
Managing Separation of Concerns in Grid Applications
Through Architectural Model Transformations

David Manset[1, 2, 3], Hervé Verjus[1], Richard McClatchey[2]

[1] University of Savoie – Polytech’ Savoie – LISTIC/LS
{david.manset, herve.verjus}@univ-savoie.fr

[2] CCCS, University West of England, Bristol, UK
richard.mcclatchey@uwe.ac.uk

[3] Maat Gknowledge, Toledo, Spain
dmanset@maat-g.com

Keywords. Grid, MDE, Software Architecture, Model Transformation.

1. Introduction
Grids enable the aggregation, virtualization and sharing of massive heterogeneous and
geographically dispersed resources, using files, applications and storage devices, to
solve computation and data intensive problems, across institutions and countries via
temporary collaborations called virtual organizations (VO) as described in [1]. Most
implementations result in complex superposition of software layers, often delivering
low quality of service and quality of applications. As a consequence, Grid-based ap-
plications design and development is increasingly complex, and the use of most classi-
cal engineering practices is unsuccessful. Not only is the development of such applica-
tions a time-consuming, error prone and expensive task, but also the resulting
applications are often hard-coded for specific Grid configurations, platforms and infra-
structures. Having neither guidelines nor rules in the design of a Grid-based applica-
tion is a paradox since there are many existing architectural approaches for distributed
computing, which could ease and promote rigorous engineering methods based on the
re-use of software components. It is our belief that ad-hoc and semi-formal engineer-
ing approaches, in current use, are insufficient to tackle tomorrow’s Grid develop-
ments requirements. Because Grid-based applications address multi-disciplinary and
complex domains (health, military, scientific computation), their engineering requires
rigor and control. This paper therefore advocates a formal model-driven engineering
process and corresponding design framework and tools for building the next genera-
tion of Grids. To achieve these objectives, two approaches are combined: (1) a formal
semantic is used to model and check Grid applications; (2) a model-driven approach is
adopted to promote model re-use, through separation of concerns, to model transfor-
mations, to hide the platform complexity and to refine abstract software descriptions
into concrete usable ones.
Section 2 of this paper introduces our proposal so-called gMDE, as well as its founda-
tions in sections 3 and 4. Finally, section 4 and 5 illustrate the presented paradigms
with an example.

2. A Formal Architecture-Centric MDE Approach

The presented approach, of so-called “grid Model-Driven Engineering” (gMDE), aims
at enacting the model-driven paradigm based on formally defined architectural models
dedicated to grid-based application development. While most existing MDE imple-
mentations provide only model to source code transformations where the PIMs are
translated to PSMs, the problem of Grids engineering requires more elaborated models
transformations – i.e. model to model - to fill the conceptual gap between the abstract
model and its concrete (more detailed) representation. Moreover, interesting modelling
aspects such as model optimization require the generation of intermediate models to
compute and synchronize different views of the system. Thus, the proposed approach
is based on the combination of the MDE vision [2] with the architecture-centric ap-
proach [3]..In Grid engineering, design is largely affected by constraints, which are in-
troduced either by the targeted Quality of Services (QoS) or by the targeted execution
platform. As presented in [4], our gMDE approach exhibits several models (see the
right part of the Figure 1). Each model represents an accurate aspect of the system,
useful for conceptual understanding (separation of concerns), analysis and refinement.
Unlike the software engineering process, where the system architecture is iteratively
refined by the architect, most of the transformations in gMDE are semi-automated.
Thus, Grid applications architects only concentrate on applications functional building
blocks and their interactions, and let the system address non-functional issues such as
QoS. Figure 1 below, introduces the cascade of architectural models in the gMDE en-
gineering process. In the presented process, a distinction is made between two major
levels:
- Transformations of architectural models, which take place at the same level of ab-
straction (i.e. architectural structure, behaviour and properties) shown above the bro-
ken line in figure 1 and
- Transformations of abstract models to more concrete ones (including deployment in
an infrastructure) shown below the broken line in Figure 1.

Horizontal Refinement

V
er

ti
ca

l
R

ef
in

em
en

t

abstract

concrete

coarse-grain fine-grain

Decomposition

refDefinition::=on a : architecture action actionName

is refinement (actionParameter0 , actionParametern)

{

[pre is { condition }]

[post is { condition }]

[transformation is { refExpression }]

} [assuming { property }]

Refinement Specification in ARL

T
ran

sform
ation

Figure 1. The gMDE Design Process as a Cascade of Refined Models

3. gMDE as a Grid-Based Application Development Framework
ArchWare [3] is an architecture-centric engineering environment supporting the de-
velopment of complex systems. It enables the support of critical correctness require-
ments and provides languages for expressing architecture structure, behaviour and
properties. ArchWare provides a set of formal languages amongst which the Architec-
ture Refinement Language (ARL [5]). This latter is used to describe software architec-
tures (based on the Component and Connector paradigm) and to refine them according
to transformation rules. This language is based on the π-calculus [6] and μ-calculus [7]
allowing the specification of architectures structure, behaviour and properties. Our
gMDE approach uses ARL as the basis language (a refinement calculus) for express-
ing architectural models and transformation rules.
The gMDE approach focuses on both directions of refinement i.e. “vertical” and “hori-
zontal”. The intention is not only to refine an architecture to a concrete and “close to
final” code form, but also to adapt it according to constraints. gMDE proposes two
ways of using the model-driven process. The first consists of optimizing a given Grid-
based application abstract architecture according to expressed developers’ QoS. The
second consists of adapting an architecture according to the target Grid middleware.
Respectively:
- QoS. Each QoS is represented by an architectural model (considered as an architec-
tural pattern, which can be re-used in other Grid-based application architectures). This
QoS representation is then incorporated into the current Grid-based application archi-
tecture through a set of refinement actions.
- Target Grid platform. Each Grid platform is represented by another architectural pat-
tern. The Grid-based application abstract architecture is adapted to the platform repre-
sentation through a set of refinement actions too.
To address the specificities of Grids, the ARL expressiveness has to be extended: the
gMDE approach features a Domain Specific Language (DSL) allowing the description
of proper Grid services and their associated constraints. This language is based on a
Grid SOA paradigm promoting simplicity and facilitating the model comprehension,
architectures being naturally expressed in terms of services and their properties.

4. gMDE Architectural Models Transformation Principles
Using gMDE, an architect formalizes on one hand the architecture of the grid-based
application (model A) and on another hand, a QoS attribute (model B). The first model
is expressed by using our DSL built on top of ARL.
To engage in the weaving process, the constraint definition model (model B) is trans-
formed into refinement actions, as illustrated in the left part of Figure 2. During the
weaving process, the Grid-based application architectural model (model A) is trans-
lated in ARL and the model B is interpreted and decomposed into a series of refine-
ment actions in ARL too. The refinement actions are applied one by one on the model
A until completion, resulting in a model C satisfying the specified QoS (right part of
Figure 2).

PKI is qualityOfServiceProperty {
 on FRS:architecture actions {
 include Encryptor is connector {
 … component architectural
description …}
 include Decryptor is connector {
 … component architectural
description …}
 on Client :architecturalElement
actions{
 separate
Client::ComsP0::data_received from
 Server::ComsP0::data_sent

…

Model A Model B

Model C

Figure 2. gMDE architectural models transformation

5. Conclusion
The gMDE approach and environment are currently in use to evaluate potential advan-
tages in the development process of various Grid applications. There are clearly identi-
fied challenges in the development of systems such as MammoGrid [8], which can be
addressed by using gMDE. From these case studies, preliminary conclusions are en-
couraging and highlight the approach relevance.

References
[1] I. Foster, C. Kesselman, S. Tuecke., The Anatomy of the Grid – Enabling Scalable Virtual
Organisations, International Journal of Supercomputer Applications, 2001.
[2] D. C. Schmidt, "Guest Editor's Introduction: Model-Driven Engineering," Computer ,vol. 39,
no. 2, pp. 25-31, February, 2006.
[3] Archware, The EU funded ArchWare IST 2001-32360 – Architecting Evolvable Software -
project : http://www.arch-ware.org.
[4] Manset D., Verjus H., McClatchey R., Oquendo F., « A Formal Architecture-Centric Model-
Driven Approach For The Automatic Generation Of Grid Applications », Actes de 8th Interna-
tional Conference on Enterprise Information Systems ICEIS’06, Paphos, Chyprus, 2006.
[5] F. Oquendo, “π-ARL: an Architecture Refinement Language for Formally Modelling the
Stepwise Refinement of Software Architectures”, ACM Press, ACM SIGSOFT Software Engi-
neering Notes archive Volume 29, Issue 5, September 2004.
[6] R. Milner, "Communicating and Mobile Systems: the pi-calculus", ISBN 052164320, Cam-
bridge University Press, 1999
[7] D. Kozen, "Results on the Propositional Mu-Calculus", Theoretical Computer Science
27:333-354, 1983.
[8] S.R Amendolia et al., “Deployment of a Grid-based Medical Imaging Application”, Proceed-
ings of the 2005 HealthGrid Conference. UK, 2005.

