An Ontology-based Approach for Modelling
Architectural Styles

Claus Pahl! and Simon Giesecke? and Wilhelm Hasselbring?

! Dublin City University, School of Computing, Dublin 9, Ireland
cpahl@computing.dcu.ie
2 University of Oldenburg, Software Engineering Group, D-26111 Oldenburg,
Germany
[giesecke|hasselbring]@informatik.uni-oldenburg.de

Abstract. The conceptual modelling of software architectures is of cen-
tral importance for the quality of a software system. A rich modelling
language is required to integrate the different aspects of architecture
modelling, such as architectural styles, structural and behavioural mod-
elling, into a coherent framework. We propose an ontological approach for
architectural style modelling based on description logic as an abstract,
meta-level modelling instrument. Architectural styles are often neglected
in software architectures. We introduce a framework for style definition
and style combination. The link between quality requirements and con-
ceptual modelling of architectural styles is investigated. The application
of the ontological framework in the form of an integration into exist-
ing architectural description notations such as ACME and UML-based
approaches, and also service ontologies is illustrated.

Keywords: Software architecture modelling, architecture ontology, ar-
chitectural style, description logics, quality-driven development.

1 Introduction

Architecture descriptions are used as conceptual models in the software devel-
opment process, capturing central structural and behavioural properties of a
system at design stage [1]. The architecture of a software system is a crucial
factor for the quality of a system implementation. The architecture influences
a broad variety of properties such as the maintainability, dependability or the
performance of a system [2]. While architecture description languages (ADLs)
exist [3], these are not always suitable to support rich conceptual modelling of
architectures [12]. Only a few, such as ACME [2], support the abstraction of
architectures into styles and patterns. If formally defined, these can be used to
reason about architectures and their properties [7].

We present an architectural style ontology to address this problem, which
serves as a modelling basis. Beyond achievements in ACME, we aim to address

— arich and easily extensible semantic style modelling language,
— operators to combine, compare, and derive architectural styles,

— an independent style language that can be applied to extend existing ADLs
with style support.

For all three cases, an ontology-based approach to represent architectural knowl-
edge — here in terms of a description logic, which is an underlying logic of on-
tology languages — is the ideal formal framework [14]. Our architectural style
ontology focuses primarily on static, structural aspects of components and con-
nectors. The terminological level of the ontology provides vocabulary and a type
language for architectural styles. Instances of this type language are concrete ar-
chitecture specifications. The structural modelling of architectures is currently
adequately supported [5,4,3,1,2] and shall therefore not be addressed in this
ontological framework.

The determination of an architectural style, based on a given set of quality
requirements, should ideally be the first step in software design [11]. We use a
description logic to define an ontology for the description and development of
software architectures based on architectural styles that consists of

— an ontology to define architectural styles through a type constraint language,
— an operator calculus to relate and combine architectural styles.

Our aim is to present a conceptual, ontology-based modelling meta-level frame-
work for software architectures, that allows the integration of style aspects into
existing architectural description languages (ADLs) without an explicit notion
of architectural styles.

We introduce the necessary ontology and description logic foundations in
Section 2. We then present an ontology-based modelling approach for architec-
tural styles in Section 3. Relating these styles is the focus of Section 4. We
discuss possible extensions to deal with composition in Section 5 and relate the
modelling approach to quality-driven development in Section 6. The application
of the architectural style language is illustrated in Section 7, before discussing
related work and ending with some conclusions.

2 Ontologies and Description Logic

Before presenting the style ontology, we introduce the core elements of the de-
scription logic language ALC, which is an extension of the basic attributive
language AL [14]. ALC provides a set of combinators and logical operators that
suffices for the style ontology. Ontologies formalise knowledge about a domain
(intensional knowledge) and its instances (extensional knowledge). A description
logic, such as ALC, consists of three types of basic notational elements.

— Concepts are the central entities. Concepts are classes of objects with the
same properties. Concepts represent sets of objects.

— Roles are relations between concepts. Roles allow us to define a concept in
terms of other concepts.

— Individuals are named objects.

Individuals can be thought of as constants, concepts as unary predicates, and
roles as binary predicates. We can define our language through Tarski-style model
semantics based on an interpretation I that maps concepts and roles to corre-
sponding sets and relations, and individuals to set elements [16]. Properties are
specified as concept descriptions:

— Basic concept descriptions are formed according to the following rules: A is
an atomic concept, and if C' and D are concepts, then so are =C' (negation),
C M D (conjunction), C' U D (disjunction), and C' — D (implication).

— Value restriction and existential quantification, based on roles, are concept
descriptions that extend the set of basic concept descriptions. A wvalue re-
striction VR.C restricts the value of role R to elements that satisfy concept
C. An existential quantification 3R.C requires the existence of a role value.

— Quantified roles can be composed, e.g. VR;.VR,.C is a concept description
since VR5.C' is one.

These combinators can be defined using their classical set-theoretic interpreta-
tions. Given a universe of values S of values, we define the model-based semantics
of concept descriptions as follows!:

T =S
17 =0
-A) =8\A!

(
(cnD)Y =cinD!

(VR.C)! ={aeS|VbeS.(a,b)e Rl —beCl}
(3R.C)! ={aeS|3beS.(a,b)c R AbeC!}

An individual = defined by C(z) is interpreted by 2! € S with =/ € C!. Struc-
tural subsumption is a relationship defined by subset inclusions for concepts and
roles.

— A subsumption C; C Cy between two concepts C7 and C is defined through
set inclusion for the interpretations CY C C4.
— A subsumption Ry C Ry between two roles R and Ry holds, if R C RL.

Structural subsumption (subclass) is weaker than logical subsumption (implica-
tion), see [14]. Subsumption can be further characterised by axioms such as the
following for concepts Cy and Cy: C; M Cy C Cy or Cy — (7 implies Cy C Cf.
C1 = Cs5 represents equality.

3 Modelling Architectural Styles

3.1 Basic Architectural Style Ontology

The ALC language shall now be used to define an architectural style ontology,
providing a type and constraint language. The central concepts in this ontol-
ogy are configuration, component, connector, role, and port types — all of which

! Combinators M and — can be defined based on U and — as usual.

are derived from a general concept called an architectural type that captures
all architectural notions. These are the elementary architectural types. Compo-
nents and connectors are at the core of style definitions. Components encapsulate
computation and connectors represent communication between the components.
Components can communicate through ports. Connectors connect to other com-
ponents through connectors via their ports, where each port plays a specific role
in the context of a connector. Often, a provided and a required port interface is
distinguished to add a direction to connectors. Configurations are compositions
of components and connectors with their ports and roles.

This vocabulary consisting of five elements needs to be constrained in the
ontology in order to ensure the desired semantics:

ArchType C Component LI Connector Ll Role LI Port U Configuration
and

Configuration = IhasPart.(Component U Connector U Role Ll Port)

Component = ArchType N JhasInterface. Port

Connector = ArchType N dhasEndpoint.Role

The roles hasPart, hasEndpoint and hasInterface are part of the basic vocab-
ulary. This vocabulary of types can be extended to add further elements using
the same mechanisms based on subsumption and concept descriptions.

3.2 Defining Architectural Styles

Defining architectural styles is actually done by extending the basic vocabulary of
elementary architectural types. The subsumption relationship serves to introduce
specific types that form an architectural style.

The Pipe-and-Filter Architectural Style. The specification of architectural
styles shall be illustrated using the pipe-and-filter style. We start with an ex-
tension of the hierarchy of elementary architectural types in order to introduce
style-specific components and ports:

PipeFilterComponent T Component
PipeF'ilter Port C Port

These new elements shall be further detailed and restricted to express their con-
nector semantics. Three types of pipe-filter components, DataSource, DataSink
and Filter, shall be distinguished. Their respective connectivity through input
and output ports is defined as follows:

DataSource = <1 hasPort M 3hasPort.Output
DataSink = < 1 hasPort M 3hasPort.Input
Filter = =2 hasPort N 3hasPort.Input M JhasPort.Output

DataSource, DataSink, and Filter are defined as components of a pipe-filter ar-
chitectural style. Each of these components is characterised through the number

and types of component ports using so-called predicate restrictions on a numer-
ical domain (< n and = n are used to express hasPort.(n|n < 1) for instance)
and the usual concept descriptions. In addition to these more structural con-
ditions that define the connections between the component types, a number of
classification constraints shall be formulated that further refine the initial enu-
meration of pipe-filter components by describing how subtype classification is
applied.

— Disjointness requires the individual components to be truly different:
DataSouce M DataSink M Filter = L

— Completeness requires pipe-filter components to be made up of only the three
specified types:

PipeFilterComponent = DataSource U DataSink U Filter

The Hub-and-Spoke Architectural Style. In addition to the well-known
pipe-and-filter style [7, 2], we introduce another architectural style, the hub-and-
spoke style. This style abstracts a system that manages a composition from a
single location, the hub, which is normally the participant initiating the compo-
sition. The composition controller (the hub) is usually remotely accessed by the
participants (the spokes). This is the most popular and usually default distribu-
tion configuration for service compositions. We would specify:

Hub C Component and Spoke C Component
with suitable completeness and disjointness constraints.
Hub = dhasPort.Input and Spoke = JhasPort.Output

explains that hubs receive incoming requests from spokes. Further constraints
would limit the number of hubs to one, whereas spokes can be instantiated in
any number.

3.3 Architectural Styles and Architecture Modelling

So far, we have addressed specifications of architectural properties at the archi-
tectural type level. These specifications are constraints that apply to concrete
architecture descriptions formulated using the defined architectural types. The
question is how these type-level specifications are applied to act as architec-
tural styles. An instantiation of these type-level properties, i.e. an architecture,
could be described by instantiating the elementary types only, fully ignoring any
style-specific constraints. Thus, a specification of architectural properties is not
what we would commonly see as an architectural style. The configuration type
matches what an architectural style needs to express. It defines a specific vo-
cabulary of components and other elements and their constraints. Therefore, we

define an architectural style to be a subtype (subsumption) of the configuration
type.

PipeFilterStyle C Configuration
PipeFilterStyle = 3hasPart.(PipeFilterComponent U PipeFilter Connector
U Role U Port)

is, together with related concept descriptions, a style definition. What clearly
identifies a style is the configuration subtype that acts as a root of the style
definition. An architecture description conforming to an architectural style is a
subtype of the defined style configuration, e.g. PipeFilterStyle. All elements
linked to the style (or its subtypes) directly or transitively through hasPart and
the other predefined roles can be used to describe an architecture.

A distinguishing property of our approach is that the basic architecture vo-
cabulary with notions like component or connector is defined with the same
mechanism at the same layer as the architectural styles. The basic architectural
style ontology itself is consequently an architectural style, albeit an abstract and
unconstraining one — with the trivial equality as the required subsumption.

The ontology and the styles defined based on the ontology aim to provide a
type language for architecture definitions. Components in an architecture defi-
nition are instances of the elements of an architectural style. In terms of descrip-
tion logics, the architecture elements are instances of the concepts that define
an architectural style. The style constrains the use of the architecture elements.
This architecture layer — the instances layer in terms of our ontology — shall not
be addressed in terms of our framework. Instead we will demonstrate how this
framework is independent of specific ADLs and can be applied to them as a style
sublanguage in Section 7. Our aim is not to define yet another ADL.

4 Relating Architectural Styles

Each architectural style is defined by a separate specification as an extension of
the basic ontology of elementary architecture elements. In order to reuse archi-
tectural styles as specification artefacts, these styles are often related to each
other, e.g. to be compared to each other or to be derived from another [21]. Dif-
ferent styles can be related based on ontology relationships. We give an overview
of the central operators restriction, union, intersection and refinement and define
the semantics of this operator calculus. Instead of general ontology mappings,
we introduce a notion of style specification and define style comparison and
development operators on it.

4.1 Style Syntax and Semantics

Before defining the operators, the notions of architecture specification and styles
and their semantics need to be made more precise. We assume a style to be a
specification Style = (X, @) based on the elementary type ontology with

— a signature X' = (C, R) consisting of concepts C' and roles R,
— concept descriptions ¢ € @ based on .

Style is interpreted by a set of models M. The model notion [16] refers to
algebraic structures that satisfy all concept descriptions ¢ in @. The set M
contains algebraic structures m € M with

— sets of objects C' for each concept C' and
— relations Rf C Cf x Cf for all roles R : C; — C}

such that m satisfies the concept description. This satisfaction relation is as
usual defined inductively over the connectors of the description logic ALC.

The combination of two styles should be conflict-free, i.e. semantically, no
contradictions should occur. A consistency condition can be verified by ensuring
that the set-theoretic interpretations of two styles S; and S5 are not disjoint,
SInSE 0, ie. their combination is satisfiable and no contradictions occur.

Note, that this calculus of operators is not strictly an algebra in terms of
styles — only in terms of specifications. A resulting specifications can be defined
as a style by identifying a new root configuration.

4.2 Restriction

While often architectural styles are used as-is in combinations and relationships,
it is sometimes desirable to focus on specific parts, before for instance refining
an architectural style. Restriction is an operator that allows architectural style
combinations to be customised and undesired elements (and their properties) to
be removed. A restriction, i.e. a projection or view, can be expressed using the
restriction operator (X, ®) s for a specification, defined by

(2,®)5 = (ZNE {ped|ris(d) €rls(XNX") Acpts(d) € epts(X N X")})

with the usual definition of role and concept projections ris(X) = R and cpts(X) =
C on a signature X' = (C, R). Restriction preserves consistency as constraints
are, if necessary, removed.

4.3 Intersection and Union
Two architectural styles S; = (X, @1) and Sy = (X5, P5) shall be assumed.
— The intersection of S; and Sz, expressed by S; N .Ss, is defined by

£

S1 % Sy = <21 N s, (@1 U@Q)‘21022>

Intersection is semantically defined based on an intersection of style inter-
pretations, achieved through projection onto common signature elements.
— The union of S; and S,, expressed by S U So, is defined by

S48y E (XU, $ U

Union is semantically defined based on a union of style interpretations.

In the case of fully different architectural styles, their intersection results in the
elementary architecture types and their properties. Both operations can result
in consistency conflicts.

4.4 Refinement

Consistency is a generic requirement that should apply to all combinations of ar-
chitecture ontologies. A typical situation is the derivation of a new architectural
styles from an existing one [9]. The refinement operator that we are going to in-
troduce is a consistent derivation. Refinement can be linked to the subsumption
relation and semantically constrained by an inclusion of interpretations, i.e. the
models that interpret a style. Refinement carries the connotation of preserving
existing properties, for instance the satisfiability of the original style specifica-
tion. In this terminology, the pipe-and-filter style is actually a refinement of
the basic architectural type vocabulary. As the original types are not further
constrained, the extension is consistent.

An explicit consistency-preserving refinement operator shall be introduced
to provide a constructive subsumption variant that allows

— new subconcepts and new subrelationships to be added,
— new constraints to be added if these apply consistently to the new elements.

Assume a style S = (X, ®). For any specification (X, &) with XN X" =), we
define a refinement of S by (X, ') through

So (X, o) = (N+5,+P)

The precondition X’ N X" = @) implies # M P’ = L, i.e. consistency is preserved.
In this situation, existing properties of S = (X, ®#) would be inherited by S @
(X', @'). Existing relationships can in principle be refined as long as consistency
is maintained — which might require manual proof in specific situations that go
beyond the operator-based application.

4.5 Architectural Style Development

The main aim of these operators is to support the development of architectural
styles. We imagine a catalogue of styles that is used by the software architect to
describe architectures.

— The operator calculus allows individual styles from the catalogue to be com-
pared. For instance, two styles can be united to test if the set of concepts
they describe overlap. The consistency condition is used for this test.

— An existing style can be adapted. Refinement allows to add further elements
and constraints, making the style more specific. Styles can also be made
more general by removing constructs and properties through restriction.

This catalogue could be implemented as a repository.

The hub-and-spoke style shall be extended using the refinement operator.
The idea is to add a broker component, which spokes would initially contact
and which would assign a hub to them.

Brokered HubSpokeStyle = HubSpokeStyle ® (¥,)
where the signature X' is defined by

({ BrokerComponent, BrokerSpokeConnector, Broker HubConnector,
HubRegistrationRole, SpokeAllocationRole } , { })

and the properties @ are defined by

BrokerComponent = HubSpokeComponent M JhasInterface.Port
BrokerSpokeConnector = HubSpokeConnector
JhasEndpoint.SpokeAllocationRole
Broker HubConnector = HubSpokeConnector T
JhasEndpoint. HubRegistration Role

We would automatically get BrokeredHubSpokeStyle T HubSpokeStyle as a
consequence of the application of the refinement.

5 Composite Elements in Architectural Styles

An explicit support for composition is an important element of conceptual mod-
elling languages. Composition is also central for software architectures. As an
extension, we introduce two types of composite elements for architectural style
specifications.

5.1 Components

Component hierarchies shall consist of unordered subcomponents, expressed us-
ing a component composition operator “=", which adds another dimension to
the subsumption-based subtype relationship. An example is Configuration =
Port, meaning that a Configuration consists of Ports as parts. This is actually
a reformulation of the previously used hasPart relationship. In order to provide
this with an adequate semantics, interpretations of configurations would have to
be seen as tuple-structured elements.

5.2 Connectors

Connectors can be process assemblies that consist of ordered process elements,
expressed using a set of process composition operators sequence “;”, iteration “!”,
and choice “4”. An example is C' = D; E, meaning that connector C is actually
a process sequence of connectors D and E. This sequence can be semantically
defined by requiring D.in = Cl.in, E.in = E.out, and C.out = E.out in order to

express sequencing dependencies.

5.3 Discussion

Note, that these operators are specific to the respective architecture element.
While the structural composition is often sufficient, full process specifications
with interaction and data flow elements, however, cannot be expressed in the
notational format introduced here. Ontological support for, for instance, the
process combinators exists in description logics [14]. While this aspect of com-
position could not have been investigated here in detail, we felt it important to
briefly discuss the benefits and also the potential of ontologies and description
logics to provide adequate language support.

6 Quality-Driven Architecture

The use of styles in architecture design implies certain properties of software
systems, as these styles are abstractions of successfully implemented systems
that are usually easy to understand, to manage, or to maintain [11,12]. While
of course functional properties of components are vital, non-functional quality
aspects ranging from availability, performance, and maintainability guarantees to
costs are equally important and need to be captured to clearly state the quality-
of-service (QoS) requirements. The reliability of a system, the availability of
services, and the individual component and overall system performance are often
crucial. Links exist between architecture models, that based on the component
and connector view allocate function to structure, and QoS properties of these
systems [8,10]. A mere statement of required QoS properties is therefore often
not sufficient to actually guarantee these properties. We look at architectural
styles to illustrate this point.

6.1 Style-based Quality Description

A catalogue of architectural styles or patterns [15], consisting of styles such as
pipe-and-filter and hub-and-spoke, may be utilised by software architects to build
architectures that exhibit some desired quality properties. Each of the styles
in the catalogue is associated with certain QoS characteristics, that would be
exhibited during the deployment and execution of system compositions. The ISO
9126 standard for software product quality to support the evaluation of software
can serve as a starting point here that defines quality attributes and metrics [19,
20].

We illustrate this using an architectural style. Some of the advantages of the
hub-and-spoke architectural style in terms of QoS aspects are:

— Composition is easily maintainable, as composition logic is all contained at
a single participant, the central hub.

— Low deployment overhead as only the hub manages the composition.

— Composition can include externally controlled participants. Web service tech-
nologies, for instance, would enable the reuse of existing service components.

10

The main disadvantages of this architectural style are:

— A single point of failure at the hub provides poor reliability and availability.

— A communication bottleneck at the hub results in restricted scalability. SOAP
messages have considerable overhead for message deserialisation and seriali-
sation.

— The high number of messages between hub and spokes is sub-optimal.

The style ontology can be extended by a quality ontology to capture a vocabulary
of quality attributes and corresponding metrics using quality-specific properties.

HubSpokeStyle = FhasAdvQual.(Maintainable U LowOwverhead U Reusable) M
JhasDisadvQual.(—Reliable LU ~Scalable Ll = Performant)

Some of these quality concepts are based ISO 9126. Further formalised descrip-
tions such as the association of metrics, for instance in the format Performant =
JhasMetric. Responselime, are possible.

6.2 Quality Evaluation

Quality-driven development requires quality attributes to be evaluated and con-
firmed. The qualities of newly derived styles cannot always be taken for granted.
Only through empirical evaluations can these expected qualities be confirmed.

A Goal-Question-Metric (GQM) approach to quality goal evaluation [18], a
method which allows metric to be derived from abstract quality criteria, can sup-
port this quality evaluation endeavour. Implemented systems can be evaluated
using the metrics derived from the quality goals via GQM.

7 Integration with Architecture Description Languages

Our aim is not to define yet another ADL. Our aim is to define a versatile
architectural style language that can be combined with existing ADLs for a
variety of reasons:

— to semantically define an existing style language and to allow reasoning
within this semantic framework,

— to provide an ADL-independent style language that can be added to ADLs
that do not have an explicit notion of styles,

— to provide a generic terminological framework into which quality aspects can
be integrated.

We will look at ACME to illustrate the first point, at UML to illustrate the
second point, and at service ontologies like WSMO to illustrate the third point.
The architectural style ontology could be used in the first case to formally define
the ACME style language. In the second case, the style ontology could be mapped
to MOF, giving it an abstract syntactical definition through MOF. Equally,

11

Architectural Style

7'

Ontology
development
-~
generatel
- extends;
semantics UML extends Archnecture
and Metamodel (¢ Profile
reasoning
ACME UML/OCL WSMO
-PI:_s 5 c ¢ interface
Y defines
architectures constraints capabilities
processes

Fig. 1. Application of the Architectural Style Ontology to ACME, UML and WSMO.

an integration with a service ontology such as WSMO or OWL-S is another
application of our approach.

We will not fully formalise these mappings for the three applications here —
our aim is solely the motivation of these possibilities and the benefits from them.
The focus of this paper is only on the definition of the style ontology.

7.1 ACME

ACME is an ADL that supports the component and connector view on archi-
tectures [2]. For that purpose, a basic set of architecture elements is introduced.
These include the same terms that we have defined. ACME provides specific sup-
port to define architectural styles. The basic architecture elements are supported
by the corresponding types. A style, called a family in ACME, is then a collection
of constrained type definitions. Invariants can be expressed using a constraint
language based on properties. Properties in ACME are name-value pairs. ACME
does not provide native support for the interpretation these properties.

Our architectural style ontology can provide a standard semantics for prop-
erties. Due to the syntactic equality of the elementary types, a mapping from
ACME into our ontological framework can easily be defined. The intended se-
mantics of ACME types matches the formal semantics we have introduced here.
This has the following benefits for ACME:

— The ACME type language is formally defined through the architectural style
ontology.

— A framework for the analysis and reasoning about styles and their properties
is introduced.

— The operator calculus enriches the mechanisms to develop architectural styles
effectively and consistently.

12

7.2 UML and OCL

UML is often used to describe software architectures [22]. Class diagrams define
components and connections between components through classes and associa-
tions. Additional constraints can be added using the Object Constraint Language
OCL [23].

In terms of UML, architectural styles are MOF meta-level models, i.e. ar-
chitectural style definitions correspond to the M2 level. Description logic can be
translated to MOF easily, thanks to the Ontology Defintion Metamodel (ODM)
[29], which defines a number of MOF-based metamodels including description
logics and UML and a range to central transformations between them. This
reference framework can be used to translate a given architectural style into a
MOF-compliant metamodel. The difficulty here is only that this MOF meta-
model is not UML-metamodel compliant. This means that compliance can only
be achieved by adapting the standard transformation to define a suitable UML
profile. The problem is similar to the need to clearly identify a style and to
guarantee its correct application. The profile needs to provide UML-compliant
model elements that must only be used in a style-conformant way.

7.3 WSMO

WSMO [24] is, like OWL-S [24], an ontology-based approach to describing ser-
vices. In the traditional understanding, these two are not ADL [3]. Their aim
is to provide a vocabulary that allows the description on functional and non-
functional attributes of services and their operations in terms of pre- and post-
conditions or quality attributes. Nonetheless, looking at service ontologies helps
us to understand how quality attributes, possibly ISO 9126-compliant, can be
integrated into an architectural style-driven ADL. This is also one of the rea-
sons for us to use an ontological approach in the first place. Services and their
operations are the concepts in WSMO (or OWL-S). Functionality information
and quality attributes in WSMO are categorised into interface (syntax) and ca-
pability (semantics, quality) attributes and are described in terms of properties
in the ontology.

8 Related Work

Formalising architectural styles is the first step of understanding their properties
and the resulting impact on architectures and software systems. A seminal paper
in this context is [7]. A formal framework based on the model-theoretic specifica-
tion language Z is given. Abowd et al. introduce the detailed formal specification
of architectural styles, e.g. for the pipe-and-filter style. This work has started the
integration of semantics into architectural descriptions. The description logic we
have used here provides the same expressive power to formulate structural archi-
tectural properties (we discuss the behavioural properties addressed by Abowd
et al. below). The reason for choosing an ontological approach in our case are

13

pragmatic. An ontological framework for this approach is an ideal choice since
extension through subsumption is a natural choice to develop a catalogue of
styles. The existence of meta-level frameworks such as the Ontology Definition
Metamodel ODM with its predefined transformations makes ontologies and their
dynamic logic foundations suitable as an interoperable notation that can be in-
tegrated with existing ADLs.

An ontology-based approach is also taken by work addressing service and
process ontologies. OWL-S [24] and WSMO [24] are examples for service on-
tologies, which we have already discussed. WSPO [27,26] and SWSF [28] are
ontological frameworks with a stronger focus on service processes. These are
of interest from an architectural perspective as they address service orchestra-
tion and choreography as two forms of architectural configuration in the form
of component interaction. While we have not addressed this aspect and have
rather limited our discussion to more structural properties, an integration of an
architectural style ontology with these service ontologies is promising [17, 14].

Around the notion of an architectural style, similar concepts have emerged
[6]. In [13], a notion of an architectural scenario is used to aid analyses in the
design of architectures. Direct and indirect scenarios are used to view software
systems as information processing software artefacts or to view these artefacts
as subjects in a change and evolution process, respectively. The dynamic nature
of software architectures is emphasised in contrast to the more static view of
architectural styles and their application. A similar argumentation is followed
by [30]. Associating a system to a single architectural style is often not sufficient.
The notion of a mode, similar to a scenario, is introduced. Modes can be changed
through structural and evolution constraints, which aims to support the self-
organisation of service-based systems.

9 Conclusions

In addition to structural and behavioural properties of software architectures,
meta-level constructs such as architectural styles, scenarios, or modes have re-
cently received much interest in the software architecture community. Architec-
tural styles have emerged as architecture abstractions that strongly influence the
quality of architectures and their implementations. Our discussion of quality-of-
service attributes reflects this observation. Architectural styles are often also
linked to platforms; middleware platforms often support only specific styles. In
this context, architectural styles help to determine essential aspects of software
systems.

Using an ontological, description-logic-based setting for software architec-
ture has a number of benefits, such as a concise and precise notation with
formal semantics [7], an extensible type language based on subsumption and
constraints [14], and a style combination algebra based on ontology technolo-
gies. The tractability of reasoning is a central issue for description logics. The
logic ALC that we have used for this architectural style ontology is decidable,
i.e. provides the basis for termination and reliable tool support.

14

Overall, ontology mechanisms provide an ideal conceptual modelling support,
using a classical ontology approach. The notation is adequate, as the examples
have demonstrated, to model architectural styles. While the notation is suited
to formulate and relate architectural styles focusing on structural aspects, the
introduction of composite element has demonstrated the lack of process mod-
elling capabilities in the notation introduced here. Concepts are not meant to
model the details of structured behaviour; using concepts to express structured
processes is therefore not an adequate solution. While an integration with ser-
vice or process ontologies is desirable, the seamless integration requires further
investigations.

References

1. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice (2nd
Edition). SEI Series in Software Engineering. Addison-Wesley, 2003.

2. David Garlan and Bradley Schmerl. Architecture-driven modelling and analysis.
In Tony Cant, editor, Proceedings of the 11th Australian Workshop on Safety Re-
lated Programmable Systems (SCS’06), volume 69 of Conferences in Research and
Practice in Information Technology, 2006.

3. N. Medvidovic and R.N. Taylor. A Classification and Comparison framework for
Software Architecture Description Languages. In Proceedings European Conference
on Software Engineering / International Symposium on Foundations of Software
Engineering ESEC/FSE’97, pages 60-76. Springer-Verlag, 1997.

4. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213-249, 1997.

5. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software
Architectures. In W. Schéfer and P. Botella, editors, Proc. 5th European Software
Engineering Conf. (ESEC 95), volume 989, pages 137-153. Springer-Verlag, Berlin,
Sitges, Spain, 1995.

6. C. E. Cuesta, M. del Pilar Romay, P. de la Fuente, and Manuel Barrio-Solorzano.
Architectural Aspects of Architectural Aspects. In R. Morrison, B.C. Warboys,
and F. Oquendo, editors, 2nd Furopean Workshop on Software Architecture EWSA
2005. Springer LNCS 3047, 2005.

7. Gregory Abowd, Robert Allen, and David Garlan. Formalizing style to understand
descriptions of software architecture. ACM Transactions on Software Engineering
and Methodology, 4(4):319-364, October 1995.

8. Bridget Spitznagel and David Garlan. Architecture-based performance analysis.
In Proceedings of the 1998 Conference on Software Engineering and Knowledge
Engineering (SEKE’98), June 1998.

9. L. Baresi, R. Heckel, S. Thone, and D. Varro. Style-based refinement of dynamic
software architectures. In Proc. 4th Working IEEE/IFIP Conference on Software
Architecture WICSA4, pages 155-164. IEEE, 2004.

10. Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. Software perfor-
mance model-driven architecture. In SAC ’06: Proceedings of the 2006 ACM sym-
posium on Applied computing, pages 1218-1223. ACM Press, 2006.

11. Simon Giesecke. A Method for Integrating Enterprise Information Systems based
on Middleware Styles. In International Conference on FEnterprise Information
Systems (ICEIS’06), Doctoral Symposium, pages 24-37. INSTICC Press, 2006.

15

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Simon Giesecke, Johannes Bornhold, and Wilhelm Hasselbring. Middleware-
induced Architectural Style Modelling for Architecture Exploration. In Proc.
Working IEEE/IFIP Conference on Software Architecture, IEEE Computer So-
ciety Press. 2007.

R. Kazman, S.J. Carriere, and S.G. Woods. Toward a Discipline of Scenario-based
Architectural Evolution. Annals of Software Engineering, 9(1-4):5-33, 2000.

F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.

R. Barrett, L. M. Patcas, J. Murphy, and C. Pahl. Model Driven Distribution Pat-
tern Design for Dynamic Web Service Compositions. In International Conference
on Web Engineering ICWE’06. Palo Alto, US. ACM Press, 2006.

D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Vol. B, pages 789-840. Elsevier, 1990.

K. Schild. A Correspondence Theory for Terminological Logics: Preliminary Re-
port. In Proc. 12th Int. Joint Conference on Artificial Intelligence, Sydney, Aus-
tralia. 1991.

V. Basili, G. Caldiera, and D. Rombach. The Goal/Question/Metric approach. In
Encyclopedia of Software Engineering, Volume I, pages 528-532. Wiley, 1994.
Ho-Won Jung, Seung-Gweon Kim, and Chang-Shin Chung. Measuring software
product quality: A survey of ISO/IEC 9126. IEEE Software, 21(5):88-92, 2004.
ISO/IEC. Software engineering — Product quality — Part 1: Quality model, June
2001. Published standard.

C. Canal, E. Pimentel, and J.M. Troya. Compatibility and inheritance in software
architectures. Science of Computer Programming, 41:105-138, 2001.

F. Bachmann, L. Bass, P. Clements, D. Garlan, J. Ivers, J. Little, R. Nord and
J. Stafford. Documenting Software Architecture: Documenting Behavior. Technical
Report CMU/SEI-2002-TN-001. SEI, Carnegie Mellon University. 2002.

J.B. Warmer and A.G. Kleppe. The Object Constraint Language — Precise Modeling
With UML. Addison-Wesley, 2003. (2nd Edition).

R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel. Web Service
Modeling Ontology. Applied Ontology, 1(1):77-106, 2005.

DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279-291. Springer-Verlag, 2002.

C. Pahl. An Ontology for Software Component Matching. International Journal on
Software Tools for Technology Transfer (STTT), Special Edition on Component-
based Systems Engineering, 7, 2007. (in press).

C. Pahl and M. Casey. Ontology Support for Web Service Processes. In Proc. Eu-
ropean Software Engineering Conference and Foundations of Software Engineering
ESEC/FSE’03. ACM Press, 2003.

Semantic Web Services Language (SWSL) Committee. Semantic Web Services
Framework (SWSF). http://www.daml.org/services/swsf/1.0/, 2006.

Object Management Group. Ontology Definition Metamodel - Submission (OMG
Document: ad/2006-05-01). OMG, 2006.

D. Hirsch, J. Kramer, J. Magee, S. Uchitel. Modes for Software Architectures.
Third European Workshop on Software Architecture EWSA 2006, Spinger-Verlag,
LNCS Series, 2006.

16

