
Solution Directed Backjumping for QCSP

Fahiem Bacchus1 and Kostas Stergiou2

1 Department of Computer Science, University of Toronto, Canada.
fbacchus@cs.toronto.edu

2 Department of Information and Communication Systems Engineering,
University of the Aegean, Greece.

konsterg@aegean.gr

Abstract. In this paper we present new techniques for improving backtracking
based Quantified Constraint Satisfaction Problem (QCSP) solvers. QCSP is a
generalization of CSP in which variables are either universally or existentially
quantified and these quantifiers can be alternated in arbitrary ways. Our main
new technique is solution directed backjumping (SBJ). In analogue to conflict
directed backjumping, SBJ allows the solver to backtrack out of solved sub-trees
without having to find all of the distinct solutions normally required to validate
the universal variables. Experiments with the solver QCSP-Solve demonstrate
that SBJ can improve its performance on random instances by orders of mag-
nitude. In addition to this contribution, we demonstrate that performing varying
levels of propagation for universal vs. existential variables can also be useful for
enhancing performance. Finally, we discuss some techniques that are technically
interesting but do not yet yield empirical improvements.

1 Introduction

In this paper we present new techniques for improving the performance of solvers for
Quantified Constraint Satisfaction Problems (QCSPs). QCSPs are an extension of stan-
dard constraint satisfaction problems (CSPs) that can compactly represent a wider range
of problems than the standard CSP formalism. Whereas all of the variables of a CSP are
implicitly existentially quantified, QCSPs also allow variables to be universally quanti-
fied. Furthermore, universal and existential variables can be alternated in arbitrary ways
in a QCSP. From a theoretical point of view, these added features make QCSPs PSPACE
complete; any problem in PSPACE can be encoded as a polynomially sized (poly-sized)
QCSP. CSPs, on the other hand, are NP complete; any problem in NP can be encoded as
a poly-sized CSP. It is known that both NP ⊆ PSPACE and co-NP ⊆ PSPACE, and it is
widely believed that these containments are proper, i.e., that there are problems outside
of NP and co-NP that still lie in PSPACE. Such problems will not have a poly-sized
CSP representation, but will have a poly-sized QCSP representation.

From a practical point of view, this difference means that if effective QCSP solvers
can be developed they would enable a wide range of practical applications that lie be-
yond the reach of CSP solvers. Even though CSP and QCSP solvers both have the same
exponential worst case complexity, experience has shown that solvers can often achieve
reasonable run times in practice. The real issue separating CSP and QCSP solvers lies
in size of the problem representation, i.e., the size of the input. If NP �= PSPACE, then
there will exist problems for which a CSP formalization will always be exponentially

larger than the equivalent QCSP representation. Thus a CSP solver could not even get
started on the problem—the problem would contain too many variables and constraints.
The QCSP representation, on the other hand, would still be polynomial in size and thus
potentially solvable by a QCSP solver if that solver was able to achieve reasonable run
times in practice.

A good illustration of this point comes from the area of circuit diagnosis. In [1]
an innovative application of quantified boolean formulas (QBF is a restricted form of
QCSP), for diagnosing hardware circuits is given. The key feature of the approach is
that the QBF encoding is many times smaller than the equivalent SAT encoding (SAT is
a restricted form of CSP). In fact, in experiments the SAT encoding grew so large that it
could no longer be solved by existent SAT solvers, whereas the QBF encoding remained
compact and was solvable by existent QBF solvers. Other applications of QCSP come
from areas like conditional planning and planning under incomplete knowledge [14],
non-monotonic reasoning [9], and hardware verification and design [1, 7].

In this paper we present new techniques for improving backtracking based QCSP
solvers. Our main contribution is to demonstrate how the technique of cubes, utilized
in QBF solvers [12, 16], can be extended to QCSPs in a technique we call solution di-
rected backjumping (SBJ). SBJ allows the solver to backtrack intelligently after having
encountered a solution. SBJ subsumes and improves on the technique of solution di-
rected pruning (SDP) [11], in an manner analogous to how conflict directed backjump-
ing (CBJ) extends ordinary backjumping. In particular, SBJ computes information that
can be used at internal nodes of the tree rather than just at the leaf nodes. Experiments
demonstrate that SBJ can improve performance by orders of magnitude.

In addition to SBJ, we demonstrate that performing varying levels of propagation for
universal vs. existential variables can enhance performance. In particular, we show that
enforcing very high levels of consistency on universal variables can pay off, as detect-
ing a locally inconsistent value of a universal variable immediately forces a backtrack.
We also discuss validity pruning, a technique that can be used to prune the domains
of universally quantified variables. Our current empirical investigations with random
problems indicate that validity pruning does not yield significant improvements. Nev-
ertheless, it has the potential to be useful in other types of problems.

This paper is structured as follows. Section 2 gives the necessary definitions and
background on QCSPs. Section 3 describes methods to enhance propagation in QCSPs,
while in Section 4 we present SBJ, a method to enhance intelligent backtracking in QC-
SPs. Section 5 gives experiments results demonstrating the efficiency of the proposed
methods. Finally, in Section 6 we conclude.

2 Background

We are concerned here with QCSPs defined over finite valued variables. Let V =
{v1, . . . , vn} be a set of variables. Each variable vi has an associated finite domain
of values dom [vi]. We write v = d if the variable v has been assigned the value d al-
ways requiring that d ∈ dom [v], i.e., a variable can only be assigned a value from its
domain. A constraint c is a function from a subset of the variables in V to {true, false}
(1/0). This subset of variables is called the scope of c, scope(c), and the cardinality of
this set is the arity of the constraint. Any tuple τ of values for the variables in scope(c)

will be mapped by c to true or false. If c(τ) = true, τ is said to be a satisfying tuple
of c, else c(τ) = false and τ is a falsifying tuple of c. We will consider τ to be a set,
and write v = d ∈ τ if v has the value d in τ .

A conjunction of constraints C = c1 ∧ · · · ∧ cm, their associated variables V =⋃m
j=1 scope(cj), and domains for these variables D = {dom [v] : v ∈ V } define a

standard CSP, C[D], which forms the body of a QCSP. Let τ be a tuple of values for all
of the variables in V , and for each constraint c i ∈ C let τi be the subset of τ containing
the values assigned to variables in scope(ci). τ is a solution of the body C[D] if each
τi is a satisfying tuple of ci.

Definition 1 (QCSP) Given a body C[D] a Quantified Constraint Satisfaction Problem
(QCSP) is a formula of the form Q.C[D] where Q is a quantifier prefix consisting of
the variables of

⋃
cj∈C scope(cj) arranged in some sequence and each proceeded by

either an existential (∃) or universal quantifier (∀).

For example
∀v1, ∃v2, ∀v3, ∃v4.c1(v1, v2) ∧ c2(v1, v3, v4) ∧ c3(v2, v3, v4)

[{dom [v1] = {a, b}, dom[v2] = {a, b, c}, dom[v3] = {a}]

is a QCSP with the quantifier prefix ∀v1, ∃v2, ∀v3, ∃v4. This QCSP asserts that for all
values of v1 there exists a value of v2 (perhaps dependent on the particular value of
v1) such that for all values of v3 there exists a value of v4 (perhaps dependent on the
particular values of v1, v2 and v3) such that all the constraints c1, c2 and c3 are satisfied.

A quantifier block qb of Q is a maximal contiguous subsequence of Q such that
every variable in qb has the same quantifier type. For two quantifier blocks qb 1 and qb2

we say that qb1 ≤ qb2 iff qb1 is equal to or appears before qb 2 in Q. Each variable v in
Q appears in some quantifier block qb(v) and we say that v1 ≤q v2 if qb(v1) ≤ qb(v2)
and v1 <q v2 if qb(v1) < qb(v2). We also say that v is universal (existential) if its
quantifier in Q is ∀ (∃).

A QCSP makes an assertion that is either true or false. The assertion made by
Q.C[D] is true iff Q.C[D] has a Q-Model. A Q-Model for a Q.C[D] is a tree in which
each node except for the root is labeled by a variable assignment and that is subject to
the following conditions. Let n and m be any two nodes in the tree such that n’s label
is x = a while m’s label is y = b.

1. If n is an ancestor of m, then it must be the case that x ≤q y. That is, the sequence
of assignments along any path from the root to a leaf must respect the ordering of
the quantifier blocks.

2. If x is universally quantified, then n must have k− 1 siblings where k is the size of
dom [x]. For each value d ∈ dom [x], n or one of its k − 1 siblings must be labeled
by x = d. On the other hand if x is existentially quantified, then n has no siblings.

3. The tuple of assignments along any path from the root to a leaf node must be a
solution to C[D].

Hence in a Q-Model there is a path for every possible setting of the universal vari-
ables in Q each of which is a CSP solution to the body of the QCSP. Thus a Q-Model of
a QCSP containing k universal variables will contain 2O(k) solutions to the body. From
this definition it can be seen that any CSP can be viewed as a QCSP with all its variable

existentially quantified. The Q-Models of such existential only QCSPs contain only a
single path, and determining the truth of such QCSPs (the existence of a Q-Model) is
equivalent to determining if the CSP has a solution.

The reduction of C[D] by an assignment v = d, C[D]
∣
∣
v=d

is the new body ob-
tained by removing from the domain of v all values not equal to d (i.e., reducing dom [v]
set to the singleton set {d}). We can also reduce the body by pruning a value from the
domain of a variable: C[D]

∣∣
v �=d

= C[(D
(
dom [v])/(dom [v]−d)

)
]. The reduction by

a set of assignments or value prunings is defined as the sequential application of these
reductions. Note that if any variable domain is reduced to the empty set, then the QCSP
is false. It cannot have a Q-Model as every Q-Model must assign every variable a value
from its domain along each path.

Proposition 1 Let v be a variable and d be some value in its domain. If v is universal
then Q.C[D] ⇒ Q.C[D]

∣
∣
v �=d

. If v is existential then Q.C[D]
∣
∣
v �=d

⇒ Q.C[D].

Proof: If v is universal and Q.C[D] has a Q-Model then so does Q.C[D]
∣
∣
v �=d

: we
simply remove all subtree rooted by nodes labeled v = d from Q.C[D]’s Q-Model. If
v is existential then any Q-Model of Q.C[D]

∣
∣
v �=d

is a Q-Model of Q.C[D].
A common way of solving a QCSP is via backtracking search. In its most basic

form such a search works much like CSP backtracking search except for two additional
conditions: (1) the variable ordering along any branch must respect the ordering of the
quantifier blocks (although it is free to dynamically reorder the variables within each
block), and (2) for every universal variable v the search needs to solve for every value
in dom [v].

The search tries to find a Q-Model: a successful run verifies that a Q-Model exists
by traversing a Q-Model during its search while a failed run has tried to traverse all
possible Q-Models thus verifying that one does not exist. In particular, at any node n
the search tree that has been reached by making the sequence of assignments π k =
〈v1 = d1, . . . , vk = dk〉, the search in the subtree below n attempts to find a Q-Model
for Q.C[D]

∣
∣
πk

. Thus at the root the search attempts to find a Q-Model for the original
problem Q.C[D].

The key to making backtracking search for QCSPs effective is by developing tech-
niques that allow unsuccessful subtrees to be refuted more efficiently, and successful
subtrees to be verified more efficiently. Efficient refutation of unsuccessful subtrees is
also the goal in backtracking CSP solvers, but here we aim to exploit the additional
structure of QCSPs to develop better methods for achieving this goal. Efficient verifi-
cation of successful subtrees, on the other hand, has no analogue in CSP solvers which
typically can stop as soon as a single solution is found. With a QCSP however, a suc-
cessful subtree has an exponential number of solutions and finding each of these would
be very slow. Here again our aim is to exploit the additional structure of QCSPs to de-
velop methods for verifying that all of these solutions exist without having to actually
find each one.

In the sequel we report on some new methods for achieving these two goals as
well as on our empirical evaluation of their effectiveness. From here on we will confine
our attention to QCSPs with constraints of arity at most two. It can be noted that any
QCSP with non-binary constraints can be converted to an equivalent QCSP containing

only binary constraints by applying the hidden variable transformation (see e.g., [2]) to
convert the body to a binary CSP and then adding all of the newly introduced hidden
variables as new existential variables to the end of the quantifier prefix. Whether or not
this is a effective way of dealing with non-binary constraints is a topic for future work.
The alternative of dealing directly with non-binary constraints poses some considerable
additional formal and practical challenges and is also a topic for future work.

3 Propagation
Our first techniques arise from the standard idea of constraint propagation. These tech-
niques use the constraints of the QCSP body to provide additional information that can
simplify the task of searching the subtree below the current node.

3.1 Detecting Inconsistent Values
An assignment v = d is inconsistent for Q.C[D] if it does not appear in any Q-Model
of Q.C[D]. If v = d is inconsistent and v is existential then Q.C[D] ≡ Q.C[D]

∣
∣
v �=d

:

any Q-model for Q.C[D] must also be a Q-Model for Q.C[D]
∣
∣
v �=d

since it cannot
contain v = d, while Prop. 1 supplies the opposite direction. On the other hand if v is
universal then Q.C[D] is false: any Q-Model must contain v = d.

Of course it is in general hard to detect inconsistent values, but as with CSPs various
local checks can be performed that detect some but not all inconsistent values. Such
checks can be done at every node n of the search (including prior to search at the root).
In particular, if an inconsistent existential value is detected it can be pruned before
searching the subtree below n, and if an inconsistent universal value is detected the
search can immediately backtrack from n.

Since every path in a Q-Model is a standard CSP solution to the body, any standard
CSP technique for detecting inconsistent values can be used: any value inconsistent
for the body cannot appear in any Q-Model. Additionally, we can do better than this
by exploiting the additional structure of QCSPs. In particular, as shown in [6, 13], arc
consistency (AC) can be extended to QCSPs to support the detection of values that are
inconsistent for the QCSP even though they are not inconsistent for the CSP body. AC
for binary QCSPs has been implemented in the QCSP-Solve system that we employ in
our empirical evaluations. QCSP-Solve uses AC only as a preprocessing step (i.e., at
the root), as FC (forward checking) seems to be more cost effective during search [11].

The key feature of AC for QCSPs is that it allows many of the constraints of the
body to be removed at the root. In particular, the only constraints c(x, y) that remain in
the problem after AC preprocessing are those where both x and y are existential, and
those where x is universal, y is existential, and x <q y (see [11] for more details).

Pruning inconsistent values improves the efficiency of search in the subtree below,
but local consistency checking has its greatest impact when it allows us to avoid that
search altogether. This happens when either all values of an existential are pruned or
a single value of a universal is pruned. It is more likely that local propagation can
prune a single universal value than all values for some existential. Hence, it can be
worth while to expend more effort checking for inconsistency universal values. This
intuition already appears to some extent in the QCSP-Solve system via its FC1 and
MAC1 propagation. In these propagation methods, whenever a universal variable x
is to be branched on, before descending deeper in the search tree all of its possible

values are tried and FC or AC performed after each trial assignment. If any of these
assignments yield a contradiction the algorithm can immediately backtrack. This extra
work on universals was shown to be cost effective in the experiments of [11].

Our first new technique is to further investigate the technique of doing more work on
the consistency checking of universals. In particular, we investigate applying a different
and stronger level of consistency checking on universals and a weaker, and thus cheaper,
level of consistency on existentials, in addition to the technique of checking all universal
values prior to descending deeper, used in [11].

3.2 Strong Levels of Consistency on Universals

Like QCSP-Solve after any existential is assigned we perform FC. But further to QCSP-
Solve we also check all future universal variables to ensure that they are arc consistent
in all of the constraints they participate in. Like QCSP-Solve if a universal is about to
be assigned we check each of its values first. But further to QCSP-Solve we check each
value with a much higher level of local consistency than FC. The particular form of
local consistency we found to be effective is a mixture of path consistency (PC) and
max restricted path consistency (maxRPC). If any value of the universal fails this local
consistency test we backtrack. If they all pass this test, we then assign the universal
a value and then perform FC followed by enforcing AC on all constraints involving a
future universal. Hence, we have two changes from QCSP-Solve: (1) after each instan-
tiation we check that the future universals are AC in their constraints, and (2) checking
a higher level of consistency on all values of a universal prior to assigning it a specific
value.

Now we specify more precisely the local consistency test we employ on the values
of an about to be assigned universal. A pair of values (d i, dj), di ∈ dom [vi] and dj ∈
dom [vj], is path consistent (PC) iff the two values are compatible and for any third
variable vk there exists a value dk ∈ dom [vk] that is compatible with both di and dj . A
value di ∈ dom [vi] is max Restricted Path Consistent (maxRPC) [8] iff for any variable
vj constrained with vi there exists a value dj ∈ dom [vj] that is compatible with di and
has the following property: for any third variable vk, there exists a value dk ∈ dom [vk]
that is compatible with both di and dj . In this case we say that dj is a maxRPC-support
of di. In other words di is maxRPC if it is a member of some path consistent pair in
every constraint it participates in while path consistency ensures that every pair d i of
is path consistent. When during search we are about the assign the universal v i, after
having some set of assignments π, the local consistency test we employ is specified in
Figure 1.

In Figure 1 when a universal vi is reached during search we check that each of its
values di has a maxRPC support in the domain of each existential it is constrained with,
and that di is path consistent with all future universals. AC preprocessing ensures there
are no constraints over two universals, thus to check the consistency of pairs of universal
values we must consider the existentials they are jointly constrained with; hence our use
of path consistency.

The following example demonstrates how the application of PC and maxRPC prunes
the search space upon reaching a universal variable.

function maxRPC+PC_Propagation (Q.C[D], π, vi)
1: for each value di ∈ dom[vi]
2: for each unassigned existential variable vj constrained with vi

3: if di has no maxRPC-support in dom[vj]
4: then return FAIL
5: for each unassigned universal variable vj

6: for each value dj ∈ dom [vj]
7: if (di, dj) is not path consistent
8: then return FAIL

Fig. 1. Strong propagation on universal variables.

Example 1 Consider the QCSP

∃v1, ∀v2, ∃v3, ∀v4, ∃v5.(v1 �= v5 − 2 ∧ v2 = v3 ∧ v2 �= v5 ∧ v3 �= v5 − 1 ∧ v4 = v5)
[dom [v1] = dom [v2] = dom [v3] = dom [v4] = {0, 1}, dom[v5] = {0, 1, 2}]

A chronological backtracking algorithm that applies PC and maxRPC upon reaching a
universal will solve the problem as follows. Variable v1 is assigned value 0. Forward
checking removes 2 from dom [v5]. The next variable v2 is a universal. We will now call
the function of Figure 1 to apply PC and maxRPC on v2’s values. v3 is existential and
is constrained with v2. Therefore, we check if value 0 of v2 has a maxRPC-support in
dom [v3] (line 3). The only value compatible with 0 in dom [v3] is 0 and there is no value
in dom [v5] that is compatible with both 0 ∈ dom [v2] and 0 ∈ dom [v3]. Therefore,
value 0 of v2 is not maxRPC and the algorithm immediately backtracks and assigns 1 to
v1. Again the function of Figure 1 is called. Value 0 of v2 now has a maxRPC-support
in dom [v3] (value 0), because 2 has been restored to dom [v5] and it is compatible with
both 0 ∈ dom [v2] and 0 ∈ dom [v3]. v4 is a universal so we now apply PC on its values.
That is, we check if the values of v4 have a support in v5 that is also a support for value
0 of v2 (lines 6-8). This is not the case for value 0 of v4 and therefore the algorithm
backtracks and determines that the problem is false.

3.3 Detecting Valid Values
In QCSPs a duality exists between universal and existential variables that manifests
itself in various aspects of the processing that can be done when solving a QCSP. With
respect to detecting inconsistent values the dual notion is detecting valid values.

An assignment v = d is valid for a constraint c if for every tuple τ of assignments
to the variables in scope(d) with v = d ∈ τ we have c(τ) = true. In other words the
assignment v = d renders c vacuous. We say that an assignment v = d is valid for
a conjunction of constraints C if it is valid for every constraint in C that has v in its
scope.

This notion of validity corresponds both to that defined in [3] and to the notion of
purity defined in [11]. It is also related to notions described in [5]. A useful fact from
[3] is that validity is the dual of inconsistency with respect to GAC. That is, v = d is
valid for a constraint c if and only if v = d is GAC inconsistent for ¬c, where ¬c is
the negation of c. That is, scope(¬c) = scope(c) and for any tuple of assignments τ ,
¬c(τ) = true iff c(τ) = false.

If v = d is valid for C in the QCSP Q.C[D] and v is existential then Q.C[D] ≡
Q.C[D]

∣
∣
v=d

: we can assign v the value d. In particular, if Q.C[D] has a Q-Model, then

we can replace every assignment to v in that Q-Model by v = d. Since v = d is valid
this change cannot cause any constraint to be violated, hence the modified Q-Model is
still a Q-Model for Q.C[D]

∣
∣
v=d

. Prop.1 provides the opposite direction. On the other
hand if v is universal then Q.C[D] ≡ Q.C[D]

∣
∣
v �=d

: we can prune d from dom [v]. In

this case if Q.C[D]
∣
∣
v �=d

has a Q-Model we can add the node v = d as a new sibling
to all sets of siblings labeled by the other assignments to v and then simply copy the
subtree below one of these other assignments to create subtree below v = d. Since
v = d is valid the other assignment’s subtree will continue to be a tree of solutions
under v = d. This modified Q-Model is a Q-Model of Q.C[D]. Prop.1 provides the
opposite direction.

Validity was previously utilized in QCSP-Solve by waiting until a variable was
about to be assigned. At that point the values of the variable would be checked to see if
any of them were valid (pure). For an existential the valid value would immediately be
assigned, and for a universal the valid values would be pruned, in accord with the above
observations.

An alternative to the approach of QCSP-Solve is to do validity propagation. In par-
ticular, instead of waiting until a variable is about to be assigned one could detect valid
values of future variables and prune or assign them dependent on their type. Validity
propagation can be achieved by exploiting the relationship cited above between GAC
(AC) on the negation of a constraint and validity. That is, it is fairly easy to alter AC
lookahead to detect valid values of future variables by running AC on the negations of
the constraints.

It should be noted that validity propagation does not affect the size of the search
tree: a valid value of a future variable will still be exploited even if it is only detected
at the time the variable is about to be assigned. Potentially, it can be more efficient to
determine that a value is valid once near the top of the search tree, rather than each time
the variable is to be assigned. On the other hand, one could waste time detecting valid
values for variables that are never reached because an inconsistency is found before they
are instantiated. The main potential benefit of validity propagation over future variables
lies in the fact that it dynamically alters the size of the variable domains; potentially dif-
ferently along different branches of the search tree. As noted above, although the order
in which variables are instantiated is restricted by the ordering of the quantifier blocks,
within a quantifier block the variable ordering can be selected heuristically. Hence, va-
lidity propagation could potentially provide “within a block” dynamic ordering with
useful information about varying domains sizes.

We implemented validity propagation and used it in conjunction with dynamic vari-
able ordering within quantifier blocks. Our experimental results were disappointing, but
we only tested random problems. Potentially this technique could be useful on other
QCSPs.

4 Intelligent Backtracking
Our second set of techniques arises from the idea of keeping track of the reasons a path
failed or succeeded so that irrelevant variables can be backtracked over. QCSP-Solve
already utilizes conflict directed backjumping (CBJ), as described in [11]. Hence, when
backtracking from a failure node irrelevant variables can be skipped over. However, CBJ

does not support intelligent backtracking from successful nodes. Extending intelligent
backtracking so that it can be applied after success is achieved by our new technique of
solution directed backjumping (SBJ).

4.1 Solution Directed Backjumping (SBJ)
In QBF solvers cube learning is an technique used to backtracking from successful
nodes [12, 16]. Cubes are computed at solution leaves of the search tree by identifying
a subset of the assigned literals sufficient to satisfy all clauses of the QBF. The aim is
to identify universal variables whose setting was irrelevant to the discovered solution.
Potentially those variables can be backtracked over without having to test if their other
value is solvable.

In a QBF solver the leaf cubes (cubes computed as solution leaf nodes) support
backtrack to the deepest universal they contain, and at internal nodes cubes computed
for each setting of a universal can be combined to support further non-chronological
backtracking. Since a successful subtree in QBF (or QCSP) can contain an exponential
number of solutions, backtracking out of such subtrees by using cubes can provide a
considerable performance improvement. For example, if at a any node a cube consisting
entirely of existential literals is computed, then the search can immediately terminate.

In QCSPs however a straight forward application of this idea is not effective. In
particular it is hardly ever the case that a universal variable is completely irrelevant
to the solution found. Rather, the solution found at a leaf node might continue to be a
solution under some other settings of the universal variable, but not under other settings.
Hence the idea behind SBJ is to keep track of the values of the universals that are
verified by the current solution so that on backtrack these values need not be verified
again. It is however slightly easier to formalize SBJ as keeping track of the complement
of the verified values.

Definition 2 (QCSP Cube) Let qbe be a set containing (a) a set of existential assign-
ments (v = a) and (b) for each universal variable v a set of values uncovered [v] ⊂
dom [v]. Let C[D]

∣
∣
qbe

be the reduction of C[D] by v = a for each existential assign-
ment (v = a) ∈ qbe and by v �= d for each d ∈ uncovered [v] for each universal
variable v. The set qbe is a cube iff Q.C[D]

∣
∣
qbe

is true (i.e., has a Q-Model).

We use the convention of omitting mention of the set uncovered [v] from a cube if it is
empty, and we say that the universal variable vu is in a cube, qbe , if uncovered [vu] ∈
qbe (i.e., uncovered [vu] �= ∅). An existential assignment ve = a ∈ qbe is called tailing
if for all universal variables vu ∈ qbe we have vu <q ve.

Observation 1 If ve = a is a tailing existential in a cube qbe then qbe − {ve = a} is
also a cube. That is, tailing existential assignments can be removed from a cube.

Proof: Q.C[D]
∣
∣
qbe

is true (by definition) and Q.C[D]
∣
∣
qbe

⇒ Q.C[D]
∣
∣
qbe−{ve=a}

(Prop 1). Hence Q.C[D]
∣
∣
qbe−{ve=a} is also true and qbe − {ve = a} is a cube.

Figure 2 gives the algorithm for computing a QCSP cube at a solution leaf. Let π
be the sequence of assignments made on the path to this leaf node. (π satisfies all of
the constraints of the body). In this algorithm π(v i=d) denotes the set of assignments π
modified so that vi is now assigned the value d. The algorithm computes uncovered [v i]
for each universal variable vi; this is the set of values of vi that are incompatible with

function ComputeLeafCube (Q.C[D], π)
1: qbe = the assignments to the existential variables in π
2: for each universal variable vi

3: uncovered [vi] = {}
4: for each d ∈ dom[vi]
5: if π(vi=d) does not satisfy C
6: uncovered [vi] = uncovered [vi] ∪ {d}
7: qbe = qbe ∪ {

uncovered [vi]
}

8: qbe = remove tailing existentials from qbe

Fig. 2. Computing a QCSP cube at a solution leaf node.

the current solution. Note that uncovered [vi] can never contain vi’s current value (the
condition on line 5 cannot be satisfied since π satisfies all constraints).

Proposition 2 The set qbe returned by ComputeLeafCube is a cube.

Proof: Consider qbe before tailing existentials are removed (line 8). At this point qbe
contains an assignment for every existential variable. We must show that Q.C[D]

∣
∣
qbe

has a Q-Model. Such a Q-Model will be a tree with paths for every combination of
assignments to the universal variables not in the uncovered sets. Construct such a tree
by assigning the existential variables along every path its value in qbe . Due to our re-
striction to binary constraints and preprocessing of the problem C[D] only contains
constraints c(vu, ve) between a universal and an existential and constraints c(ve1 , ve2)
between two existentials. Since the existential assignments in qbe came from a solu-
tion π all constraints between two existentials are satisfied. Furthermore, line 5 ensures
that all constraints between a universal and an existential are satisfied by any universal
value not in the uncovered sets. Hence each path in this tree is a solution to C[D], and
Q.C[D]

∣
∣
qbe

has a Q-model (is true). By the previous observation qbe remains a cube
after its tailing existentials have been removed.

Let v be the deepest universal in qbe , i.e., the universal assigned at the deepest level
along the path to the current solution leaf with uncovered [v] �= ∅. Let n be the node
assigning v its current value. The fact that qbe is a cube tells us that the subtree under
n has been solved: this subtree is attempting to solve Q.C[D]

∣
∣
πv

where πv is set of
assignments in the path to n. πv agrees with qbe on the assignment to its existential
variables but further restricts its universal variables to assignments that lie in the do-
mains of C[D]

∣
∣
qbe

. By Prop. 1 Q.C[D]
∣
∣
qbe

⇒ Q.C[D]
∣
∣
πv

, and thus Q.C[D]
∣
∣
πv

must
be true since qbe is a cube. Furthermore, qbe also verifies that the subtrees of the other
assignments to v not in uncovered [v] are also solved: by the same reasoning all of these
subproblems are also true. Hence, the search can backtrack to the node that assigned v,
and from that point only attempt to solve the values for v in uncovered [v] that have not
been previously verified.

Each time the search backtracks to a universal variable v a new cube is returned, and
at least one more value from v’s domain has been verified (v’s current assignment must
be verified by the cube). Say that the search backtracks to v a total of k times before
all of v’s domain has been verified, in the process returning k cubes qbe 1, . . . , qbek. At
that point, the function in Figure 3 is invoked to compute a new cube (where π v is the
sequence of assignments made before v was selected to be assigned).

function ComputeInternalCube (Q.C[D], v, πv, qbe1, . . . , qbek)
1: qbe = the assignments to the existential variables in πv

2: for each universal variable vi �= v

3: uncovered [vi] =
⋃k

j=1 uncovered [vi] ∈ qbej

4: qbe = qbe ∪ {
uncovered [vi]

}

5: qbe = remove tailing existentials from qbe

Fig. 3. Computing a QCSP cube at an internal node where the universal variable v was assigned.

In ComputeInternalCube each universal’s uncovered values is the union of its
uncovered values in the k cubes qbe 1, . . . , qbek. Note also that uncovered [v] is omitted
from the new cube (i.e., uncovered [v] is implicitly empty). Since v was the deepest
universal in each of the cubes qbe i, we see that the newly computed cube also contains
no universals deeper that v. Nor does it contain any existential assignments deeper than
v due to line 5 and the fact that each cubei also previously had their tailing existentials
removed.

Once qbe is has been computed the search can once again backtrack to the node
assigning the deepest universal v ′ in qbe , and at that point continue by solving all values
of v′ in uncovered [v′] ∈ qbe that have not be previously verified. If all of these values
were previously verified ComputeInternalCube will be invoked again on the set
of cubes that were returned to v ′ (i.e., qbe and any other cubes returned by earlier
backtracks to v′). The new cube it returns will then generate yet another backtrack.

Proposition 3 Assume that qbe1, . . . , qbek are all cubes, have been existentially re-
duced, agree on all existential assignments, have v as their deepest universal, and to-
gether verify all of the values in dom [v] (i.e., for each a ∈ dom [v] there exists j such
that a �∈ uncovered [v] ∈ qbej). Then the set qbe returned by ComputeInternalCube
is a cube.

This proposition can be proved by constructing a Q-Model for Q.C[D]
∣
∣
qbe

using parts

of the k Q-Models known to exist for Q.C[D]
∣
∣
qbei

. Subject to the assumed condi-
tions these Q-Models are sufficiently compatible that these parts can be put together to
cover all values for the universal variable v and all values in the universal domains of
C[D]

∣
∣
qbe

.

The above propositions demonstrate that SBJ computes correct cubes and that these
cubes verify that the backtracking described above is sound. In particular, SBJ will
backtrack to the root of the search tree if and only if it has verified that the empty set is
a cube. That is, Q.C[D]

∣
∣
∅ = Q.C[D] is true. Finally, two more observations about SBJ

can be made. First, SBJ’s space requirements are bounded by O(dn 2), where d is the
maximal sized variable domain and n is the number of variables. In particular, at each
node along the current path (max n nodes) we need only store the union of the cubes
that have been returned to that node so far. Furthermore, this set can be deleted when we
backtrack from the node. Second, at each node the cubes contain all of the previously
assigned existentials, so we need not explicitly store these in cube. These existentials
would be needed however if we wanted to store the cubes to use along future paths of
the search tree (i.e., if we were to perform cube learning).

5 Empirical Study

The random QCSP instances used in our empirical study were generated following the
generation model introduced in [11]. As in [15] we added an extra parameter that de-
notes the number of universal blocks. The generator takes 8 parameters: 〈n, n ∃, n∀, d,
p, q∀∃, q∃∃, b∀〉 > where n is the number of variables, n∃ is the number of existentials
in each block, n∀ is the number of universals in each block, d is the uniform domain
size, p is the number of binary constraints as a fraction of all possible constraints, and
b∀ is the number of universal blocks. q∃∃ is the fraction of satisfying tuples in con-
straints between existentials. The satisfying tuples in a constraint between a universal
and an existential later in the variable sequence are specified as follows. A random total
bijection is generated from the domain of the universal to the domain of the existential.
All 2-tuples not in the bijection satisfy the constraint. Parameter q∀∃ is the fraction of
satisfying tuples from the d tuples in the bijection.

Constraints between universals or an existential and a universal later in the variable
sequence are not generated as these can be removed by preprocessing [11]. With certain
parameter settings the randomly generated instances are free from the flaw described
in [10]. Variables are quantified in blocks with alternating quantification starting with a
block of n∃ existentials.

5.1 SBJ and Strong Consistency on Universals

To evaluate the effects of SBJ and the constraint propagation methods for universals, we
have compared QCSP-Solve against three solvers obtained by extending QCSP-Solve
with these features. The first solver (QCSP-Solve prop) augments QCSP-Solve with
strong propagation on universals. The second one (QCSP-Solve+) augments QCSP-
Solve with SBJ. The third one (QCSP-Solve++) applies both SBJ and strong propaga-
tion on universals. We used random problems with a variety of parameter settings. The
results presented hereafter are averages over 100 instances generated at each data point.
In each figure the value of q∃∃ is varied in steps of 0.05. For the experiments of this
section variables were instantiated according to the quantifier sequence. Values were
always ordered lexicographically.

Figure 4 shows cpu times and node visits from problems where n = 24, n∃ = n∀ =
8, b∀ = 1, d = 9, p = 0.15, q∀∃ = 0.44. Under these parameter settings all instances
are guaranteed to be flaw-free.

The results given in Figure 5 are from problems generated using similar parameter
settings as in [15]. The left plot in Figure 5 shows cpu times from problems where
n = 25, n∃ = n∀ = 5, b∀ = 2, d = 8, p = 0.20, q∀∃ = 0.50. The right plot in Figure 5
shows cpu times from problems where n = 28, n∃ = n∀ = 4, b∀ = 3, d = 8, p = 0.20,
q∀∃ = 0.50. Note that neither of these parameter guarantees flaw-free instances.

In all sets of problems QCSP-Solve++ is considerably faster than QCSP-Solve. For
high values of q∃∃, where most instances are soluble, the speed-up obtained can be up
to two orders of magnitude. This is because, through the use of SBJ, the solver avoids
repeatedly searching for solutions involving all sequences of assignments to universals.
For low values of q∃∃, where most problems are insoluble, SBJ has little effect and
the computation/maintainance of solution cubes is an overhead that slows down search.

0.01

0.1

1

10

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

q

QCSP-Solve
QCSP-Solve

QCSP-Solve+
QCSP-Solve++

100

1000

10000

100000

1e+006

1e+007

1e+008

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

no
de

s

q

QCSP-Solve
QCSP-Solve prop

QCSP-Solve+
QCSP-Solve++

Fig. 4. Cpu times (left) and node visits (right).

0.01

0.1

1

10

100

1000

0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

q

QCSP-Solve
QCSP-Solve prop

QCSP-Solve+
QCSP-Solve++

0.01

0.1

1

10

100

1000

0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

q

QCSP-Solve
QCSP-Solve

QCSP-Solve+
QCSP-Solve++

Fig. 5. Cpu times on problems with 25 variables (left) and 28 variables (right).

However, the early failure detection offered by the strong consistencies applied on uni-
versals outweighs this and speed-ups compared to QCSP-Solve are obtained. Compar-
ing QCSP-Solve to QCSP-Solve prop and QCSP-Solve+ to QCSP-Solve++ shows that
the effects of SBJ and strong propagation on universals are more or less orthogonal.

As is evident from the results shown in the figures, a small increase in the number
of variables and quantifier alternations can have a significant impact on the difficulty of
the problem.
Other Approaches to QCSP Solving. Apart from QCSP-Solve, two direct solvers
for QCSPs have been developed and a number of encodings of QCSP into QBF have
been proposed. The two solvers are BlockSolve [15] and QeCode [4]. BlockSolve is
a bottom-up solver that displays very good performance on soluble instances, but as a
downside requires exponential space. QeCode is built on top of Gecode and hence is
equipped with many advanced CSP techniques. However, it lacks specialized features
for QCSPs, such as pure value handling.

Although we have not directly compared our work to these solvers, we can make
some conjectures by observing the performance of the solvers on instances generated
with similar parameters. SBJ makes QCSP-Solve far more competitive with BlockSolve
than before on soluble instances. However, BlockSolve still holds an advantage, as it
can achieve a speed-up of up to four orders of magnitude over QCSP-Solve; albeit with
an exponential memory cost. At the phase transition and to its left, where problems
are insoluble, BlockSolve is outperformed by our techniques. This conjecture is based

on the observation that BlockSolve displays roughly the same performance as QCSP-
Solve at the phase transition while it is slower in the insoluble region [15]. Experiments
with QeCode showed that it displays roughly similar performance as QCSP-Solve [4].
Therefore, we conjecture that SBJ makes QCSP-Solve considerably more efficient than
QeCode on soluble instances. QBF solvers that run on the efficient adapted and en-
hanced log encodings are typically slower than QCSP-Solve on insoluble instances and
faster on soluble ones [10, 11]. We conjecture that SBJ makes QCSP-Solve at least
competitive with the encodings on soluble instances.

5.2 Validity Pruning and Dynamic Variable Ordering

We now study the effect of validity pruning and dynamic variable ordering (DVO)
within blocks. In Figure 6 we compare three variations of QCSP-Solve++ augmented
with validity pruning. The first one (QCSP-Solve++.1) applies validity pruning to achieve
early detection of valid values and uses a static variable ordering. Its performance is very
close to that of QCSP-Solve++ (it is negligibly slower). The second variation (QCSP-
Solve++.2) dynamically reorders variables within both existential and universal blocks.
The third variation (QCSP-Solve++.3) applies DVO only within existential blocks and
orders the universals statically. The heuristic used is dom/deg. The left plot in Figure 6
gives results from the problems of Figure 4 while the right plot gives results from the
problems of Figure 5 (the ones with 25 variables).

0

1

2

3

4

5

6

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

q

QCSP-Solve++.1
QCSP-Solve++.2
QCSP-Solve++.3

0

5

10

15

20

25

30

0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(s
ec

on
ds

)

q

QCSP-Solve++.1
QCSP-Solve++.2
QCSP-Solve++.3

Fig. 6. Cpu times on problems with 25 variables (left) and 28 variables (right).

Not surprisingly, DVO is effective on insoluble problems with large existential
blocks. However, is has little effect on soluble problems, and even slows down search
in some cases. Again unsurprisingly, problems with blocks of small size do not bene-
fit from DVO. Finally, since QCSP-Solve++.2 and QCSP-Solve++.3 yield similar re-
sults, it seems that the reordering of universals does not improve the performance of the
solver. However, fail-first heuristics like dom/deg may not be ideal for universal vari-
ables, so it is possible that better heuristics, which exploit the information offered by
validity pruning, will be designed in the future.

6 Conclusions
We have presented new techniques for improving the performance of backtracking
based QCSP solvers. Our main contribution is the development of solution directed

backjumping for QCSPs. In analogue to conflict directed backjumping, SBJ allows the
solver to backtrack out of solved sub-trees without having to find all of the distinct
solutions normally required to validate that all sequences of assignments to the uni-
versal variables lead to solutions. We also demonstrated that performing varying levels
of propagation for universal vs. existential variables can be useful for enhancing per-
formance. Experiments with the solver QCSP-Solve demonstrate that both these tech-
niques, and especially SBJ, can significantly improve the performance of backtracking
solvers. Finally, we discussed validity pruning, a potentially useful technique that can
be used to prune the domains of universally quantified variables during search.

References

1. M.F. Ali, S. Safarpour, A. Veneris, M.S. Abadir, and R. Drechsler. Post-verification debug-
ging of hierarchical designs. In International Conf. on Computer Aided Design (ICCAD),
pages 871–876, 2005.

2. F. Bacchus and P. van Beek. On the conversion between non-binary and binary constraint
satisfaction problems. In Proceedings of AAAI-98, pages 311–318, 1998.

3. F. Bacchus and T. Walsh. Propagating logical combinations of constraints. In Proc. of 19th
IJCAI, pages 35–40, 2005.

4. M. Benedetti, A. Lallouet, and J. Vautard. Reusing CSP propagators for QCSPs. In Proceed-
ings of CSCLP-2006, 2006.

5. L. Bordeaux, M. Cadoli, and T. Mancini. CSP Properties for Quantified Constraints: Defini-
tions and Complexity. In Proceedings of AAAI-2005, pages 360–365, 2005.

6. L. Bordeaux and E. Monfroy. Beyond NP: Arc-consistency for Quantified Constraints. In
Proceedings of CP-2002, pages 371–386, 2002.

7. R. Bryant, S. Lahiri, and S. Seshia. Convergence testing in term-level bounded model check-
ing. In Correct Hardware Design and Verification Methods (CHARME), volume 2860 of
LNCS, pages 348–362. Springer-Verlag, 2003.

8. R. Debruyne and C. Bessière. From restricted path consistency to max-restricted path con-
sistency. In Proceedings of CP-97, pages 312–326, 1997.

9. Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. Solving advanced reasoning
tasks using quantified boolean formulas. In Proceedings of AAAI-2000, pages 417–422,
2000.

10. I. Gent, P. Nightingale, and A. Rowley. Encoding Quantified CSPs as Quantified Boolean
Formulae. In Proceedings of ECAI-2004, pages 176–180, 2004.

11. I. Gent, P. Nightingale, and K. Stergiou. QCSP-Solve: A Solver for Quantified Constraint
Satisfaction Problems. In Proceedings of IJCAI-2005, 2005.

12. E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for quantified boolean logic satis-
fiability. In Eighteenth national conference on Artificial intelligence, pages 649–654, 2002.

13. N. Mamoulis and K. Stergiou. Algorithms for Quantified Constraint Satisfaction Problems.
In Proceedings of CP-2004, pages 752–756, 2004.

14. Jussi Rintanen. Constructing conditional plans by a theorem-prover. Journal of Artificial
Intelligence Research, 10:323–352, 1999.

15. G. Verger and C. Bessière. Blocksolve: a Bottom-Up Approach for Solving Quantified CSPs.
In Proceedings of CP-2006, pages 635–649. Springer, 2006.

16. L. Zhang and S. Malik. Towards symmetric treatment of conflicts and satisfaction in quanti-
fied boolean satisfiability solver. In Proceedings of CP2002, pages 185–199, 2002.

