
P. Petta et al. (Eds.): MATES 2007, LNAI 4687, pp. 13–24, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model Transformation for Model Driven Development
of Semantic Web Enabled Multi-Agent Systems

Geylani Kardas1, Arda Goknil2, Oguz Dikenelli3, and N. Yasemin Topaloglu3

1 Ege University, International Computer Institute, 35100 Bornova, Izmir, Turkey
geylani.kardas@ege.edu.tr

2 Software Engineering Group, University of Twente, 7500 AE, Enschede, The Netherlands
a.goknil@ewi.utwente.nl

3 Ege University, Department of Computer Engineering, 35100 Bornova, Izmir, Turkey
{oguz.dikenelli, yasemin.topaloglu}@ege.edu.tr

Abstract. Model Driven Development (MDD) provides an infrastructure that
simplifies Multi-agent System (MAS) development by increasing the
abstraction level. In addition to defining models, transformation process for
those models is also crucial in MDD. On the other hand, MAS modeling should
also take care of emerging requirements of MAS deployment on the Semantic
Web environment. Hence, in this paper we propose a model transformation
process for MDD of Semantic Web enabled MASs. We first define source and
target models for the transformation regarding the modeling of interactions
between agents and semantic web services and then grant mappings between
these source and model entities to derive transformation rules and constraints.
Finally we realize the whole transformation for a real MAS framework by using
a well-known model transformation language named ATL.

1 Introduction

The design and implementation of Multi-agent Systems (MAS) becomes more
complex and hard to implement when new requirements and interactions for new
agent environments such as Semantic Web [2] are considered. To work in a higher
abstraction level is of critical importance for the development of MASs since it is
almost impossible to observe code level details of MAS due to their internal
complexity, distributedness and openness.

Model Driven Development (MDD) [20], which aims to change the focus of
software development from code to models, provides an infrastructure that simplifies
the development of future’s MASs. Such MDD application increases the abstraction
level in MAS development. Although there are ongoing efforts in model driven MAS
development, a significant deficiency exists in current studies when we consider
modeling of agent systems working on Semantic Web environment. The main
challenge in here is to provide new entities and define their relations with the
traditional MAS entities for MAS metamodels pertaining to the Semantic Web and
employ those new metamodels in a neatly presented model transformation process
within the scope of MDD.

14 G. Kardas et al.

In our previous work, we first provided a conceptual MAS architecture [13] in
which autonomous agents can also evaluate semantic data and collaborate with
semantically defined entities such as semantic web services by using content
languages and then we derived entities of a MAS metamodel from the introduced
architecture and defined their relations [14]. This new MAS metamodel paves the way
for MDD of Semantic Web enabled agent systems in our studies by presenting an
alternative for platform independent metamodel of such agent systems.

Definition of such a model is a prerequisite to conduct model transformation which
is the key activity in MDD. Hence in this paper, we present a model transformation
process for MDD of agent systems working on Semantic Web. A model conforming
to above MAS metamodel is transformed into another model conforming to model of
a real agent platform within the introduced process. The designed Semantic Web
enabled MAS can be implemented on this real platform by applying the
transformation. To accomplish this, we first define source and target metamodels for
the transformation and then provide mappings between entities of these models to
derive transformation rules and constraints. Finally we realize the whole
transformation by using a pretty known model transformation language.

The paper is organized as follows: In Sect. 2, we briefly discuss how MDD can be
applied for the development of the Semantic Web enabled agent systems. Models for
the related transformation are introduced in Sect. 3. Application of the model
transformation is discussed in Sect. 4. Section 5 covers related work on MDD of
agent systems. Conclusion and future work are given in Sect. 6.

2 MDD for Semantic Web Enabled MAS Development

MDD approach considers the models as the main artifacts of software development.
We use Model Driven Architecture (MDA) [15] which is one of the realizations of
MDD to support the relations between platform independent and various platform
dependent agent artifacts to develop semantic web agents.

MDA defines several model transformations which are based on the Meta-Object-
Facility (MOF) [15] framework. These transformations are structured in a three-
layered architecture: the Computation Independent Model (CIM), the Platform
Independent Model (PIM), and the Platform Specific Model (PSM). A CIM is a view
of a system from the computation independent viewpoint [15]. CIM requirements
should be traceable to the PIM and PSM constructs by marking the proper elements in
CIM. For instance, although the CIM does not have any information about agents and
semantic web services, entities in CIM are marked in an appropriate notation to trace
the agents and semantic web services in the PIM of the Semantic Web enabled MAS.
The PIM specifies a degree of platform independency to be suitable for use with a
number of different platforms of similar type [15]. In our perspective, the PIM of a
Semantic Web enabled MAS should define the main entities and interactions which
are derived from the above mentioned conceptual architecture. Finally, PSM
combines PIM with additional details of the platform implementation. The platform
independent entities in PIM of semantic web agents are transformed to PSM of an
implemented Semantic Web enabled agent framework like SEAGENT [3]. The
flexible part of this approach is that the PIM enables to generate different PSMs of

 Model Transformation for MDD of Semantic Web Enabled MASs 15

Semantic Web enabled agent frameworks automatically. These PSMs can be
considered as the realizations of our conceptual architecture.

The development process and the MOF based transformations between the MDA
models are given in Fig. 1. In the depicted transformation pattern, a source model sm
is transformed into a target model tgm. The transformation is driven by a
transformation definition written in a transformation language [5] [12]. The source
model, the target model and the transformation definition conform to their
metamodels SMM, TgMM and TMM respectively. The transformations defined from
CIM to PIM and PIM to PSM use the metamodels of CIMs, PIMs and PSMs for
source and target metamodels in the transformation pattern.

Fig. 1. Transformation Steps in MDA

We applied the transformation mechanism depicted in Fig. 1 for models
conforming to our Semantic Web enabled agent metamodel [14] and SEAGENT [3]
model respectively. Due to space limitations, the whole transformation process
couldn’t be discussed in this paper. However, we believe that interaction between
semantic agents and semantic web services is crucial for development of such MASs.
Hence, rest of the paper describes modeling of this interaction and whole process of
the related transformation.

3 Models for Agent – Semantic Web Service Interaction

Model transformation requires syntactical and semantic definitions of models which
are provided by metamodels. We introduced a metamodel for Semantic Web enabled
MASs in [14] which extends FIPA Modeling TC’s Agent Class Superstructure
Metamodel (ACSM) [16]. By extending ACSM, we do not need to re-define basic
entities of the agent domain. Also, ACSM models assignment of agents to roles by
taking into consideration of group context. Therefore, extending ACSM clarifies
relatively blurred associations between “Semantic Organization”, “Semantic Agent”
and “Role” concepts in our metamodel by appropriate inclusion of ACSM’s Agent
Role Assignment entity. However, ACSM extension is not sufficient and we provide

16 G. Kardas et al.

new constructs for our metamodel by extending UML 2.0 Superstructure and
Ontology UML Profile [4].

Ontology entities of the metamodel are defined as extensions of the Ontology
element of the Ontology UML Profile (OUP) defined in [4]. OUP captures ontology
concepts with properties and relationships and provides a set of UML elements
available to use as semantic types in our metamodel. By deriving the semantic
concepts from OUP, there will be already-defined UML elements to use as semantic
concepts within the metamodel.

The aim of this study is to present model transformation for developing Semantic
Web enabled MAS by employing our metamodel so full specification of the model is
beyond the scope of this paper. The specification of the complete model can be found
in [14]. In here, we discuss on its zoomed part in which the interaction between agents
and semantic web services is elaborated.

The metamodel given in Fig. 2 is the PIM which will be our source metamodel
during the transformation process. This metamodel provides modeling the agent –
service interaction from the point of entity aspect.

Fig. 2. The metamodel of the interaction between Agents and Semantic Web Services

Semantic Web Agent is an autonomous entity which is capable of interaction with
both other agents and semantic web services within the environment. It is a special
form of the ACSM’s Agent class due to its entity capabilities. It includes new features
in addition to Agent classified instance.

The Role concept in the metamodel is an extension of Agent Role Classifier due to
its classification for roles the semantic agents are capable of playing at a given time.

 Model Transformation for MDD of Semantic Web Enabled MASs 17

This conforms to the Agent – Agent Role Classifier association defined in ACSM
[16]. In here, we also define its one sub-entity called Architectural Role. This role
defines a mandatory Semantic Web enabled MAS role that should be played at least
one agent inside the platform regardless of the organization context.

Semantic Web Agents have Plans to discover and execute Semantic Web Services
dynamically. In order to discover service capabilities, agents need to communicate
with a service registry. For this reason, the model includes a specialized agent entity,
called Semantic Service Matchmaker Agent. This meta-entity represents matchmaker
agents which store capability advertisements of semantic web services within a MAS
and match those capabilities with service requirements sent by the other platform
agents. This agent plays the Registry Role which is a specialized Architectural Role.

A Semantic Web Service represents any service (except agent services) whose
capabilities and interactions are semantically described within a Semantic Web
enabled MAS. Each service may be a web service or another service with predefined
invocation protocol in real-life implementation. But they should have a semantic web
interface to be used by autonomous agents of the platform.

When we consider various semantic web service modeling languages such as
OWL-S [21] and WSMO [22], it is clear that services are represented by three
semantic documents: Service Interface, Process Model and Physical Grounding.
Service Interface is the capability representation of the service in which service
inputs, outputs and any other necessary service descriptions are listed. Process Model
describes internal composition and execution dynamics of the service. Finally
Physical Grounding defines invocation protocol of the web service. These Semantic
Web Service components are given in the metamodel with Interface, Process and
Grounding entities respectively. Semantic input, output and web service definitions
used by those service components are exported from the UML Semantic Web Service
Profile proposed in [8].

Semantic Web Agents have two consecutive plans to interact with Semantic Web
Services. Semantic Service Finder Plan is a Plan in which discovery of candidate
semantic web services takes place. During this plan execution, the agent
communicates with the service matchmaker of the platform to determine proper
semantic services. After service discovery, the agent applies the Semantic Service
Executor Plan in order to execute appropriate semantic web services. Process model
and grounding mechanism of the service are used within the plan.

The input model of our transformation process is an instance model which conforms
to the above mentioned interaction metamodel. This source model for the
transformation is given in Fig. 3. The model depicts the interaction between a Hotel
Client Agent and a Reservation Service within a MAS working in Tourism domain.
The client agent is a Semantic Web Agent which reserves hotel rooms on behalf of its
human users. During its task execution, it needs to interact with a semantic web service
called Reservation Composite Service. Matchmaker Agent is the service matcher of the
related agent platform. Hotel Client Agent determines appropriate semantic service by
asking the Matchmaker Agent and interacts with the determined semantic service by
executing service’s process description and using service’s grounding.

To realize MDD of the MAS defined in Fig. 3, we employ the transformation
between PIM and PSM shown in Fig. 1. We can facilitate implementation of
the specified agent system in various Semantic Web enabled agent development

18 G. Kardas et al.

Fig. 3. An instance model for the agent – service interaction within a MAS working in Tourism
domain. The model is used in the transformation process as the source model.

environments such as SEAGENT [3] if we provide metamodels of the corresponding
frameworks as platform specific metamodels and define transformation rules.

In this study, our target platform for platform specific models is the SEAGENT
framework. SEAGENT is implemented in Java and provides libraries to develop
Semantic Web enabled MASs also in Java. Java classes and objects are concrete
realizations of our PIM entities in the platform specific level and target (output)
model of the transformation will be a Java model (composed of SEAGENT classes
and their associations). This Java model conforms to the metamodel of Java [9].

Table 1. Mappings between the metamodel entities and SEAGENT classes

Metamodel Entity SEAGENT Class Explanation
Role
Semantic Web Agent (SWA)

Agent Both Role and SWA in the
metamodel corresponds to the
Agent in SEAGENT.

Registry Role
Semantic Service Matchmaker
Agent (SSMA)

Semantic_Service_Matcher
(SSM)

Both Registry Role and SSMA
in the metamodel corresponds to
the SSM in SEAGENT.

Semantic Service Finder Plan DiscoverCandidateService
Semantic Service Executor Plan EnactService

Corresponding SEAGENT
entities are Behaviour classes.

Semantic Web Service OWL-S_Service
Interface OWL-S_Profile
Process OWL-S_Process
Grounding OWL-S_Grounding

In SEAGENT, capabilities and
process models of semantic web
services are defined by using
OWL-S markup language.

The crucial part of the transformation process is to define transformation rules in a
predefined transformation language. Those rules are based on the mappings between
source and target model entities. The rules also include formal representation of
mapping constraints which are applied during transformation. In our case, we have to
define mappings between entities of the interaction metamodel and SEAGENT

 Model Transformation for MDD of Semantic Web Enabled MASs 19

framework. In Table 1, some of the entity mappings are listed. After execution of the
whole transformation process, we achieved platform specific model of our MAS. This
output (target) model is given at the end of the following section (in Fig. 4).

4 Application of the Transformation Using ATL

We implemented the whole transformation process discussed in this study by using
ATLAS INRIA & LINA research group’s ATL (Atlas Transformation Language)
[12]. ATL is a widely accepted model transformation language, specified as both a
metamodel and a textual concrete syntax. It also provides a development environment
as a plugin in Eclipse [6]. These advantages cause us to prefer ATL.

Referring to transformation process depicted in Fig. 1, transformation metamodel
(TMM) is ATL and source, target and transformation metamodels conform to Ecore
metametamodel [6] in our case. Our source model (SM) is the platform independent
model given in Fig. 3 which comforms to metamodel given in Fig. 2. Our target
metamodel is the metamodel of the Java language [9].

In order to use ATL engine, we need to prepare Eclipse Modeling Framework
(EMF) encodings -ecore files- of both metamodels (SMM and TgMM). EMF
provides its own file format (.ecore) for model and metamodel encoding. However
manual edition of Ecore metamodels is particularly difficult with EMF. In order to
make this common kind of editions easier, the ATL Development Tools (ADT)
include a simple textual notation dedicated to metamodel edition: the Kernel
MetaMetaModel (KM3) [11]. This textual notation eases the edition of metamodels.
Once edited, KM3 metamodels can be injected into Ecore format using ADT
integrated injectors. More information about such injections can be found in [11].

Due to space limitations, it is impossible to give whole KM3 representations and
ATL rule definitions of our implementation. To give some flavor of the
implementation in here, we describe transformation of the Semantic Web Agent
source entity into its corresponding entity in Java based SEAGENT framework.

Following is the part of the KM3 file in which Semantic Web Agent is represented
with its associations for Role and Plan entities:

class SemanticWebAgent {
attribute name : String;
reference apply[0-*] : Plan oppositeOf appliedBy;
reference play[0-*] : Role oppositeOf playedBy; }

class Role {
attribute name : String;
reference playedBy[0-*] : SemanticWebAgent oppositeOf play; }

class Plan {
attribute name : String;
reference appliedBy [0-*] : SemanticWebAgent oppositeOf apply; }

According to the entity mappings, heuristic rules for the transformation should be

given in ATL. Each ATL rule for the transformation defines a source model element
in its source part and has the full definition of constraints to query the whole source
pattern in the model. For instance, the Semantic Web Agent class in the source part of
SemanticWebAgent2Agent rule needs the full constraint definition of the source
pattern to match in the model because the constraint part requires constraints of other

20 G. Kardas et al.

source pattern elements related to the Semantic Web Agent class to bind the
appropriate model element. The helper rules are required in the constraint part to
define the relationships between the pattern elements. Following is the
SemanticWebAgent2Agent ATL rule:

1 rule SemanticWebAgent2Agent {
2 from ag: Agent!SemanticWebAgent(
3 ag.partofPatternforWebAgent)
4 to c:JAVA!Class (
5 name<- ag.name,
6 associatedClass<-Sequence{ag.executorPlans, ag.finderPlans})
7 }

In rule SemanticWebAgent2Agent, we need to call helper rule for the relations

of the SemanticWebAgent Class with its role and plan attributes. We also use another
rule in order to realize mapping of the SemanticWebAgent class into its
corresponding target model entity (a JAVA class in here). The same helper rules and
constraint repetitions may be required for other rules in the transformation. Hence this
kind of rule decomposition makes the definitions easier. The helper
partofPatternforWebAgent called in line 3 of the rule
SemanticWebAgent2Agent is given below:

1 helper context Agent!SemanticWebAgent def:
2 partofPatternforWebAgent : Boolean =
3 if not self.oclIsTypeOf(Agent!SemanticServiceMatchmakerAgent)
4 and not self.play.oclIsTypeOf(Agent!RegistryRole)
5 and self.apply->
6 select(p|p.oclIsTypeOf(Agent!SemanticServiceExecutorPlan))->
7 forAll(p|p.execute.owner = p.use.owner)
8 and self.apply->
9 select(p|p.oclIsTypeOf(Agent!SemanticServiceFinderPlan))->
10 forAll(p|p.interact.advertise->
11 exists(intfc|intfc=p.discover))
12 then true
13 else false
14 endif;

The helpers correspond to the constraint part of the related rules. There are two

types of helper in our transformations. The first type helpers like
partofPatternforWebAgent are used to check if the model element is the part of
the pattern or not. The second type helpers (e.g. finderPlans and executorPlans)
are used to select the appropriate elements for the associations between target
elements within the transformation. Following is the finderPlans helper which is
called in line 6 of the rule SemanticWebAgent2Agent:

1 helper context Agent!SemanticWebAgent def:
2 finderPlans : Sequence(Agent!SemanticServiceFinderPlan) =
3 self.apply->select(fp|fp.oclIsTypeOf(
4 Agent!SemanticServiceFinderPlan))->select(fndpln|
5 fndpln.appliedBy->forAll(agnt| not
6 agnt.oclIsTypeOf(Agent!SemanticServiceMatchmakerAgent)
7 and not agnt.play.oclIsTypeOf(Agent!RegistryRole))
8 and fndpln.interact.play.oclIsTypeOf(Agent!RegistryRole)
9 and fndpln.interact.advertise->
10 exists(intfc|intfc.discoveredBy=fndpln)
11 and fndpln.discover.advertisedBy.interactedBy=fndpln);

 Model Transformation for MDD of Semantic Web Enabled MASs 21

The ecore model conforming to source metamodel includes the following model
instance in which the Semantic Web Agent called “Hotel Client Agent” is defined.
References to the other instances are omitted.

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns="Agent">

<SemanticWebAgent name="Hotel Client Agent" apply="#/2 #/3" play="#/1" />
<Role name="Hotel Client Role" playedBy="#/0" />
<SemanticServiceFinderPlan name="Hotel Client's Service Discovery Plan"
 appliedBy="#/0" interact="..." discover="..." />
<SemanticServiceExecutorPlan name="Hotel Client's Service Invocation Plan"
 appliedBy="#/0" execute="..." use="..." />

</xmi:XMI>

During the transformation process, the ATL engine applies the above rule

(SemanticWebAgent2Agent) in order to transform “Hotel Client Agent” into a
SEAGENT Agent class. The ecore representation of this obtained target instance is
given below. References to the other instances are omitted again:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns="JAVA">
<Class name="Hotel Client Agent" associatedClass="/1 /2"/>
<Class name="Hotel Client's Service Discovery Plan" superClass=".." associatedClass="/0"/>
<Class name="Hotel Client's Service Invocation Plan" superClass=".." associatedClass="/0"/>
</xmi:XMI>

After execution of the whole process in ATL environment, we obtained

the platform specific (SEAGENT) model of the tourism MAS given in Fig. 4.
Each entity of the model is a Java class. Upper part of the model includes the
SEAGENT planner components. In the SEAGENT framework, agents execute
their tasks according to Hierarchical Task Networks (HTN) [23]. As a requirement
of HTN, tasks might be either complex (called behaviors) or primitive
(called actions). Tasks have a name describing what they are supposed to do and
have zero or more provisions (information needs) and outcomes (execution
results). Classes for the tourism MAS take place beneath the agent plan
components. Model includes the Hotel_Client_Agent that discovers hotel
reservation services with semantic capability interfaces according to its
Hotel_Client_Service_Discovery_Plan. It communicates with the
Matchmaker_Agent of the system during execution of this plan. Discovery
plan extends DiscoverCandidateService behavior. This behavior is the
corresponding entity for the “Semantic Service Finder Plan” meta-entity
given in our PIM. Similarly, agent’s service execution plan
(Hotel_Client_Service_Invocation_Plan) is an EnactService behavior
and is the counterpart of our PIM’s “Semantic Service Executor Plan” meta-entity.
Semantic web services are OWL-S services in SEAGENT. Hence, our reservation
service is a subclass of OWL_S_Service class after the transformation as
expected.

22 G. Kardas et al.

Fig. 4. The target MAS model obtained after the transformation between PIM and PSM

5 Related Work

Recently, model driven approaches have been recognized and become one of the
major research topics in agent oriented software engineering (AOSE) community. As
briefly mentioned below, some of the studies intend to apply the whole MDD process
for MAS development while some of them only utilize either metamodels or model
transformation as needed. Conceptual MDA definitions and study on MDA based
MAS research directions are also discussed in some of the studies e.g. [1] [7]. Bauer
and Odell discuss the use of UML 2.0 and MDA for agent-based systems in [1]. They
also discuss which aspects of a MAS could be considered at CIM and PIM. The
Cougaar MDA discussed in [7] provides a higher application composition for agent
systems by elevating the composition level from individual components to domain
level model specifications in order to generate software artifacts. Jayatilleke et al. [10]
provide a toolkit for their conceptual framework of domain independent component
types in order to make their approach consistent with MDD and use agent models to
generate executable codes.

On the other hand, the study defined in [19] is a good example that applies the
transformation process of MDA which is depicted in Fig. 1. In that study, Perini and
Susi [19] use TEFKAT model transformation language [5] to implement the
transformation process in automating conversions from their methodology structures
to UML models. In [17], Pavon and his friends reformulate their agent-oriented
methodology called INGENIAS in terms of the Model Driven Development
paradigm. This reformulation increases the relevance of the model creation,
definition and transformation in the context of multi-agent systems. A similar MAS

 Model Transformation for MDD of Semantic Web Enabled MASs 23

methodology revision is discussed in [18]. Ideas and standards from MDA are
adopted both in refining the modeling process algorithm and building tools within this
study.

Regarding all of the above studies, it can be said that current application of the
MDD on MAS development is in its preliminary phase. Neither a complete MDD
process nor a common MAS metamodel has been developed. On the other hand,
Semantic Web [2] technology and its required constructs on MASs are not supported
within those studies. We believe this shortage in question is crucial when
development of future MASs is considered. Therefore providing a Semantic Web
enabled MDD process for MAS development is the key difference between our study
and those previous studies.

6 Conclusion and Future Work

A model transformation process for the model driven development of Semantic Web
enabled MASs is discussed in this paper. The study in here presents description of a
whole process in which the source and the target metamodels, entity mappings and
the implementation of the transformation for a real MAS framework are all included.

In fact, our aim is to enhance this study by providing code generation (at least in
template level) for Semantic Web enabled MAS implementations. That means a MAS
developer just creates a model of the MAS conforming to the platform independent
model and then chooses the desired physical implementation environment (e.g.
SEAGENT) for the system. Finally, our tool generates template codes for the
developer by using target environment’s metamodel, model and transformations. The
developer completes the software for the full deployment of the system. Therefore, in
addition to improvement studies on model transformation (e.g. elaborating mappings
in entity attribute level, clarifying input/output and precondition/effect representations
of semantic web service entities on the model), we are currently working on code
generation from target models we gained. We intend to employ a source code
generator such as JET (Java Emitter Templates) Engine [6] in order to generate
platform specific MAS software as the final product of our MDD process.

References

[1] Bauer, B., Odell, J.: UML 2.0 and Agents: How to Build Agent-based Systems with the
New UML Standard. Journal of Engineering Applications of Artificial Intelligence 18(2),
141–157 (2005)

[2] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

[3] Dikenelli, O., Erdur, R.C., Kardas, G., Gümüs, Ö., Seylan, I., Gürcan, Ö., Tiryaki, A.M.,
Ekinci, E.E.: Developing Multi Agent Systems on Semantic Web Environment using
SEAGENT Platform. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005.
LNCS (LNAI), vol. 3963, pp. 1–13. Springer, Heidelberg (2006)

[4] Djuric, D.: MDA-based Ontology Infrastructure. International Journal on Computer
Science and Information Systems 1(1), 91–116 (2004)

24 G. Kardas et al.

[5] Duddy, K., Gerber, A., Lawley, M.: Model Transformation: A declarative, reusable
patterns approach. In: 7th International Enterprise Distributed Object Computing
Conference, pp. 174–185. IEEE Computer Society Press, Los Alamitos (2003)

[6] Eclipse Open Development Platform, http://www.eclipse.org
[7] Gracanin, D., Singh, H.L., Bohner, S.A., Hinchey, M.G.: Model-Driven Architecture for

Agent-Based Systems. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A.
(eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 249–261. Springer, Heidelberg (2004)

[8] Gronmo, R., Jaeger, M.C., Hoff, H.: Transformations between UML and OWL-S. In:
Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 269–283.
Springer, Heidelberg (2005)

[9] Java Metamodel, http://www.eclipse.org/gmt/am3/zoos/atlanticUMLZoo/#JAVA
[10] Jayatilleke, G.B., Padgham, L., Winikoff, M.: A Model Driven Development Toolkit for

Domain Experts to Modify Agent Based Systems. In: Padgham, L., Zambonelli, F. (eds.)
AOSE VII / AOSE 2006. LNCS, vol. 4405, Springer, Heidelberg (2007)

[11] Jouault, F., Bezivin, J.: KM3: A DSL for Metamodel Specification. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

[12] Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

[13] Kardas, G., Goknil, A., Dikenelli, O., Topaloglu, N.Y.: Metamodeling of Semantic Web
Enabled Multiagent Systems. In: Weyns, D., Holvoet, T. (eds.) Multiagent Systems and
Software Architecture, Proceedings of the Special Track at Net.ObjectDays, Erfurt,
Germany, September 19, 2006, pp. 79–86. Katholieke Universiteit Leuven, Belgium
(2006)

[14] Kardas, G., Goknil, A., Dikenelli, O., Topaloglu, N.Y.: Modeling the Interaction between
Semantic Agents and Semantic Web Services using MDA Approach. In: O’Hare, G., et
al. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 209–228. Springer, Heidelberg
(2007)

[15] OMG Specifications, http://www.omg.org
[16] Odell, J., Levy, R., Nodine M.: FIPA Modeling TC: Agent Class Superstructure

Metamodel, http://www.omg.org/docs/agent/04-12-02.pdf
[17] Pavon, J., Gomez, J., Fuentes, R.: Model Driven Development of Multi-Agent Systems.

In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 284–298.
Springer, Heidelberg (2006)

[18] Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From Stakeholder Intentions to
Software Agent Implementations. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 465–479. Springer, Heidelberg (2006)

[19] Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Modeling. In:
Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 167–178. Springer,
Heidelberg (2006)

[20] Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(1), 19–25
(2003)

[21] The Semantic Markup for Web Services (OWL-S), http://www.daml.org/services/owl-s
[22] Web Service Modeling Ontology, http://www.wsmo.org/
[23] Williamson, M., Decker, K., Sycara, K.: Unified Information and Control Flow in

Hierarchical Task Networks. In: Baral, C. (ed.) Theories of Action, Planning, and Robot
Control: Bridging the Gap. Papers from the AAAI Workshop, Technical Report WS-96-
07, pp. 142–150. AAAI Press, Menlo Park CA (1996)

	Model Transformation for Model Driven Development of Semantic Web Enabled Multi-Agent Systems
	Introduction
	MDD for Semantic Web Enabled MAS Development
	Models for Agent – Semantic Web Service Interaction
	Application of the Transformation Using ATL
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

