that C ′ = C ′′ ∨ −l > r′. Then, inference rules InF 1 and
InF 2 are applicable to C with the conclusions D1 = C ′′ ∨ r > r′ ∨ −l > r and
D2 = C ′′ ∨ r′ > r ∨ −l > r′, respectively. Note that D1 ≺ C and D2 ≺ C. Consider
possible cases. If r′ ≥ r is true in ΥS then D1 is false in ΥS . If r > r′ is true in ΥS then
D2 is false in ΥS . In both cases we obtain a contradiction to the minimality of C.

Case (2.iii). Let us assume that there is a literal l > r′ in C ′ such that −r′ ↓ΥS
>

r ↓ΥS
. Since l > r′ and −l > r are false in ΥS we have r′ ↓ΥS

≥ l ↓ΥS
and r ↓ΥS

≥
−l ↓ΥS

, therefore r ↓ΥS
≥ −r′ ↓ΥS

which is a contradiction.
Case (2.iv). Now we assume that C is weakly productive. Let C weakly produces

a bound (−xl > r ↓ΥS
) ∈ Bl

+. If (−xl > r ↓ΥS
) ∈ U l then (−xl > r ↓ΥS

) ∈ Bl
±



implying C is productive which is a contradiction. If (−xl > r ↓ΥS
) ∈ Bl

+ \ U l then
we have the following. Let D = D′ ∨ l > rglb be the clause producing the greatest
lower bound (w.r.t. >) into Bl

−. Then, the Fourier-Motzkin inference rule is applicable
to C and D with the conclusion K = C ′ ∨D′ ∨−rglb > r. Let us show that K is false
in ΥS . Indeed, D′ is false since D is productive (see Lemma 2), and −rglb > r is false
in ΥS since (−xl > r ↓ΥS

) 6∈ U l (see definition of Ul). Now we show that C � K.
Indeed, (l > rglb) � D′ therefore (−l > r) � D′ and (−l > r) � (−rglb > r). These
imply that C � K, obtaining a contradiction to the minimality of C.

Case (3): C = C ′ ∨ l > r. Subcases (3.i-iii) are similar to (2.i-iii).
Case (3.iv). We assume that C is weakly productive. Since C weakly produces

a bound (l > r ↓ΥS
) ∈ Bl

− ⊆ Bl
± we have that C is also productive, which is a

contradiction.
We have considered all possible cases arriving at a contradiction under the assump-

tion that C is false in 〈ν,∼〉. Therefore all clauses in S are true in the candidate model
〈ν,∼〉. �

Let us note that our proof of the completeness theorem is based on the model gen-
eration technique, and therefore it is not difficult to adapt redundancy notions from the
standard superposition calculus. For details we refer to [6].

4 Lifting

We now consider clauses with variables over variable-safe sorts defined below. It is
convenient to define first the set of variable-unsafe sortsŜ (w.r.t. Σ) as the minimal
set of sorts such that (i) sQ ∈ Ŝ and (ii) if there is a function symbol f in F with
an argument of a sort in Ŝ then the value sort of f is also in Ŝ. We define the set of
variable-safe sorts as S̄ = S \ Ŝ, (see Examples (1,2)).

Assumption 3 For a set of clauses S, all variables in S are of variable-safe sorts.

It is easy to see that if a finite set of clauses S satisfies Assumption 3, then the set of all
ground instances of S satisfies Finiteness of Coefficients Assumption 1.

Our LASCA calculus for ground clauses works on Q-normalised clauses. In order
to lift LASCA calculus into non-ground case we need additional normalisation rules. In
formulation of Normalisation rule below we assume that non-ground theory literals are
in one-sided form ton0.

For a pair of terms t, t′ let mguAC (t, t′) be a minimal complete set of AC-unifiers.

Normalisation Rule:

C[qt + q′t′]

C[(q + q′)t]σ

where σ ∈ mguAC (t, t′).

Equality Resolution:

C ∨ t 6' t′

Cσ

where σ ∈ mguAC (t, t′).



Now lifting of LASCA calculus is straightforward and we show the corresponding
rules only for Gaussian and Fourier-Motzkin elimination rules. We assume that � is
lifted to non-ground terms, literals and clauses, in such a way that � is preserved under
substitutions. As in the ground case we assume that before applying the LASCA rules,
literals are represented in one of the form l = r, l > r, −l > r, l ' r, l 6' r, >,
⊥ where there exists a grounding substitution σ such lσ � rσ (there can be several
choices for l and r in one literal).

Gaussian Elimination:

C ∨ l = r L[l′]p ∨ D

(C ∨ D ∨ L[r]p)σ

(i) σ ∈ mguAC (l, l′),
(ii) (l = r)σθ � Cσθ for some grounding θ.

Fourier-Motzkin Elimination:

C ∨ l > r −l′ > r′ ∨ D

(C ∨ D ∨ −r′ > r)σ

(i) σ ∈ mguAC (l, l′),
and for some grounding substitution θ:

(ii) (l > r)σθ � Cσθ,
(iii) there is no l′′ > r′′ ∈ C such that

l′′σθ =AC lσθ

(iv) (−l′ > r′)σθ � Dσθ,
(v) there is no −l′′ > r′′ ∈ D such that

l′′σθ =AC lσθ.
Note that from the Assumption 3 it follows that l and l′ are not variables in Gaussian

and Fourier-Motzkin elimination rules.

Example 1. Let s be a non-theory sort. Let f : 〈s, sQ〉; e : 〈s, s〉; g, h : 〈sQ, sQ〉,
assume that g(x) � h(x). Consider set of clauses:

2g(f(e(x))) + h(f(e(x))) = 0 (1)
g(g(f(x)) + 1/2h(f(x))) > 2g(0) (2)

g(0) > 0 (3)

We can prove unsatisfiability of the set of clauses {(1), (2), (3)} by applying Gaus-
sian Elimination between (1) and (2) obtaining g(−1/2h(f(e(x)))+1/2h(f(e(x)))) >
2g(0), then applying Normalisation obtaining −g(0) > 0 and Fourier-Motzkin with
(3) obtaining ⊥. Let us note that our next Theorem 3 implies that the set of clauses
{(1), (2)} is satisfiable, since the saturation process terminates.

Now we are ready to prove the following completeness theorem.

Theorem 3. Let � be finite-based and S be a finite saturated set of clauses satisfying
Assumption 3. Then S is satisfiable if and only if � 6∈ S.

Proof. Let S be a finite saturated set such that � 6∈ S. Let us show that S is satisfiable.
Let Sgr be the set of all ground instances of clauses in S which are Q-normalised.
Since S is finite we have that Sgr satisfies Finiteness of Coefficients Assumption 1. Let
〈ν,∼〉 be the candidate model for Sgr (see Model Construction). Assume that 〈ν,∼〉 is
not a model for S and let Cσ be the minimal w.r.t. � instance of S false in 〈ν,∼〉. We



can assume that Cσ is normalised. Indeed, if Cσ is not normalised, then we can apply
Normalisation, or Equality Resolution rule to obtain a smaller clause false in 〈ν,∼〉.
Now we can proceed as in Theorem 2. The only additional case to consider is when
xσ = t is reducible by RSgr

for some variable in C. Let l → r in RSgr
and t|p = l.

Then t � t[r]p. Define σ′ to be a substitution such that xσ′ = t[r]p and yσ′ = yσ for
variables different from x. Then Cσ � Cσ′ and Cσ′ is false in 〈ν,∼〉, contradicting
minimality of Cσ. �

Example 2. Let s be a non-theory sort. Consider f : 〈s, s〉, h : 〈s, sQ〉 and c : 〈sQ〉.

h(f(x)) > h(x)
c > h(y)

This set of clauses is saturated and therefore is satisfiable by Theorem 3. Note that after
grounding this set of clauses we obtain an infinite number of inequalities, and the term
c has infinitely many occurrences in different ground inequalities.

5 Finite-Based Ordering

In this section we present an ordering � which satisfies all required properties: it is
AC-compatible, Q-monotone, Q-total, finite-based, well-founded and satisfies sum and
subterm properties. Without the condition to be finite-based, such orderings are well-
known to exist by modifying the lexicographic path ordering (see e.g. [11]). Unfortu-
nately these orderings are not finite-based which is a crucial condition for our com-
pleteness theorems. Here we show how to modify the Knuth-Bendix ordering to sat-
isfy all requirements. Let �c be any well-founded total ordering on rationals such that
q �c 1 �c 0 for any q different from 0, 1. Let Σnth consists of all non-theory symbols.
For an ordering �, let �mul denotes the multiset extension of � and �lex denotes the
lexicographic extension of � defined over tuples of the same length.

Denote the set of natural numbers by N. We call a weight function on Σnth any
function w : Σnth → N such that w(e) > 0 for every constant, or unary function
symbol e. A precedence relation on Σnth is any linear order � on Σnth . We call w(g)
the weight of g. The weight of any ground term t over signature Σnth , denoted |t|, is
defined as follows: for any constant c we have |c| = w(c) and for any function symbol
g of a positive arity |g(t1, . . . , tn)| = w(g) + |t1| + . . . + |tn|.

First we define the Knuth-Bendix order on terms over Σnth in a usual way. The
Knuth-Bendix order induced by w and � is the binary relation �KBO on ground
terms over Σnth defined as follows. For any ground terms t = g(t1, . . . , tn) and
s = h(s1, . . . , sk) we have t �KBO s if one of the following conditions holds:

1. |t| > |s|;
2. |t| = |s| and g � h;
3. |t| = |s|, g = h and (t1, . . . , tn) �lex

KBO (s1, . . . , sn).

It is known that for every weight function w and precedence relation � compatible
with w, the Knuth-Bendix order induced by w and � is a simplification order total



on ground terms (see e. g. [1]). Let us note that for any term t there are only a finite
number of terms less that t w.r.t. �KBO . This property is crucial for defining a finite-
based ordering.

Now we define an abstraction abstr of terms over Σ into terms over Σnth as fol-
lows. Let cm ∈ Σnth be the least constant w.r.t. �KBO . Then abstr is defined by a
structural induction on terms as follows: (i) abstr(c) = c for a constant c ∈ Σnth , (ii)
abstr(f(t1, . . . , tn)) = f(abstr(t1), . . . , abstr(tn)), for f ∈ Σnth , (iii) abstr(q) =
cm for any constant q ∈ ΣQ, (iv) abstr (q1t1 + . . . + qntn + q) = abstr(tj) where
abstr(tj) is the greatest w.r.t. �KBO term among abstr(t1), . . . , abstr(tn), 1 ≤ n.

Given an ordering � on non-theory terms we denote �′ an ordering extending � to
terms of the form qt where t is a non-theory term as follows. For non-theory terms t, s,
we say that qt �′ q′s iff either (i) t � s or (ii) t =AC s and q �c q′. Likewise we say
qt �′ s iff t � s, and t �′ qs iff t � s.

Finite-Based Q-KBO. Now we define a Q-Knuth-Bendix ordering (Q-KBO) �QKBO

on general terms as follows. Define t �QKBO s if one of the following conditions
holds:

1. abstr(t) �KBO abstr(s), or
2. abstr(t) = abstr(s) and

(a) t = f(t1, . . . , tn) and s = f(s1, . . . , sn) for f ∈ Σnth and
(t1, . . . , tn) �lex

QKBO (s1, . . . , sn), or
(b) t = q1t1 + . . . + qntn + q and s = q′1s1 + . . . + q′msm + q′, and

i. {t1, . . . , tn} �mul
QKBO {s1, . . . , sm} or,

ii. {t1, . . . , tn} =AC {s1, . . . , sm} and
{q1t1, . . . , qntn, q} �′ mul

QKBO {q′1s1, . . . , q
′
msm, q′}

Theorem 4. Q-Knuth-Bendix ordering is an AC-compatible, Q-monotone, Q-total, well-
founded and finite-based ordering which satisfies sum and subterm properties.

6 Negative Results

In this section we remark on complexity of the first-order theories for Q extended with
non-theory function symbols. First we consider the structure N with theory symbols
〈0, S〉 where S is interpreted as the successor function. Now, if we consider validity of
sentences in an extended signature with non-theory function symbols then we are in the
universal fragment of second-order arithmetic. Indeed, validity of a first-order sentence
ϕ(f̄) is equivalent to whether the second-order universal sentence ∀f̄ϕ(f̄) is true in N.
Therefore checking validity of formulas over N with non-theory function symbols is
of the same complexity as checking validity of second-order universal sentences over
N which is a Π1

1-complete problem [10]. (Usually N is considered in the signature
〈+, ·, 0, 1〉, but + and · can be defined via S using standard inductive definitions.) It is
easy to see that if N can be defined (up to isomorphism) in a language then the validity
problem for such language extended with non-theory symbols is at least Π1

1-hard (we
can relativise formulas to N).



Now we show that even if we consider formulas without quantifiers over variables
of sort sN, still the validity problem is of the same complexity of being Π1

1-complete.
Indeed, consider a non-theory sort s and functions 0s : 〈s〉, Ss : 〈s, s〉, and h : 〈s, sN〉.
Then, ∀xy (h(x) = h(y) → x ' y) axiomatises that h is an embedding of the domain
of sort s into N. Formulas h(0s) = 0 and ∀x (h(Ss(x)) = h(x) + 1), define N in the
non-theory domain. Note that all variables in the above definition are of sort s.

Now we show that N is definable in Q extended with non-theory function symbols.
Indeed, the following axioms define N in Q, (for simplicity we consider N as a non-
theory predicate symbol, but trivially N can be redefined using only function symbols).

N(0)
∀x (N(x) → x = 0 ∨ x > 0)
∀x (N(x) → N(x + 1))
∀xy ((N(x) ∧ N(x + 1) ∧ x + 1 > y > x) → ¬N(y))
∀x (S(x) = x + 1)

Since Q can be trivially coded in N, we conclude that the validity problem for
formulas in Q extended with non-theory function symbols is Π1

1-complete.
Similar to the case of N, we show that even if we consider formulas without quan-

tifiers over variables of sort Q, still the validity problem is Π1
1-complete. The functions

h, 0s, Ss are defined in the same way as for N, but now h defines an embedding into
Q rather than into N. In order to define natural numbers Ns in the domain of sort s we
need additional binary predicate >s over sort s and additional axioms:

Ns(0s)
∀xy (x >s y ↔ h(x) > h(y))
∀x (Ns(x) → x ' 0s ∨ x >s 0s)
∀x (Ns(x) → Ns(Ss(x)))
∀xy ((Ns(x) ∧ Ns(Ss(x)) ∧ Ss(x) >s y >s x) → ¬Ns(y))

It is easy to check that these axioms define N in the domain of sort s. Therefore
the validity problem for formulas without quantifiers over variables of sort Q is Π1

1-
complete. We summarise these results in the following theorem.

Theorem 5. Consider Q in the signature 〈0, 1, +, >〉 and N in the signature 〈0, S〉.
Then, the following problems are Π1

1-complete.

– Unsatisfiability of sets of clauses, in a signature extending Q (N) with non-theory
function symbols.

– Unsatisfiability of sets of clauses with variables ranging over a non-theory sort s,
in a signature extending Q (N) with a non-theory sort s and non-theory function
symbols.

In particular, Theorem 5 implies that there is no sound and complete calculus for linear
arithmetic extended with non-theory function symbols.



7 Conclusions

In this paper we have presented an extension of superposition calculus for first-order
logic with rules for linear arithmetic. One of our main results is completeness of the
resulting calculus under some finiteness assumptions. One of the possible applications
of our results is to obtain new decision procedures for fragments of first-order logic
extended with rational arithmetic.
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Table 1. Linear Arithmetic Superposition Calculus (LASCA) for ground clauses

Ordered Paramodulation:

C ∨ l ' r L[l′]p ∨ D

C ∨ D ∨ L[r]p

(i) l =AC l′,
(ii) (l ' r) � C.

Equality Factoring:

C ∨ t′ ' s′ ∨ t ' s

C ∨ s 6' s′ ∨ t ' s′

(i) t =AC t′,
(ii) (t ' s) � C ∨ t′ ' s′.

Gaussian Elimination:

C ∨ l = r L[l′]p ∨ D

C ∨ D ∨ L[r]p

(i) l =AC l′,
(ii) (l = r) � C.

Theory Equality Factoring:

C ∨ l′ = r′ ∨ l = r

C ∨ r > r′ ∨ r′ > r ∨ l = r′

(i) l =AC l′,
(ii) (l = r) � C ∨ l′ = r′.

Fourier-Motzkin Elimination:

C ∨ l > r −l′ > r′ ∨ D

C ∨ D ∨ −r′ > r

(i) l =AC l′,
(ii) (l > r) � C,

(iii) there is no l′′ > r′′ ∈ C such that l′′ =AC l

(iv) (−l′ > r′) � D

(v) there is no −l′′ > r′′ ∈ D such that l′′ =AC l.

Inequality Factoring (InF1):

C ∨ ±l′ > r′ ∨ ±l > r

C ∨ r > r′ ∨ ±l > r

(i) l =AC l′,
(ii) (±l > r) � C ∨ ±l′ > r′.

Inequality Factoring (InF2):

C ∨ ±l′ > r′ ∨ ±l > r

C ∨ r′ > r ∨ ±l > r′

(i) l =AC l′,
(ii) (±l > r) � C ∨ ±l′ > r′.

⊥-Elimination:

C ∨ ⊥
C

(i) C contains only >,⊥ literals.


