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Sébastien Angibaud1, Guillaume Fertin1, Irena Rusu1, Annelyse Thévenin2,
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Abstract. Comparing genomes of different species has become a cru-
cial problem in comparative genomics. Recent research have resulted in
different genomic distance definitions: number of breakpoints, number of
common intervals, number of conserved intervals, Maximum Adjacency
Disruption number (MAD), etc. Classical methods (usually based on
permutations of gene order) for computing genomic distances between
whole genomes are however seriously compromised for genomes where
several copies of the same gene may be scattered across the genome.
Most approaches to overcoming this difficulty are based on the exemplar
method (keep exactly one copy in each genome of each duplicated gene)
and the maximum matching method (keep as many copies as possible in
each genome of each duplicated gene). Unfortunately, it turns out that, in
presence of duplications, most problems are NP–hard, and hence several
heuristics have been recently proposed.

Extending research initiated in [2], we propose in this paper a novel
generic pseudo-boolean approach for computing the exact breakpoint
distance between two genomes in presence of duplications for both the
exemplar and maximum matching methods. We illustrate the applica-
tion of this methodology on a well-known public benchmark dataset of
γ-Proteobacteria.

Keywords: genome rearrangement, duplication, breakpoint distance,
heuristic, pseudo-boolean programming.

1 Introduction

The order of genes in the genomes of species can change during evolution and can
provide information about their phylogenetic relationship. Two main approaches
are possible. The first one consists in using different types of rearrangement op-
erations and to find possible rearrangement scenarios using these operations (one



of the most common rearrangement operations is reversals, which reverse the or-
der of a subset of neighboring genes) [11]. The second one consists in computing
a (dis-)similarity measure based on the gene order and most common rearrange-
ment operations [15,8,4,1]. We focus in this paper on the latter approach.

Several similarity (or dissimilarity) measures between two whole genomes
have been recently proposed, such as the number of breakpoints [15,8,4], the
number of reversals [8,11], the number of conserved intervals [6], the number of
common intervals [7], the Maximum Adjacency Disruption Number (MAD) [16],
etc. However, in the presence of duplications and for each of the above mea-
sures, one has first to disambiguate the data by inferring orthologs, i.e., a non-
ambiguous mapping between the genes of the two genomes. Up to now, two ex-
tremal approaches have been considered : the exemplar model and the maximum

matching model. In the exemplar model [15], for all gene families, all but one oc-
currence in each genome is deleted. In the maximum matching model [4,10], the
goal is to map as many genes as possible. These two models can be considered
as the extremal cases of the same generic homolog assignment approach.

Unfortunately, it has been shown that, for each of the above mentioned mea-
sures, whatever the considered model (exemplar or maximum matching), the
problem becomes NP–complete as soon as duplicates are present in genomes
[8,4,6,10] ; a few inapproximability results are known for some special cases.
Therefore, several heuristic methods have been recently devised to obtain (hope-
fully) good solutions in a reasonable amount of time [5,7]. However, while it is
relatively easy to compare heuristics between them, until now very little is known
about the absolute accuracy of these heuristics. Therefore, there is a great need
for algorithmic approaches that compute exact solutions for these genomic dis-
tances.

Extending research initiated in [2], we propose in this paper a novel generic
pseudo-boolean approach for computing the exact breakpoint distance between
two genomes in presence of duplications for both the exemplar and maximum

matching methods. Furthermore, we show strong evidence that a fast and simple
heuristic based on iteratively finding longest common subsequences provides very
good results on our dataset of γ-Proteobacteria.

This paper is organized as follows. In Section 2, we present some preliminaries
and definitions. We focus in Section 3 on the problem of finding the minimum
number of breakpoints under the two models and we give a pseudo-boolean
program together with some reduction rules. Section 4 is devoted to experimental
results on a dataset of γ-Proteobacteria.

2 Preliminaries

From an algorithmic perspective, a unichromosomal genome is a signed sequence
over a finite alphabet, referred hereafter as the alphabet of gene families. Each
element of the sequence is called a gene. DNA has two strands, and genes on a
genome have an orientation that reflects the strand of the genes. We represent
the order and directions of the genes on each genome as a sequence of signed



elements, i.e., elements with signs “+” and “−”. Let G0 and G1 be two genomes.
For each x ∈ {0, 1}, we denote the label at position i in Gx by Gx[i], 1 ≤ i ≤ nx,
and we write nx for the number of genes in genome Gx and occx(g, i, j) for the
number of genes g (and −g) in Gx between positions i and j, 1 ≤ i ≤ j ≤ nx.
To simplify notations, we abbreviate occx(g, 1, nx) to occx(g).

In order to deal with the inherent ambiguity of duplicated genes, we now
precisely define what is a matching between two genomes. Roughly speaking,
a matching between two genomes can be seen as a way to describe a putative
assignment of orthologous pairs of genes between the two genomes (see for ex-
ample [11]). A matching M between genomes G0 and G1 is a set of pairwise
disjoint pairs (G0[i], G1[j]), where G0[i] and G1[j] belong to the same gene fam-
ily regardless of the sign, i.e., |G0[i]| = |G1[j]|. Genes of G0 and G1 that belong
to a pair of the matching M are said to be saturated by M, or M-saturated
for short. A matching M between G0 and G1 is said to be maximum if for any
gene family, there are no two genes of this family that are unmatched for M and
belong to G0 and G1, respectively.

The above definition allows us a large degree of freedom in the choice of the
matching between two genomes. Two types of matching are usually considered
and specify the underlying model to focus on for computing the desired genomic
distance. In the exemplar model, the matching M is required to saturate exactly
one gene of each gene family, i.e., the size of the matching is the number of
gene families. In the maximum matching model, the matching M is required to
saturate as many genes of any gene family as possible, i.e., M is a matching of
maximum cardinality. Let M be any matching between G0 and G1 that fulfills
the requirements of a given model (exemplar or maximum matching). By first
deleting non-saturated genes and next renaming genes in G0 and G1 according to
the matching M, we may now assume that both G0 and G1 are duplication-free,
i.e. G1 is a signed permutation of G0. We call the resulting genomes M-pruned.

Let G0 and G1 be two duplication-free genomes of size n. Without loss of gen-
erality, we may assume that G0 is the identity permutation, i.e., G0 = 1 2 . . . n.
We say that there is a breakpoint after gene G0[i], 1 ≤ i < n, in G0 if neither G0[i]
and G0[i + 1] nor −G0[i + 1] and −G0[i] are consecutive genes in G1, otherwise
we say that there is an adjacency after gene G0[i]. For example, if G0 = 1 2 3 4 5
and G1 = 1 − 3 − 2 4 5, then we have a breakpoint in G0 after genes 1 and 3
(and hence we have an adjacency in G0 after genes 2 and 4).

Let G0 and G1 be two genomes and M be a matching under any model
(exemplar or maximum matching) between G0 and G1. We define AM(G0, G1)
and BM(G0, G1) to be the number of adjacencies and the number of breakpoints
between the two M-pruned genomes.

We are now in position to formally define the optimization problem we are
interested in. Given two genomes G0 and G1 and a model (exemplar or maximum

matching), find a matching M between G0 and G1 that fulfills the requirements
of the model such that the number of breakpoints between the two M-pruned
genomes is as small as possible.



3 An exact algorithm

3.1 Pseudo-boolean problem

Minimizing the number of breakpoints between two genomes with duplications
is an NP–hard problem under the exemplar model even when occ0(g) = 1 for
all genes g in G0 and occ1(g) ≤ 2 for all genes g in G1 [8]. Consequently, the
NP-hardness also holds under the maximum matching model.

The exact algorithms we define in this section attempt to take advantage
of the existing solvers, and more precisely of the linear pseudo-boolean solvers,
which are a generalization of the SAT solvers. To this end, we have to express our
problem (with its two variants, according to the exemplar or maximum matching

model) as a linear pseudo-boolean problem (or LPB problem), i.e. as a linear
program [17] whose variables take 0 or 1 values. A number of generalizations of
Sat solvers to LPB solvers have been proposed (Pueblo [18], Galena [9], OPBDP
[3] and more). We decided to use for our tests the minisat+ LPB solver [12]
because of its good results during PB evaluation 2005 (special track of the Sat

Competition 2005).
Instead of directly writing a program that minimizes the number of break-

points, we chose to write the complementary program which consists in maxi-
mizing the number of adjacencies between the two given genomes. There are two
reasons for this choice. First, the constraints are simpler and less numerous in
this latter case ; moreover, experimental tests moreover showed that the running
time of our program is noticeably better by focusing on adjacencies. Second, it
is easy to notice that minimizing the number of breakpoints and maximizing
the number of adjacencies are equivalent problems under both the exemplar and
maximum matching models. Indeed, according to the above notations, given a
matching M between two genomes G0 and G1 we have:

BM(G0, G1) + AM(G0, G1) = |M| − 1. (1)

For the exemplar and maximum matching models, all the matchings M sat-
isfying the model have the same size, and hence BM(G0, G1) + AM(G0, G1)
is a constant. Therefore, maximizing AM(G0, G1) is equivalent to minimizing
BM(G0, G1).

3.2 Maximizing the number of adjacencies

The LPB program we propose considers two genomes with duplications and per-
forms an M-pruning which maximizes the number of adjacencies according to
a specified model (exemplar or maximum matching). As discussed above, the
resulting matching also minimizes the number of breakpoints between the two
genomes. The LPB program, Program Breakpoint-Maximum-Matching, for the
maximum matching model is given in Figure 1. The exemplar variant is easily
obtained by performing only a few changes that are discussed subsequently.



Program Breakpoint-Maximum-Matching

Objective :

Maximize
P

0≤i<n0

P

i<j≤n0

P

0≤k<n1

P

k<ℓ≤n1

d(i, j, k, ℓ)

Constraints :

(C.01) ∀ 1 ≤ i ≤ n0,
P

1≤k≤n1

|G0[i]|=|G1[k]|

a(i, k) = b0(i)

∀ 1 ≤ k ≤ n1,
P

1≤i≤n0

|G0[i]|=|G1[k]|

a(i, k) = b1(k)

(C.02) ∀ 0 ≤ x ≤ 1, ∀ g ∈ G,
P

1≤i≤nx

|Gx[i]|=|g|

bx(i) = min(occ0(g), occ1(g))

(C.03) ∀ 0 ≤ x ≤ 1, ∀ 1 ≤ i ≤ j − 1 < nx, cx(i, j) +
P

i<p<j

bx(p) ≥ 1

(C.04) ∀ 0 ≤ x ≤ 1, ∀ 1 ≤ i < p < j ≤ nx, cx(i, j) + bx(p) ≤ 1

(C.05) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1,

such that G0[i] = G1[k] and G0[j] = G1[ℓ],
a(i, k) + a(j, ℓ) + c0(i, j) + c1(k, ℓ) − d(i, j, k, ℓ) ≤ 3

(C.06) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1,

such that G0[i] = G1[k] and G0[j] = G1[ℓ],
a(i, k) − d(i, j, k, ℓ) ≥ 0
a(j, ℓ) − d(i, j, k, ℓ) ≥ 0
c0(i, j) − d(i, j, k, ℓ) ≥ 0
c1(k, ℓ) − d(i, j, k, ℓ) ≥ 0

(C.07) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1,

such that G0[i] = −G1[ℓ] and G0[j] = −G1[k],
a(i, ℓ) + a(j, k) + c0(i, j) + c1(k, ℓ) − d(i, j, k, ℓ) ≤ 3

(C.08) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1,

such that G0[i] = −G1[ℓ] and G0[j] = −G1[k],
a(i, ℓ) − d(i, j, k, ℓ) ≥ 0
a(j, k) − d(i, j, k, ℓ) ≥ 0
c0(i, j) − d(i, j, k, ℓ) ≥ 0
c1(k, ℓ) − d(i, j, k, ℓ) ≥ 0

(C.09) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1,

such that {|G0[i]|, |G0[j]|} 6= {|G1[k]|, |G1[ℓ]|} or G0[i]−G0[j] 6= G1[k]−
G1[ℓ],

d(i, j, k, ℓ) = 0

(C.10) ∀ 1 ≤ i < j ≤ n0,
P

1≤k<n1

P

k<ℓ≤n1

d(i, j, k, ℓ) ≤ 1

Domains :

∀ x ∈ {0, 1}, ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1,

a(i, k), bx(i), cx(i, k), d(i, j, k, ℓ) ∈ {0, 1}

Fig. 1. Program Breakpoint-Maximum-Matching for finding the maximum number of
adjacencies between two genomes under the maximum matching model.



Program Breakpoint-Maximum-Matching considers two genomes G0 and G1

of respective lengths n0 and n1. The objective function, the variables and the
constraints are briefly discussed hereafter.

Variables:

• Variables a(i, k), 1 ≤ i ≤ n0 and 1 ≤ k ≤ n1, define a matching M: ai,k = 1
if and only if the gene at position i in G0 is matched with the gene at position
k in G1 in M.

• Variables bx(i), x ∈ {0, 1} and 1 ≤ i ≤ nx, represent the M-saturated genes:
bx(i) = 1 if and only if the gene at position i in Gx is saturated by the
matching M. Clearly,

∑
1≤i≤n0

b0(i) =
∑

1≤k≤n1
b1(k), and this is precisely

the size of the matching M.
• Variables cx(i, j), x ∈ {0, 1} and 1 ≤ i < j ≤ nx, represent consecutive

genes according to the matching M: cx(i, j) = 1 if and only if the genes at
positions i, j in Gx are saturated by M and no gene at position p, i < p < j,
is saturated by M.

• Variables d(i, j, k, ℓ), 1 ≤ i < j ≤ n0 and 1 ≤ k < ℓ ≤ n1, represent
adjacencies according to the matching M: d(i, j, k, ℓ) = 1 if and only if (i)
either (G0[i], G1[k]) and (G0[j], G1[ℓ]) are two edges of M, or (G0[i], G1[ℓ])
and (G0[j], G1[k]) are two edges of M, (ii) G0[i] and G0[j] are consecutive
in G0 according to M, (iii) G1[k] and G1[ℓ] are consecutive in G1 according
to M.

Objective function:
The objective of Program Breakpoint-Maximum-Matching is to maximize

the number of adjacencies between the two considered genomes. This objective
reduces in our model to maximizing the sum of all variables d(i, j, k, ℓ).

Constraints:
Assume x ∈ {0, 1}, 1 ≤ i < j ≤ n0 and 1 ≤ k < ℓ ≤ n1.

• Constraint (C.01) ensures that each gene of G0 and of G1 is matched at
most once, i.e., b0(i) = 1 (resp. b1(k) = 1) if an only if gene i (resp. k)
is matched in G0 (resp. G1) ; see Figure 2 for an illustration. Moreover,
the matching is possible only between genes in the same family. It is worth
noticing here that we do not specifically ask that a(i, k) = 0 when i and k

concern genes belonging to different families. This is simply not necessary.
• Constraint (C.02) defines the model (i.e. the maximum matching model,

in this case). For each gene family g, one must have a single matched gene
for the exemplar model and min(occ0(g), occ1(g)) matched genes for the
maximum matching model (see Figure 2).

• Constraints in (C.03) and (C.04) express the definition of consecutive
genes, thus fixing the values of the variables cx. The variable cx(i, j) is equal
to 1 if and only if there exists no p such that i < p < j and bx(p) = 1. Again,
it is worth noticing that the constraints do not force the variables cx(i, j) to
have exactly the values we intuitively wish according to the abovementioned



interpretation. Here, we accept that cx(i, j) = 1 even if the gene at position
i or j is not matched. However, this will pose no problem in the sequel.

• Constraints in (C.05) to (C.10) define variables d. In the case where G0[i] =
G1[k] and G0[j] = G1[ℓ], constraints (C.05) and (C.06) ensure that we have
d(i, j, k, ℓ) = 1 if and only if all variables a(i, k), a(j, ℓ), c0(i, j) and c1(k, ℓ)
are equal to 1. In the case where G0[i] = −G1[ℓ] and G0[j] = −G1[k], con-
straints (C.07) and (C.08) ensure that we have d(i, j, k, ℓ) = 1 if and only
if all variables a(i, ℓ), a(j, k), c0(i, j) and c1(k, ℓ) are equal to 1. Constraint
(C.09) fixes the variable d(i, j, k, ℓ) to 0 if none of the two cases above
holds. Constraint (C.10) requires to have at most one adjacency for every
pair (i, j). See Figure 3 for a simple illustration.

Genome G0

G0[1] G0[2] G0[i − 1] G0[i] G0[i + 1] G0[n0]

Genome G1

G1[1] G1[2] G1[k1] G1[kj ] G1[kp] G1[n1]

|G0[i]| = |G1[k1]|

|G0[i]| = |G1[kj ]|

|G0[i]| = |G1[kp]|

a(i, k1) = 0

a(i, kj) = 1

a(i, kp) = 0

b0(i) = 1

b1(k1) ∈ {0, 1} b1(kj) = 1 b1(kp) ∈ {0, 1}

b1(k1) + . . . + b1(kj) + . . . + b1(kp) = min(occ0(|G0[i]|), occ1(|G0[i]|)

Fig. 2. Illustration of the constraints on variable b0(i), 1 ≤ i ≤ n0. If gene G0[i] appears
in positions k1 < k2 < . . . < kp in G1 and gene G0[i] is mapped to gene G1[kj ] in the
solution mapping, then (i) a(i, kj) = 1, i.e., gene G0[i] is mapped to gene G1[kj ], (ii)
a(i, kq) = 0 for 1 ≤ q ≤ p and q 6= j, i.e., gene G0[i] is mapped to only one gene in G1,
(iii) b0(i) = 1, i.e., gene G0[i] is mapped to a gene of G1 and (iv) b1(kj) = 1, i.e., gene
G1[kj ] is mapped to a gene of G0. Observe that one may have in addition b1(kq) = 1
for some 1 ≤ q ≤ p and q 6= j if min(occ0(|G0[i]|), occ1(|G0[i]|) ≥ 1 (this observation is
however no longer valid for the exemplar model).

Program Breakpoint-Maximum-Matching has O((n0n1)
2) constraints and

O((n0n1)
2) variables, which could result in a time-consuming computation. Sev-

eral simple rules have been used in order to speed-up the execution, some of
which help to reduce the number of variables and constraints. They are dis-
cussed in the next subsection.



d(i, j, k, ℓ) = 1

Genome G0

G0[1] G0[i − 1] G0[i] G0[i + 1] G0[j − 1] G0[j] G0[j + 1] G0[n0]

Genome G1

G1[1] G1[k − 1]G1[k]G1[k + 1] G1[ℓ − 1] G1[ℓ] G1[ℓ + 1] G1[n1]

G0[i] = G1[k]

a(i, k) = 1

G0[j] = G1[ℓ]

a(j, ℓ) = 1

b0(p) = 0
∀ i < p < j

b0(i) = 1 b0(j) = 1

b1(q) = 0
∀ k < q < ℓ

b0(k) = 1 b0(ℓ) = 1

c0(i, j) = 1

c1(k, ℓ) = 1

Fig. 3. Illustration of the constraints on variable d(i, j, k, ℓ), 1 ≤ i < j ≤ n0 and
1 ≤ k < ℓ ≤ n1, for G0[i] = G1[k] and G0[j] = G1[ℓ]. The two genes G0[i] and
G[j] are adjacent according to a solution mapping if there exist two genes G1[k] and
G1[ℓ], G0[i] = G1[k] and G0[j] = G1[ℓ], such that (i) G0[i] is mapped to G1[k], i.e.,
a(i, k) = 1, (ii) G0[j] is mapped to G1[ℓ], i.e., a(j, ℓ) = 1, (iii) no gene between G0[i]
and G0[j] is mapped to a gene of G1, i.e., c0(i, j) = 1 and (iv) no gene between G1[k]
and G1[ℓ] is mapped to a gene of G1, i.e., c1(k, ℓ) = 1. The above situation reduces in
our modelization to d(i, j, k, ℓ) = 1.

3.3 Speeding-up the program

We briefly describe in this section some rules for speeding-up the pseudo-boolean
program.

Pre-processing the genomes. The genomes are pairwise pre-processed to delete all
genes that do not appear in both genomes. For the exemplar model, consecutive
occurrences of a gene (with the same sign) are reduced to only one occurrence to
this gene. For the γ-proteobacteria benchmark set, the average size of a genome
reduces from 3000 to 1300.

Reducing the number of variables and constraints. Due to space constraints we
only list few easy reduction rules. For non-duplicated genes, i.e., occ0(g) =
occ1(g) = 1, the corresponding variable ai,k is set directly to 1, as well as the two
variables b0(i) and b1(k). Also, if two non-duplicated genes occur consecutively
or in reverse order with opposite signs, the corresponding variable d() is set
directly to 1 and the related constraints are discarded. For the exemplar model,



we must have exactly one occurrence of each gene in each genome, and hence if
the same gene occurs, say in G0, at positions i and j, then the corresponding
variable d() is set directly to 0 and the related constraints are discarded. If for
two genes, say occurring at positions i and j in G0 and k and ℓ in G1, at least
one gene occurring between position i and j in G0 or k and ℓ in G1 must be
saturated in any matching M, then the corresponding variable d(i, j, k, ℓ) is set
directly to 0 and the related constraints are discarded (details omitted).

Adding redundancy. While adding redundancy to a pseudo-boolean program is
certainly useless from a correctness point of view, it can however have a major
impact on the practical performance of the programs. For example, Program
Breakpoint-Maximum-Matching contains some redundant constraints ((C.06),
(C.08) and (C.10)) that significantly improved the running time of the pro-
gram.

4 Experimental results

Thanks to the LPB program discussed previously, as well as formula (1), we are
now able to determine the minimum number of breakpoints between pairs of
genomes that contain duplicates. This minimum number of breakpoints will be
computed according to the two above mentioned models, i.e. the exemplar and
maximum matching models.

To this end, we used a dataset of γ-proteobacteria genomes, originally studied
in [13], and exploited several times since then. This dataset is composed of twelve
complete linear genomes of γ-Proteobacteria out of the thirteen originally studied
in [13]. Indeed, the thirteenth genome (V.cholerae) was not considered, since it is
composed of two chromosomes, and hence does not fit in the model we considered
here for representing genomes. More precisely, the dataset is composed of the
genomes of the following species:

– Buchnera aphidicola APS (Baphi, Genbank accession number NC 002528),
– Escherichia coli K12 (Ecoli, NC 000913),
– Haemophilus influenzae Rd (Haein, NC 000907),
– Pseudomonas aeruginosa PA01 (Paeru, NC 002516),
– Pasteurella multocida Pm70 (Pmult, NC 002663),
– Salmonella typhimurium LT2 (Salty, NC 003197),
– Xanthomonas axonopodis pv. citri 306 (Xaxon, NC 003919),
– Xanthomonas campestris (Xcamp, NC 0 03902),
– Xylella fastidiosa 9a5c (Xfast, NC 002488),
– Yersinia pestis CO 92 (Ypest-CO92, NC 003143),
– Yersinia pestis KIM5 P12 (Ypest-KIM, NC 004088) and
– Wigglesworthia glossinidia brevipalpis (Wglos, NC 004344).

The computation of a partition of the complete set of genes into gene families,
where each family is supposed to represent a group of homologous genes, is taken
from [5] (this partition was actually provided to these authors by Lerat [13]). It



should be noted that in average, 11% of duplicated genes are present in these
genomes.

The LPB engine is powered by minisat+ [12]. Computations were carried
out on a Quadri Intel(R) Xeon(TM) CPU 3.00 GHz with 16Gb of memory
running under Linux. Under the maximum matching model, minisat+ runs our
program Breakpoint-Maximum-Matching (implemented using the speeding-up
rules described in Section 3.3) in less than 10s for 56 out of the 66 possible pairs
of genomes, and in several minutes for the remaining 10 pairs. The results are
provided in Table 1.

The first conclusion that can be drawn from these results is the following: the
pseudo-boolean approach we have considered here is a good approach for com-
puting the minimum number of breakpoints for the maximum matching model,
since all the results have been obtained within a few minutes. However, as al-
ready observed in [1] for maximizing the number of common intervals between
two genomes, we notice that the exemplar model is the main bottleneck of our
approach. Indeed, for the exemplar model, only 49 out of 66 (that is about 74%)
results have been obtained within a few minutes (we stopped the computation
of the 17 remaining cases after a few days). We still have no formal explanation
for this surprising and counter-intuitive fact. The 49 results we have obtained
are given in Table 2.

Besides the fact that computing the minimum number of breakpoints under
the maximum matching model proves to be feasible under our pseudo-boolean
approach, we find interesting to note that we have a sufficient number of results
in both the maximum matching and the exemplar models to test the absolute
accuracy of possible heuristics for these two problems. Indeed, if one wishes to
obtain fast (though not optimal) results by using a given heuristic, it is relevant
to know how tight this heuristic is. We carried out this study, focusing on two
heuristics (one for the maximum matching model, the other for the exemplar

model), that are both based on iteratively choosing a Longest Common Substring
(LCS).

Maximum Matching Model. In [14], the authors introduced an heuristic that
aimed at computing a matching between two genomes. This heuristic is a greedy
algorithm based on the notion of LCS. Let G0 and G1 be two genomes: an LCS

of (G0, G1) is a longest common word S of G0 and G1, up to a complete reversal.
The idea of the greedy algorithm is to match, at each iteration, all the genes
that are in an LCS. If there are several LCS, one is chosen arbitrarily. In [1], we
improved this heuristic in the following way: at each iteration, not only we match
an LCS, but we also remove each unmatched gene of a genome, for which there is
no unmatched gene of same family in the other genome. These rules imply that
the resulting matching is a maximum matching. We call this heuristic IILCS MM.

Exemplar Model. For the exemplar model, we use the same strategy (iteratively
match the genes of an LCS ), except that in this case we must make sure that
only one gene from each family is matched on each genome. Therefore, at each



iteration, and for each gene g present in the LCS (and thus kept in the match-
ing), we remove all the other occurrences of g in both genomes. Let us call this
heuristic IILCS EX.

We have tested both IILCS MM and IILCS EX under, respectively, the maxi-

mum matching and exemplar models. Current results are given in Tables 1
to 4 (see http://www.lri.fr/~thevenin/Breakpoint/#Some results for up-
to-date results). The two heuristics are quite fast and one can obtain all results
for IILCS MM and IILC EX within 20 minutes on a regular desktop computer.
For the maximum matching model, Heuristic IILCS MM provides results that are
on average 99.11% of the optimal number of breakpoints, ranging from 95.51%
to 100%. We actually note that in 14 out of the 66 cases, IILCS MM returns the
optimal value. Concerning IILCS EX, the average, obtained over the 49 instances
for which we know the optimal result, is 96.88%, ranging from 94.38% to 99.10%.

Genomes Number of Breakpoints (maximum matching model)
Ecoli 156
Haein 270 665
Paeru 240 1082 615
Pmult 259 703 525 681
Salty 158 277 676 1091 704
Wglos 170 194 277 260 270 192
Xaxon 226 842 533 1016 557 854 269
Xcamp 226 845 530 1012 555 854 268 181
Xfast 236 564 468 572 481 569 272 400 404

Ypest-co92 170 596 649 990 671 591 193 760 755 542
Ypest-kim 176 607 653 1004 676 606 197 760 749 545 59
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Table 1. Exact number of breakpoints for the maximum matching model

We thus conclude that both heuristics IILCS MM and IILCS EX, despite being
extremely simple and fast, appear to be very good on the dataset we studied.
In particular, for the exemplar model, since our pseudo-boolean approach seems
to reach its limits for some instances, it could be convenient to compute those
remaining instances using Heuristic IILCS EX.



Genomes Number of Breakpoints (exemplar model)
Ecoli 152
Haein 265 610
Paeru 232 550
Pmult 254 622 592
Salty 154 612 622
Wglos 168 183 267 248 262 181
Xaxon 222 675 473 495 684 261
Xcamp 222 678 473 495 260
Xfast 231 491 424 499 436 497 264

Ypest-co92 166 597 597 182 624 620 473
Ypest-kim 172 598 601 186 624 618 477
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Table 2. Exact number of breakpoints for the exemplar model (49 instances out of 66)

Number of Breakpoints (maximum matching model)
Genomes for Heuristic IILCS MM

Ecoli 157
Haein 270 670
Paeru 241 1097 619
Pmult 259 705 529 684
Salty 158 290 680 1101 708
Wglos 171 195 277 262 270 193
Xaxon 226 848 533 1023 560 863 269
Xcamp 226 851 532 1023 559 860 269 185
Xfast 236 569 468 575 481 571 272 406 408

Ypest-co92 173 618 655 1007 678 609 195 767 766 549
Ypest-kim 178 628 660 1019 684 626 198 766 758 550 59
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Table 3. Number of breakpoints for the maximum matching model by IILCS MM

5 Conclusion

In this paper, we presented a method that helps speeding-up computations of
exact results for comparing whole genomes containing duplicates. This method,



Number of Breakpoints (exemplar model)
Genomes for Heuristic IILCS EX

Ecoli 155
Haein 268 636
Paeru 238 888 571
Pmult 258 657 509 619
Salty 156 175 641 908 659
Wglos 170 189 272 254 266 188
Xaxon 224 712 494 844 516 722 264
Xcamp 224 716 492 841 516 720 263 126
Xfast 234 511 443 517 456 514 268 384 383

Ypest-co92 171 482 619 829 620 491 188 650 648 490
Ypest-kim 176 485 624 827 623 492 191 649 644 495 34
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Table 4. Number of breakpoints for the exemplar model by IILCS EX

which makes use of pseudo-boolean programming, has been introduced in [1] for
computing the maximum number of common intervals between two genomes,
and can be used for several (dis)similarity measures. In this paper, we used
this method for computing the minimum number of breakpoints between two
genomes, and developed pseudo-boolean programs for both the maximum match-

ing and exemplar models. Experiments were undertaken on a dataset of γ-
Proteobacteria, showing the validity of our approach, since all the results (resp.
49 results out of 66) have been obtained in a limited amount of time in the max-

imum matching model (resp. exemplar model). Moreover, these results allow us
to state that both the IILCS MM and the IILCS EX heuristics provide excellent re-
sults on this dataset, hence showing their validity and robustness. On the whole,
these preliminary results are very encouraging.

There is still a great amount of work to be done. For instance:

– Implementing and testing the maximum matching and the exemplar models,
for several other (dis)similarity measures,

– For each case, determining strong and relevant rules for speeding-up the
process by avoiding the generation of a large number clauses and variables
(a pre-processing step that should not be underestimated),

– Obtaining exact results for each of these models and measures, and for dif-
ferent datasets, that could be later used as benchmarks in order to validate
(or not) possible heuristics, and

– Implementing and testing an intermediate model between the maximum

matching and the exemplar models, in which one must match at least one
gene of each family in each genome.
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