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Abstract. Sequent calculi usually provide a general deductive setting that uni-
formly embeds other proof-theoretical approaches, such as tableaux methods, res-
olution techniques, goal-directed proofs, etc. Unfortunately, in temporal logic,
existing sequent calculi make use of a kind of inference rules that prevent the
effective mechanization of temporal deduction in the general setting. In particu-
lar, temporal sequent calculi either need some form of cut, or they make use of
invariants, or they include infinitary rules. This is the case even for the simplest
kind of temporal logic, propositional linear temporal logieL{TL). In this pa-

per, we provide a complete finitary sequent calculusMbr L, called 7C, that

not only is cut-free but also invariant-free. In particular, we introduce new rules
which provide a new style of temporal deduction. We give a detailed proof of
completeness.

1 Introduction

The development of automated deduction systems for temporal logic has followed two
main proof-theoretical approaches: tableaux (see [12]) and resolution (see [1]), which
are both refutational proof methods. Sequent calculi are usually used to provide a gen-
eral deductive setting that uniformly embeds refutational methods and other deduction
techniques such as goal-directed proofs or natural deduction. In temporal logic, tableaux
methods generate graphs instead of the classical trees and resolution methods require
more involved normal forms and inference rules than the classical clausal form and the
classical resolution rule. This complicates the association of a sequent calculus proof to
each tableaux graph or each resolution proof. In addition, existing sequent calculi for
temporal logic (cf. [6, 8, 11]) make use of a kind of inference rules that prevents this cor-
respondence and complicates the implementation of temporal deduction in the general
setting. In particular, temporal sequent calculi either need some form of cut (classical
cut or invariant-based cut) or they include infinitary rules. Cut rules imply the “inven-
tion” of lemmata, called cut formula, for their application. Invariants are particular cut
formulas for proving temporal eventualities. This is the case even for the simplest kind
of temporal logic, propositional linear temporal logRLTL). In this sense, the formu-
lation of a cut-free, invariant-free finitary sequent calculus, can be considered a relevant
open problem that is solved in this paper.

* This work has been partially supported by Spanish Project TIN2004-079250-C03.



More precisely, in [6] and [11], two sequent calculi foLTL with invariant-based
rules are presented. In fact, in both approaches, they present a system including also
a cut rule and then prove cut elimination. However, invariant-based rules for temporal
connectives cannot be avoided. In [8] various sequent calculi are presentedTfor
without the until operator (this means that the logic considered has a limited expressive
power). He provides completeness and cut-elimination proofs, together with various in-
teresting reductions among the various calculi. However, every calculus includes either
some infinitary rule or some invariant-based rule. Other proof-theoretic approaches for
PLTL include its first axiomatization a la Hilbert presented in [2], and the first detailed
description of a tableaux method for deciding the satisfiability of Bhyf L-formula
presented in [12]. The satisfiability problem BLTL is PSPACE-complete (cf. [10]).

See [9] for a good survey about theorem-provingltT L and its extensions.

In this paper, we provide a complete finitary sequent calculu®dn., calledFC,
that not only is cut-free but also invariant-free. In particular, we introduce a new rule
for the until operator that provides a new style of temporal deduction for eventualities.
Moreover, deduction for "always”-formulas is also affected by this new style.

In order to show completeness, we have not followed the standard approach of, first,
proving completeness including a cut rule in the calculus and, then, showing a cut elim-
ination result (cf. [3]). Actually, the first part of that approach, proving completeness of
FC plus the cut rule, is quite easy. In particular, just with the rule&hit is easy to
derive every axiom (except the modus ponens rule) in the system proved complete in
[5]. Obviously, with the addition of the cut rule one can easily derive modus ponens.
Unfortunately, we have been unable to directly prove cut elimination. Instead, we have
directly proved the completenessBC, which indirectly means that the cut rule is not
needed. The proof is partially inspired by the tableaux method proposed in [5]. In par-
ticular their notion of maximal strongly connected components has been very useful in
our proof. However, unlike [5], we use a filtration technique for constructing models
from saturated consistent sets of formulas (as states).

The paper is organized as follows. Section 2 is a basic introductiBhTd. In sec-
tions 3 and 4 we introduce our calcult)’C, proving its soundness. More precisely, in
section 3 we describe the basic rules for describing the mgxrfd until (/) connec-
tives, while in section 4 we present some useful derived rules describing, in particular,
the rest of the temporal connectives. Section 5 presents the completeness [F6of of
Finally, in section 6 we draw some concluding remarks.

2 PLTL: Language and Model Theory

A PLTL-formula is built using the constant propositienpropositional variables (de-
noted by lowercase lettefs g, . . .) from a setProp, the classical connectives and
Vv, and the temporal connectivesand U/ . A lowercase Greek lettero( 4, x, 7, .. .)
denotes a formula and an uppercase aheA, I, ¥, (2, ...) denotes a finite set of
PLTL-formulas.PLTL-formulas of the fornmp and —p, wherep € Prop, are called
literals and PLTL-formulas that do not begin with the connectiveare calledposi-
tive. As usual other connectives can be defined in terms of the previousoaesir,



P AP =-(mp V), 0p =TU @, Op = =0, PLTL-formulas of the formp U/ ¢
andop are calledeventualities In the rest of this paper, we simply sé&rmulain-
stead ofPLTL-formula. The operatatiext translates any set of formulas into another
(possibly empty) set of formulagxt(®) = {¢ | op € P}.

It is well known thatPLTL is a non-compact logic. As a consequence, strong com-
pleteness requires an infinitary proof system, whose deduction rules may require in-
finitely many premises. Our calculus is finitary, hence, as usual (see, e.g. [6], [2] and
[11]), our completeness result is in this sense, weak. Therefore, along this paper, every
set of PLTL-formulas is assumed to be finite. Given any (finite)&et {¢1, ..., pn}
we will used™ to denote the formulap; V. ..V —p,. In particular®™ is the constant
F wWhene is empty.

Definition 1. APLTL-structureM is a pair (S, V) such thatS, is a denumerable
sequence of stat@g, s, sz, ... and Vi is a mapVu : Sy — 2P™P. n

Intuitively, V., specifies which atomic propositions are (necessarily) true in each state.

Definition 2. The truth of a formulap in the states; of a PLTL-structure M, which is
denoted by M, j) = ¢, is inductively defined as follows:

- (M, j) [EFF

— (M, j) Epiff pe Va(s;) forp € Prop

- (M, j) Epiff (M, j) = ¢

(M) b= o Vit (M, ) = por (M, j) [= )

— (M) o iff (M, j+1)

- (M,5) E U iff (M, k) | ¢ for somek > j and (M,i) = ¢ for every
J<i<k. m

This is extended to sets in the usual wéyt, j) = @ iff (M, j) = ¢ forall ¢ € .

We say thatM is a model of®, in symbolsM = &, iff (M,0) = ¢. A satisfiable
set of PLTL-formulas has at least one model, otherwise it is unsatisfiablelobial

consequenceelation between a set of formulésand a formulgy, denoted a@ = x,

is defined in the following way:

& = y iff for every PLTL-structureM and everyj € IN :
if (M, j) = @ then(M, j) = x

3 The Sequent CalculuscC

In this section, we introduce a sound and complete sequent calculus, £édljédat is

fully free of cut. That is, inFC there are neither classical cut rules nor invariant-based
rules for temporal connectives. The calcufis uses asymmetric sequents, i.e. sequents
formed by a set of assumptions and a single conclusion. The former set is called the
antecedent of the sequent and the latter formula is called the consequent. We write
A+ x torepresent a sequent whose antecedert @d whose consequentys We

have preferred to formulate the calculus by means of asymmetric (or one-conclusion)



Classical connectives rules

Aot x
Ak Aok F Ay x Al Ak
-L — L
( )A7—\()0|_X (£=) AF - (v )A,cp\/wl—x (Rv)Al—cp\/w AV
Temporal connectives rules
next(A) ¢ Ajo-p bk x A —op
(Rol) Al op (moL) A, —op - x (Fo=) AF o
A x 5= A,
A, 0(GUY) Ex JOTY A, p,~o(pUY) F o
(UL AU - : (RU) At UV
s eUY Ex §2= o A(A"V Y) @
Structural rules
Al x A -pkF AF oF
As) Ao b —— i
(As) A,p ko (Wk)A,A/i—x (Cd) Ar o (oF) AFx

Fig. 1. The sequent calculusC

sequents, instead of symmetric (multiple-conclusioned) sequents, because the former
are closer to natural deduction and captures better our intuition in logical reasoning. A
multiple-conclusioned system can be easily obtained ffFor getting rid of some

rules and giving a more compact presentation, we could also take the one-sided sequent
approach (also known as Tait-style). However, it requires to keep formulas in negation
normal form and results a bit more unusual and unnatural at first sigth.

The calculusFC consists of the primitive rules that are summarized in Fig. 1. We
have split these rules into three packages. Two of them consist of rules for classical and
temporal connectives, respectively. These rules follow the traditional style of introduc-
tion of the connective in the left/right part of the sequent. In addition we need some
structural rules which form the third package.

The rules for classical connectives are classical. With respect to the temporal con-
nectives, the three rules for the next operatdtoL), (—oL) and (Ro—), are well
known in the literature oPLTL. Besides, by means ¢{/ L); we represent two rules
for two differentd; wherei = 1 ori = 2. The rules(U L), and (RU ) are also well
known. Both are included in the existing Gentzen systems where other invariant-based
rules for the until operator are given (cf.[6, 11]). Instead, we add a(ddl&), which
does not require invariant generation. This r(lé L),, which up to our knowledge is
completely new, can be considered quite peculiar, since the second premise includes a
formula which depends on the whole conclusion of the fuleaddition(/ L), leads
to a new deduction style that is opposite, in some sense, to the invariant-based reason-
ing. The underlying idea in the rul@/ L)- is that the sequences of states along which
the satisfaction of an eventuality is delayed should be ever-changing sequences. In the

3 Remember that\ is always assumed to be a finite set and thatis r wheneverA is empty.



proof of the soundness theorem, we show in detail that the(i4l€ ), is correct. We
believe that this correctness proof reflects the intuition behind the rule.

Regarding structural rulegpr) is the only rule that is not a classical rule. At first
sight, the introduction of the weakening rul@ k) in the structural package could be
surprising since very commonlg#V'k) is an elementary property and an admissible
rule. However, the form of the rul@/ L), prevents that traditional methods for prov-
ing admissibility (cf. [7]) could be applied to the calcul#. Although experimental
work (see Example 6) indicates tHat'k) could be admissible igFC, this is still an
interesting open problem. This work is mainly focused in completeness, the minimality
of the calculus remains as future work.

An FC-proof is a tree (written right side up, with its root on the bottom) labelled
with sequents. The sequent to be proved labels its root, the leaves are labelled with ax-
ioms (which are rules without premises), and all the local subtrees must be accepted by
some inference rule iAC. In the Examples 4 and 5, we give a sequence of sequents that
ends with the root (the proved sequent) and add additional information for describing
the structure of the tree.

The expressiond” x¢ x is used to denote that there exists AG-proof of the
sequent” + x. We say that a set of formuldsis FC-consistentif and only if" I/ z¢ .

The soundness ofC means that ever§C-provable sequent, namelyt Yy, is correct
regarding to logical consequence. In particular, every satisfiable set of formuids is
consistent.

Theorem 3. For any set of formulag™ U {x}, if I Fz¢ x thenI" |= x.

Proof. By induction on the length of th&C-proof, it suffices to prove that every primi-
tive rule of #C (see Fig. 1) is correct in the sense of preserving the logical consequence
relation between the antecedent and the consequent.

Now, the correctness proof of most rules is just routine. Actually, the only correct-
ness proof that poses some difficulties is the proof of the (idd.).. Hence, we only
give the details for this rule.

We will show that, if we assume that U {ol{), —x} is satisfiable, then we would
build a countermodel for some of the two premises of the (Md.),. Let (M, 3) |=
AU {eUrp, ~x} ands; the leasts > i such thati M, s) |= 4. If 53 = i then(M, )
serves as countermodel for the first premise. Otherwise, ¥ i, let so be the greatest
ssuchthat < s < s; and(M,s) = AU {¢U,—x}. As a consequence of the
choice ofs; andsa, it holds (M, s2) = o((p A (A7 V x))Uw). Then, (M, s2) is a
countermodel of the second premise. ]

4 Derived Rules and Proofs

In this section we present some derived rules that can be used as a shortcut for several
lines of primitive-rules-only proofs. Actually, some of these rules are used below in the
proof of the completeness theorem.

The first group of derived rules, including the contraposition rg@&s1) and(Cp2),
can be derived in a standard way from the classical primitive rulé<’in



A~ A pkF
S S 2y —r L) A FH
(Cpl) A, ﬁ’(p - © (Cp ) A, ﬁ’Lp - - (F ) ' F X
A,pkx A, =, p b x
CdL) A, ¢, —¢tF x L) — A v/ 7 A
(CdL) ( )A,ﬂwa ( )Aﬁ(w\/w)Fx

For the temporal connectives, the following derived rules will be used later:

A=, x
next(A) F F A, p, =P, ~0(pU ) - x
oL) ———— -~ UL
(L) AR x ( ) A, =(pUy) - x

It is easy to check thd L) is derived by(RoL) and(or) and(— U L) by (Cpl)
and(RU ).

Other derived rules allow us to reason about the rest of the classical or temporal
connectives, which have been introduced as a shorthand to abbreviate some formulas.
For instance, since A v stands for-(—¢ V —1)), the classical sequent rules forcan
be derived:

Ao, x AFep ARy

WD Fonorx Y TAroaw

Likewise, using the abbreviatiorsp andoyp for T U p and—¢—, respectively, we are
also able to derive the following useful rules:

Aok x 5

A, =, 0(6;U @) F 1=T A, =00y
o1y, 2L X:{ (Ro) = 3o,

;O X 6y = A"V y Op
Al 5

A = A, 0(6; U —p) | — 1=T
(or) 2200 F X (RO): ( PIF e

A, Op F x AFOp 5y = A”

Note also that, byniL) and(—oL), the following contradiction rule is also derivable:
(CdO) A, Op, ~00p F x.

It is well known that the until operatai/ is not expressible in temporal logic with only
o, O, and¢ as temporal operators (cf. [4,2]). As a consequence a complete calculus
for the sublogic that usesinstead ofl/ cannot be derived (by abbreviation) frafiC,
since the ruld¢ L), needs the until operator for expressing its second premise.

Let us now illustrate the=C-style of natural reasoning by means of some examples
of FC-proofs. In order to allow easier reading, we have underlined, at each step, the
formulas that are related with the applied deduction rule.



Example 4.The following proof shows that, 0(—p V op) Fxc Op. This is a typical
property ofinduction on time We have usedi to abbreviatei(—p Vv op).

L. —p,0ptp by(As)

2. — p,0¢, ~p, =—p, o((=p V ~Op) U —p) = ¥ by (CdL)

3. — p, Op, "O¢p, ==p, o((—p V ~0p) U —p) =¥ by (CdL)

4. —p,0p,~pk ¥ by (CdL)

5. —p,0p, 7p V. —0p, 7=p, o((—p V ~Op) U —p) = F by 2, 3and(VL)
6. — p,0p, (-pV -Op)U—-pk ¥ by4d, 5and U L),

7

8

9

. — P, p, 00, o((—p V —~Op) U —p) F —p by (As)
.—p, 0op, o0p, o((—pV —0Op)U —p) F —p by6and(oL)

. —p,7pV Op,00p, o((=p V ~Op) U —p) = —p by7,8andVL)
10. — p, Oy, O((ﬁp V ﬂD(p)Uﬂp) F-p by 9 and(DL)
11. — p,0p FOp by 1,10 and RO)s. n

Itis worthy to note tha{ o3, o((¢V—O8) U ¢)} and{Og, o(pU )} are equivalent
sets of formulas. As a consequence, the above proof could be simplified if the sequent
to be derived at step 10 wepeOp, o(—pU —p) - —p instead of

p, 0, O((—p vV —O¢p) U —p) F —p.

A practical implementation af C should apply the rulesi/ L), (and also(0L), and
(0L)s) yielding as subgoat (o U 1) instead ofo((¢ vV —08) U v). In general, the rule
(U L), should take into account the equivalence of the following two sets of formulas:

{Oa, ~(alt B), O((p V (ald B)) U )} and{Da, ~(ald B), O(pU)}.
Note that the former pair of equivalent sets is a particular case of the latter one.
Example 5.The following is anFC-proof of the sequemiif ¢, —q - 0¢q:
.—¢,q 00q by (CdL)
. —¢q,m00q - q by (As)
. =P, 09¢, ¢, O((p A (mg V 00q)) U q), 200q - ¢ by (CdL)
.=, ¢, ¢, O((p A (m—q V 00q)) U q), ~00q F ¢ by (CdL)
. =P, 77q V 09¢, 7, O((p A (=g V 00q)) U q), 700q - q by 3, 4and(VL)
.= pA(52gV 00g), ¢, 0((p A (mg V 00q)) U g), ~00q - g by 5and(AL)
= (p A (=g Vooq)U q,—00qq by2,6and(U L),

= (A (mmgVooq))Uqkoq by7and(Ro)

© 00 N O Ut k= W N =

.=, 7¢,9((p A (-—gV 00oq)) U q) - o0g by 8and(RoL)
10. — pU q,—q+ ooqg byl,9and U L),




It is easy to check that using only the rul&f L); we cannot prove the sequent. =

Example 6.Consider the sequentpU ¥ I F. It is easy to give atF C-proof of p U/ F
F since by(U L), it should be provedr - F andp, —-F,0o(p A (FV F))UF F F. The
latter is easily proved byRoL) and(U L);. Finally, by(Wk), ¢, pU F - ¥ is derived
frompUF F F.

It could be believed thafiV k) is essential for proving this kind of sequents, where
some part of the antecedent is unnecessary for entailing the consequent. However, the
following is a scketch of atFC-proof of the sequent, pU v - F that does not use the
rule (Wk):

The first two main goals are;, v - ¥ andg, p, =F,o((p A (g V F))UF) F F. The
former is an instance dfds), while the latter reduces to

(pA(—~qVF)UFFTF

by (or) and(RoL). From this, by( L), and(AL), we obtain two new goals. The
firstisF F F, which is an(A4s). The second goal is

p,qVFE,O(pA(qVF)A(FVFE)UF)FF

Then,
(PA(qVF)A(FVF)UFFF

is obtained by(or) and(RoL). Finally, (¢ L), (AL) and(As) suffice. "

This (Wk)-free deduction style can be easily generalized to any sequent of the form
A, oUF F F, since the maximum number of nested next operator$,ip is finite. In
fact, we conjecture thdiV k) is admissible inFC.

5 The Completeness ofFC

In this section, we prove th&fiC is a complete calculus using the technique of filtration.

In particular, we define a notion of saturated set of formulas that enables the construc-
tion of a model for any set of formula&such thatd t/-¢ F. To this end, we first build a
nondeterministic structure in which this model is embedded. The idea of using maximal
strongly connected components, inspired by [5], is crucial in handling eventualities in
this nondeterministic structure.

In the first subsection, we introduce a notion of saturation for sets of formulas which
preservesFC-consistency. In the second subsection, we show how to associate a non-
deterministic structure to an§C-consistent set of formulas. Finally, we prove the com-
pleteness of the calculusC.

5.1 Saturated Sets of Formulas

The closure of a set of formula& consists of all formulas that we may use for con-
structing a model o.



Definition 7. Let® be a set of formulas. Latibform(®) be the set of all the subformu-
las of the formulas inp. Letbasic(®) = subform(®) U {—¢ | ¢ € subform(®)}. The
closure set of, denotedtlo(®), is the extension dfasic(®) with the following two sets
of formulas:

{olpU ), mo(pU 1), 0-(pU ) | oU P € basic(P)}
{o—¢p | "0y € basic(P)}. "

For example, if? is the singleto{p A (pU —0q)} thenclo(P) consists of the union of
the following four sets:

{p A (pU—0q),p,pU—0q,—~0q,0q, q}
{=(p A (pU —0q)), —p, =(pU —~0q), =—=0q, ~q}
{o(pU —0q), =o(pU —0q), o=(pU —~0q)}

{o—q}

where the first set isubform (&), whose joint with the second set constitutesic(®).
The last two sets respectively correspond with the two final extensions in the above
definition.

Now, we define a successor relation on sets of formulas.

Definition 8. Let £2; and (2> be two subsets afo(®) for some se®. We say that2,
is a d-successoof (2, iff o € 2 forall op € 2;. The set ofp,-successors of a given
set of formulad? is

succe(2) = {2 C clo(P) | 2" is ad-successor of?}. "

Definition 9. We say that a se? of formulas is saturated iff it satisfies the following
conditions:

IfoVvy e R2thenp € Nory €

If =(p V) € 2then—p € N and—y € 2

If U € 2theny € 2 or {p, ), 0(eU)} C 2

If =(pU ) € 2then{—y,—p} C Q2 or {p, ), o(eU )} C 2
If == € 2 theny € (2.

If —op € 2 theno—p € (2.

oukrwnkE

Given a setp, we denote bgatur(®) the set of all saturated subsets db(®). For
anyI" C clo(®), we denote byatur! (&) the subset ofatur(®) that includes all the
supersets of . In particular, satur(®) = satur?(¢) where() denotes the empty set.m

For the additionally defined connectives, the saturation conditions are easily deduced
from Definition 9.

Proposition 10. The saturation conditions for, © ando are:

—If oAy € 2thenp € P andy € 2
— If=(pAY) € Nthen-p e Nor—) € 2



If op € 2theny € N2 or {—p, 00} C 2

If =0 € 2 then{—p, 0oy} C 2

If op € 2then{p, ocnp} C 2

If -Op € 2 then{p, ~oOp} C 2 or —p € (2. n

Note that if® is finite so isclo(®). As a consequence, eveye satur(P) is also finite.
The following lemma states that any subset gf@consistent set can be extended
to a saturated set while preserving the consistency of the whole set.

Lemma 11. For all sets of formulagh, ¥, I" such thatl” C clo(®) and I', ¥ tz¢ F,
there exists at least onE € satur! (®) such thatl", ¥ I/ r¢ F.

Proof. Suppose that’, ¥ ¢ Fforall I € satur! (). Then, aFC-proof of I, ¥ I F

can be easily built using these sequents as leaves and thévilgs— Vv L), (U L)1,

(ﬁ UL), (ﬁﬁL) and(ﬁoL). n
Note that? (in the above lemma) is not required to be a subset of the closube of

It could be seen as the contextBfand, in particular, it could be empty.

Corollary 12. If & I/£¢ F then there exist® ¢ satur?(®) such that(? I/z¢ F. "

5.2 Nondeterministic Models of FC-Consistent Sets

We are going to build a model whose states At&consistent saturated sets. We use
the following notion of nondeterministieLTL-structure for representing collections of
PLTL-structures. In fact, each infinite path in a nondeterminiBtid L-structure is a
PLTL-structure.

Definition 13. A nondeterministid®LTL-structure(nd-PLTL-structure, for short)j is
atriple (Sg, Rg, V) such that:

— Sg is afinite non-empty set of states
— Rg C Sg x Sg is calledreachability relation
— Vg isamaplg : Sg — 2Prop,

A pathz in a nd-PLTL-structureg is a non-empty sequence of statgss;, ... € Sg
ands; € Rg(s;—1) forall i > 1. "

We denote byRJgr and R the transitive closure and the reflexive-transitive closure
of the reachability relatiorkg, respectively.

Definition 14. The truth of a formulap in a states of a ndPLTL-structureg, denoted
by (G, s) = ¢, is defined as in the Definition 2, except for the temporal operators:

— (G, s) =oypiffforall s € Rg(s) (G,s) = ¢
— (G, s) E U iff there exists a finite pathy, s1, . .., s, in Sg such thats = sy,
(G, sn) Evand(G,s;) = ¢ forevery0 <i<n—1. "



Note that, the above satisfaction definitioni@fonly requires the existence of a
path because nBLTL-structures could contain infinite paths that repeat infinitely many
times a subsequence of states and do not reach some other finitely reachable states.

Now, we associate a nondeterministic structure to any consistent set.

Definition 15. For any givenFC-consistent set of formulag, Gs = (Sg,, Rg., Vos)
is the ndPLTL-structure where

— Sg, = {2 | 2 € satur(P) and 2 rc ¥}
— (2 € Rg,(02) iff 2/ € succy(£2) forall 2,2 € Sg,
- Vg, (2)={p|pe€ Nandp € Prop}. "

Note that, according to Corollary 13, cannot be empty. In the rest of this sec-
tion we will assume tha® is always anFC-consistent set of formulas arif} is its
associated n@®LTL-structure. Now, we will show how the notion of maximal strongly
connected components [5] yields a partitior9g, .

Definition 16. A strongly connected componefsicc, for short) is a subsef of Sg,,
such that every pair formed by two different stat@s, (2> € S satisfies that’2, €
R} (1) and 2y € RS (12).

Amaximalscc (nscg for short) is an sca such that there is no se&’ C Sg,, that
satisfiesS € §'.

We will denote by (2] the mscc wheré? is included and=- is the binary relation
induced byRg,, as follows:

[£21] = [2] iff there exist2] € [(21], 2, € [{2] such that?}, € Rg, (12}). "

Note that an mscff?] could consist just of the stat@. In such case(p] can represent
(on its own) a model only whef®® € Rg,(£2). An mscc that consists of exactly one
statef? such that? ¢ Rg, ({2) is calledtrivial . Otherwise, we say that it isrontrivial
mscc at-mscg for short).

Definition 17. A pathm = (2, {21, ...in Sg, isfulfilling if for every(2; € = and every
pUY € (2; there exists somg > i such thaty € (2; and for everyi < k < j — 1,

p € .

An sccS in Sg, is self-fulfilling if for every 2 € S and every formulgp i/ € 12,

there exists a finite patfyy, {24, ..., 2, in S such that2y = 2,y € 2, andy € §2;

forevery0 <i <n—1. n

Lemma 18. For everyf? € Sg, the setRg, (2) is non-empty.

Proof. If 2 € Sg, then(? I/x¢ ¥. Hencenext({2) t/zc ¥ holds by rule§ RoL) and
(or). From Lemma 11 there exists at least difec Sg, such that?’ € succg(£2). =

Corollary 19. For every(? € Sg, there is at least one infinite patf?y, {21, ... such
that? = . n

Now, we will show thatGs satisfies, by construction, the adequate properties for
handling eventualities. In particular, in the next proposition we show that non-satisfied
eventualities are kept in paths at least until they are fulfilled.



Proposition 20. Let{? € Sg, suchthatpUf ¢ € 2. Forevery finite patti2y, (24, ..., 2,
in Sg, such that2, = 2 and everyl < i < n:if pU & 2; theny € 2 for some
0<k<iandpe 2;forall0<j<k-—1.

Proof. By induction on n. The case = 0 trivially holds. Forn > 1, we distinguish the

following cases. First, if either= n and there existy < n — 1 such thatpU/ ) & £2;

or1 < i < n, then the property holds by the induction hypothesis. Secoridsif: and

Uy e N2;forall0 < j <n-—1,theny € £2; or {e, -, 0(eU)} C £2;, since

each(?; is saturated. This implies that e (2,,_; because otherwisg(p U ) € 2,1

which would mearp U i € (2,. n
The next proposition shows how negated eventualities propagétge.in

Proposition 21. Let 2 € Sg, such that=(pU ) € £2. Then, every finite path =
020, 8,...,02,in Sg, such thatf2, = (2 satisfies one of the two following properties:

@) {o, ¥, ~(pUp)} C £2; foranyi € {0..n}
(b) There exist®) < j < n such that{—y, -} C 2; and{p, =, " (eUY)} C
foranyi € {0..j — 1}.

Proof. By induction onn. Sinces? is saturated, the case= 0 is trivial. Forn > 1, the
induction hypothesis guarantees that the path= (29, {24, ..., 2,,_; satisfies one of
the properties (a) or (b). i’ satisfies (b), so does If 7’ satisfies (a) then by definition
of Sg, we have{yp, =, ~(pU)} C 2, or {—~p, p} C §2,,. Hence verifies (a) or
(b) respectively. n

Now we will prove that for any2 € Sg,, either the msc¢f?2] is a self-fulfilling
nt-mscc or there exists a self-fulfilling nt-mscc that is reachable ffém

Lemma 22. For any non-self-fulfilling mscg?] in Sg,,, there exists (at least) orfe’
Sg, such that?’ ¢ [£2] and[2] = [2'].

Proof. For a trivial mscc, this is an easy consequence of Lemma 18. Hence, we assume
[2] to be a nt-mscc which is not self-fulfilling. That is, there is soffie € [£2] and

some formulaplf ¢ € 2y such that there does not exist a finite path, 24, ..., 2,

in [{2] such that) € 2,, andy € (2; for every0 < i < n . Then, for allA € [{2]:

{(P, ﬁwa (puwa O(QOZ/“P)} - A
Let us consider the subset 8, formed by all the states that are successors of some
state in[{2]:
S(2) = |J Reu(2)
A€[2]

Since[?] is a nt-mscc it must verif§2] C S([£2]). If [2] C S([£2]) the lemma holds
trivially. On the contrary, if[2] = S([£2]) we show that there is a contradiction as
follows. Consider any statd € [(2] C Sg,, . SinceA is FC-consistent, them\ ¢ F.
Hence, by rule$i/ L), and(—L), we have that

A,0((p NAUY) FFe ®



Hence, by(RoL), the setnext(A) U {(¢ A A7)U ¢} is also FC-consistent. Then,
by Lemma 11, there exists at least one 4étc satur"(4) (&) such thata’, (¢ A
ATYUY Hre F. By (WE), A is alsoFC-consistent. Hence)\’ € Sg, and, by con-
structionA’ € Rg,(A) C S([£2]). Therefore, A’ € [§2], since we are supposing that
[2] = S([£2]). It is worthy to note thatRg, (A) should be non-empty by Lemma 18.
Besides, sincew) € A’ (by construction) andd’, (¢ A A™)U ) /xc F, the rules
(U L), and(CdL) allow us to conclude that

AL NATO((p NAT A (A))UY) Vre F

Hence, by(Wk), we have obtained from\ an FC-consistent set\’ such thatA’ U
{o((p AN AT A (A)")U )} is alsoFC-consistent. Starting with any\g € [2] and
repeating the above procedure we can construct apathdy, A,, . .. of states if(?]
such that for every > 1

Ai, (PANAGNAT N NAT)UY Fre B

By finiteness of 2], there must exist > 1 such thatd,, = A; forsome0) <i < n-—1.
In particular, for suc we have that

Ap, (pNAGNATAN . NA_NUY Hre F

But this is a contradiction, byi{ L), (AL) and(Wk), becaused,,, A, - z¢ ¥ can be
easily derived usingv L) and(CdL). "

Corollary 23. Forany{2 € Sg,,, either the mscg?] is a self-fulfilling nt-mscc or there
existsf?’ € Sg, such that?’ ¢ [(2], 2 € R} (£2) and[£2'] is a self-fulfilling nt-mscc.

Proof. By finiteness ofSg,,, if (2] is not a self-fulfilling non-trivial mscc, then Lemma
22 guarantees the existence £f]. In the case of a trivial mscc, also Lemma 18 should
be used. "

Lemma 24. (Nondeterministic Model Existence)or every(? € Sg, it holds that if
p € 2then(Gg, 2) = .

Proof. By structural induction orp. The case of literals is trivial by definition ¢f5.

For formulas of the formm—, ¢ V 1, =(p V ¥), op and—oyp it holds by definition

of G and the induction hypothesis drp}, {¢, ¥}, {—p, "¢}, {¢} and{—¢}, respec-
tively.

For U 1, by the above Proposition 20 and Corollary 23 there exists a finite path
20,821 ...92,InSg, suchthat?y = 2,4 € (2, andp € 2, forevery0 <i <n—1.

By the induction hypothesisGs, £2,,) = v and(Gs, £2;) = ¢ forevery0 <i<n-—1

and consequentliGe, 2) = U 1.

For— (e U 1) formulas, by the above Proposition 21 and the induction hypothesis there
does not exist any finite patf2y, {2, ... (2, in Sg, such that?y = 2, (G, 2,,) = ¥
and(Gg, £2;) = ¢ for every0 < i < n — 1. ConsequentlyGs, 2) |~ U ¢ and hence
(G 2) = ~(pUY). .



5.3 Model Existence and Completeness

Using the nondeterministic structug (which was defined in the previous subsection),
we are now able to build a model of af§C-consistent set.

Lemma 25. (Path Existence)For every 2 € Sg, there exists at least one infinite
fulfilling path = = {2y, (21, .. . wheref2y, = (2.

Proof. Let us show how to build the pathdepending on the mscc to which belongs.

If [£2] is a self-fulfilling mscc, then choose to be any finite path that covers all the
states in{2]. Then, the infinite pathr = 7/, 7/, 7/, . . . is fulfilling. Otherwise, if[{2] is

not a self-fulfiling mscc, by Corollary 23, there exis® € Sg,, such that?’ ¢ [(2],

2 € RS (£2) and[£?'] is a self-fulfilling mscc. Letr; be any finite path from2 to

2" and letw, be the infinite path in(2’] constructed as in the previous case. Then,
™ = m, wo IS an infinite fulfilling path. ]

Lemma 26. (Model Existence)Letm = (2, £2; ... an infinite fulfilling path in Sg,, .
Then, thePLTL-structure M. defined by

— Sp = 20, 2,
- Vm, () ={p|p € 2}

satisfies that. M, i) |= ¢ for everyi € IN and everyy € (2;.

Proof. Immediate consequence of Lemma 24. ]
Finally, we are able to prove the completenes$ 6f

Theorem 27. (Completeness of-C) For any set of formulag™ U {x}, if I = x then
I l_]-‘c X-

Proof. Suppose that” t/z¢ x. Then, by rule(Cd), I', =x /¢ ¥. Hence, by Corollary
12, Lemma 25 and Lemma 26 there exists a modél of{—x}. Therefore[" = x. m

6 Concluding Remarks

We have introduced a sound and complete (finitary) sequent cal&idusr the logic

PLTL. The calculusFC is cut-free and invariant-free and it leads to a new deduction
style in temporal logic. We are working on the mechanization of the calctiius the
generic proof-assistant Isabelle (bt.t p://i sabelle.in.tum de) in order to

allow the interactive formalization gfC-proofs for temporal properties. Tableaux and
resolution methods are better suited for completely automatic theorem proving. In this
regard, the rule$i/ L), and(¢L), give rise to new ideas for improving the existing
methods of temporal tableaux and temporal resolution. Following these ideas, we are
also working on avoiding the construction of the whole states-graph in the tableaux
framework and the construction of invariants in the resolution setting. These methods
should manage formulas of the forfl\™ A ¢)U ¢ such thatA is also part of the

set of formulas to be processing. Hence, from the point of view of efficiency, shared
formulas would be very useful for practical implementation. Additional future work
includes the extension of this ideas to the branching case, the first-order case (in spite
of its incompleteness) or its complete fragments.
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