Skip to main content

A Heuristic Algorithm for Reconstructing Ancestral Gene Orders with Duplications

  • Conference paper
Book cover Comparative Genomics (RECOMB-CG 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4751))

Included in the following conference series:

Abstract

Accurately reconstructing the large-scale gene order in an ancestral genome is a critical step to better understand genome evolution. In this paper, we propose a heuristic algorithm for reconstructing ancestral genomic orders with duplications. The method starts from the order of genes in modern genomes and predicts predecessor and successor relationships in the ancestor. Then a greedy algorithm is used to reconstruct the ancestral orders by connecting genes into contiguous regions based on predicted adjacencies. Computer simulation was used to validate the algorithm. We also applied the method to reconstruct the ancestral genomes of ciliate Paramecium tetraurelia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caprara, A.: Formulations and hardness of multiple sorting by reversals. RECOMB, 84–94 (1999)

    Google Scholar 

  2. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Electronic Colloquium on Computational Complexity (ECCC), 5(71) (1998)

    Google Scholar 

  3. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5(3), 555–570 (1998)

    Article  Google Scholar 

  4. Moret, B.M.E., Wyman, S.K., Bader, D.A., Warnow, T., Yan, M.: A new implmentation and detailed study of breakpoint analysis. PSB, 583–594 (2001)

    Google Scholar 

  5. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)

    Google Scholar 

  6. Froenicke, L., Caldes, M.G., Graphodatsky, A., Muller, S., Lyons, L.A., Robinson, T.J., Volleth, M., Yang, F., Wienberg, J.: Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res. Genome Res. 16(3), 306–310 (2006)

    Article  Google Scholar 

  7. Bourque, G., Tesler, G., Pevzner, P.A.: The convergence of cytogenetics and rearrangement-based models for ancestral genome reconstruction. Genome Res. 16(3), 311–313 (2006)

    Article  Google Scholar 

  8. Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16(12), 1557–1565 (2006)

    Article  Google Scholar 

  9. Fitch, W.M.: Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416 (1971)

    Article  Google Scholar 

  10. Rocchi, M., Archidiacono, N., Stanyon, R.: Ancestral genomes reconstruction: An integrated, multi-disciplinary approach is needed. Genome Res. 16(12), 1441–1444 (2006)

    Article  Google Scholar 

  11. Eichler, E.E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolution. Science 301(5634), 793–797 (2003)

    Article  Google Scholar 

  12. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)

    Article  Google Scholar 

  13. Sankoff, D., El-Mabrouk, N.: Duplication, rearrangement and reconciliation. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative genomics: Empirical and analytical approaches to gene order dynamics, map alignment and the evolution of gene families, pp. 537–550. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  14. Marron, M., Swenson, K.M., Moret, B.M.E.: Genomic distances under deletions and insertions. Theor. Comput. Sci. 325(3), 347–360 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Page, R.D.M., Charleston, M.A.: From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol. Phylogenet. Evol. 7(2), 231–240 (1997)

    Article  Google Scholar 

  16. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from Globin Sequences. Syst. Zool. 28(2), 132–163 (1979)

    Article  Google Scholar 

  17. Guigo, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Mol. Phylogenet. Evol. 6(2), 189–213 (1996)

    Article  Google Scholar 

  18. Boesch, F.T., Gimpel, J.F.: Covering points of a digraph with point-disjoint paths and its application to code optimization. J. ACM. 24(2), 192–198 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Aury, J.M., Jaillon, O., Duret, L., Noel, B., Jubin, C., Porcel, B.M., Ségurens, B., Daubin, V., Anthouard, V., Aiach, N., et al.: Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444, 171–178 (2006)

    Article  Google Scholar 

  20. Seoighe, C., Wolfe, K.H.: Extent of genomic rearrangement after genome duplication in yeast. PNAS 95(8), 4447–4452 (1998)

    Article  Google Scholar 

  21. El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J. Comput. 32(3), 754–792 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Alekseyev, M.A., Pevzner, P.A.: Whole genome duplications and contracted breakpoint graphs. SIAM J. Comput. 36(6), 1748–1763 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zheng, C., Zhu, Q., Sankoff, D.: Genome halving with an outgroup. Evolutionary Bioinformatics 2, 319–326 (2006)

    Google Scholar 

  24. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7(3-4), 429–447 (2000)

    Article  Google Scholar 

  25. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Wehe, A.: Heuristics for the gene-duplication problem: A Θ(n) speed-up for the local search. RECOMB, pp. 238–252 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Glenn Tesler Dannie Durand

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, J., Ratan, A., Zhang, L., Miller, W., Haussler, D. (2007). A Heuristic Algorithm for Reconstructing Ancestral Gene Orders with Duplications. In: Tesler, G., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2007. Lecture Notes in Computer Science(), vol 4751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74960-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74960-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74959-2

  • Online ISBN: 978-3-540-74960-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics