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Abstract

Gene transcription models must take account of intrinsic stochasticity. The Chemi-
cal Master Equation framework is based on modelling assumptions that are highly
appropriate for this context, and the Stochastic Simulation Algorithm (also known
as Gillespie’s algorithm) allows for practical simulations to be performed. However,
for large networks and/or fast reactions, such computations can be prohibitatively
expensive. The Chemical Langevin regime replaces the massive ordinary differential
equation system with a small stochastic differential equation system that is more
amenable to computation. Although the transition from Chemical Master Equation
to Chemical Langevin Equation can be justified rigorously in the large system size
limit, there is very little guidance available about how closely the two models match
for a fixed system. Here, we consider a transcription model from the recent literature
and show that it is possible to compare first and second moments in the two stochas-
tic settings. To analyse the Chemical Master Equation we use some recent work of
Gadgil, Lee and Othmer, and to analyse the Chemical Langevin Equation we use
Ito’s Lemma. We find that there is a perfect match—both modelling regimes give
the same means, variances and correlations for all components in the system. The
model that we analyse involves ‘unimolecular reactions’, and we finish with some
numerical simulations involving dimerization to show that the means and variances
in the two regimes can also be close when more general ‘bimolecular reactions’ are
involved.

Key words: chemical kinetics, gene regulation, Gillespie, multi-scale, moments,
noise, stochastic simulation, systems biology, transcription, translation.
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1 Background

Several experimental techniques are now available to measure gene expres-
sion, even at the single cell level [3,7,17]. In parallel, mathematical models
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and simulation algorithms have been developed to explain these observations
and make new predictions [1,8,10,24,29,28,27]. Key modeling and simulation
challenges in this area are that (a) some components may be present in rela-
tively small quantities, (b) there can be a wide range of natural time scales in
operation, and (c) on the level at which observations are made, the process is
inherently stochastic. A Markov process, or Chemical Master Equation (CME)
framework is highly appropriate in this context, and is now widely used. The
CME methodology and an accompanying simulation algorithm can be traced
back to the work of Gillespie in the chemical kinetics literature [12,13]. Recent
overviews can be found in [10,16,19] and we note that there are close connec-
tions to Petri nets, discrete event simulation and birth-and-death processes
[30].

Because the CME framework takes account of every reaction, for many real-
istic models it is too computationally expensive to be useful. The Chemical

Langevin Equation (CLE) provides an alternative model that retains some of
the main features of the CME whilst making simulations more feasible. The
CLE, which takes the form of an Ito stochastic differential equation (SDE),
can be derived from the CME via a series of reasonable modeling assumptions
[15,22], and under the extreme case where fluctuations in the CLE are ignored,
we recover the traditional deterministic Reaction Rate Equation (RRE), or law
of mass action. Many authors are now developing multi-scale simulation meth-
ods that automatically operate in the cheapest modeling regime that captures
the appropriate behaviour [6,9]. For this reason it is important to have an un-
derstanding of how the different modelling regimes compare. This motivates
the work here, where the means and variances of the CME and CLE are com-
pared for a recent gene transcription model. To analyse the CME we make use
of the general first-order reaction theory of Gadgil et al. [11] and to analyse
the CLE we perform what appears to be the first application of Ito’s lemma
in this context.

The article is organised as follows. In the next section we give a very simple
example that illustrates the main concepts involved in our work. Then in sec-
tion 3 we set up the general specification of the CME and CLE and introduce
Ito’s lemma. The gene regulation model is described in section 4 and moments
for the CME and CLE are derived analytically in sections 5 and 6 respectively.
A numerical experiment involving dimerization is given in section 7 to show
that similar behaviour can also arise when we leave the first-order realm.

2 Illustrative Example: Unimolecular Decay

To illustrate the ideas in this work, we begin with the simplest possible type
of reaction; unimolecular decay. We suppose that there is only one species, S,
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in our system, and the only event that can take place at any time is that one
molecule of S may decay. We could write the system symbolically as

S
c→ ∅. (1)

Here, c > 0 is a constant that relates to the propensity of the decay process.
We suppose that initially, at time t = 0, the number of molecules of S is
known to be N . The state of the system at time t is fully described by a
non-negative integer X(t), representing the number of molecules of S present.
So X(t) may take any of the values N, N − 1, N − 2, . . . , 1, 0. In the CME
setting we regard X(t) as a discrete-valued random variable at each point in
time, and work in terms of the probability pi(t) that X(t) = i, arriving at the
ordinary differential equation (ODE) system

d

dt
pN(t) =−cNpN (t), (2)

d

dt
pi(t) = c · (i + 1) · pi+1(t) − c · i · pi(t), for i = N − 1, N − 2, . . . , 0.(3)

The general ODE (3) has a natural interpretation. The rate of change of pi(t)
has a positive contribution c · (i + 1) · pi+1(t), which corresponds to the fact
that we arrive at state i via one decay from state i + 1. Conversely, there is
a negative contribution −c · i · pi(t) due to the fact that, when in state i, we
leave that state when a decay takes place.

The system (2)–(3) is readily solved to give

pi(t) =
N !

i!(N − i)!
e−cit

(

1 − e−ct
)N−i

, for i = 0, 1, 2, . . . , N. (4)

Using E[·] and Var[·] to denote the mean and variance, respectively, it follows
that

E [X(t)] = Ne−ct and Var [X(t)] = Ne−ct
(

1 − e−ct
)

. (5)

Details can be found, for example, in [26] by observing that this system corre-
sponds to a pure death process in the context of stochastic population mod-
elling.

In the CLE setting, we represent the amount of species S present at time t by
the real-valued stochastic process Y (t). In other words, at each time t, Y (t)
is a continuous-valued random variable. The CLE is then the Ito SDE [18,23]

dY (t) = −cY (t) dt −
√

cY (t) dW (t), Y (0) = N. (6)

Because the drift coefficient −cY (t) is linear, it follows immediately that
E [Y (t)] satisfies the ODE that arises when the noise is switched off, giving

E [Y (t)] = Ne−ct. (7)
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To find the second moment, we may apply Ito’s lemma, as described in sec-
tion 3.2, to get

d

dt
E

[

Y (t)2
]

= −2 c E

[

Y (t)2
]

+ c E [Y (t)] .

Using the expression (7), this solves to give E [Y (t)2] = Ne−ct +N(N−1)e−2ct,
so that

Var [Y (t)] = Ne−ct
(

1 − e−ct
)

. (8)

Comparing (7) and (8) with (5), we see that the models give precisely the
same expressions for the mean and variance of S. This happens despite the
fact that one uses the discrete, integer-valued state vector X(t) and the other
uses the real-valued Y (t).

For completeness, we mention that the RRE formulation for the system (1) is
the scalar ODE dz(t)/dt = −cz(t), where z(t) is a deterministic real-valued
quantity representing the amount of S present at time t. This is precisely the
ODE for the mean in the CLE, and hence z(t) = E[Y (t)] = Ne−ct.

In Figure 1 the ‘descending staircase’ formed by the circles indicates a path
generated from the CME, computed with Gillespie’s Stochastic Simulation

Algorithm (SSA) [12,13]. Here we fixed the rate constant at c = 1 and started
with N = 10 molecules. We see that the state decreases by one each time
there is a “reaction”. The jagged curve in a solid line-type shows a path from
the CLE, computed with the Euler–Maruyama method [18,23]. The dashed
curved shows the solution given by the RRE. We mention that in this special
case of pure decay, the state of the underlying physical system is inherently
non-increasing with time. All CME paths and the RRE solution reproduce
this monotonicity, but a CLE path clearly does not.

For Figure 2 we changed the initial condition to N = 100. In this case the
differences between the three modelling regimes are much less dramatic; com-
pared to Figure 1, we are starting closer to thermodynamic (large system size)
limit where fluctuations become insignificant [2,21].

Two features of the CLE (6) for this simple model are generic.

1 The diffusion coefficient is nonlinear.
2 The description of the problem involves a square root, and hence the prob-

lem is only well defined if the solution remains non-negative.

With regard to the second point, the particular CLE (6) is a special case of
a square root process. These SDEs are widely used as interest rate models in
mathematical finance, and it can be shown that the solution in (6) maintains
non-negativity with probability one [23]. However, we note that the issue of
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Fig. 1. For the pure decay process (1) with rate constant c = 1 and N = 10 molecules
initially: one path from the CME (circles); one path from the CLE (dashed); and
the solution of the RRE (dotted).

negative solutions seems to be open for general CLEs. In this work, we will
always assume that the CLE has a well-defined, unique solution.

The main result in this article is that the coincidence of CME and CLE mean
and variance in the simple model (1) carries through to a gene transcription
model. We note that Gillespie [14, Section 6.2.A] showed the equivalence of
first and second (but never third) moments between a birth-death Markov
process and the analogous continuous Markov process in the case of scalar
model (one species) with linear drift and quadratic diffusion. Our work extends
this to the case of a specific system of four species.

3 Stoichiometric Formalization

3.1 Chemical Master Equation

Suppose that there are N chemical species, S1, S2, . . . , SN , taking part in M
different chemical reactions. In the CME formulation, we have a state vector
X(t) ∈ R

N whose ith component, Xi(t), denotes the number of molecules of
Si present at time t. Hence, each Xi(t) is a non-negative integer. For each
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Fig. 2. As for Figure 1 but with N = 100 molecules initially.

1 ≤ j ≤ M we have a stoichiometric vector ν j ∈ R
N , and propensity function

aj (X(t)), such that the jth reaction takes place over the infinitesimal interval
[t, t+dt) with probability aj (X(t)) dt and causes the change X(t) 7→ X(t)+ν j

to the state vector.

Letting P (x, t) denote the probability that X(t) = x, the CME is the ODE
system

dP (x, t)

dt
=

M
∑

j=1

(aj(x − νj)P (x− νj, t) − aj(x)P (x, t)) . (9)

Generally, the CME cannot be solved analytically in any useful way, although,
as indicated in Figures 1 and 2, the SSA gives a way to compute realisations
of {t,X(t)} that respect the CME. However, in the case where all reactions
are unimolecular (or first-order), detailed analysis is possible, both for the first
and second moments [11] and the general distributions [20]. In this work we
will show that, at least for a specific gene regulation model, useful analytical
results can also be derived for the CLE formulation described in the next
subsection.
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3.2 Chemical Langevin Equation

The CLE uses a real-valued random variable Y(t) ∈ R
N to describe the state

of the system at time t. The jth component Yj(t) represents the amount of
species j. In moving from the CME to the CLE we (typically) make a dramatic
reduction in the number of components, but pay the price that each component
is a real-valued random variable, rather than a non-negative integer. The CLE
takes the form of an Ito SDE [18,23]

dY(t) =
M
∑

j=1

νj aj(Y(t)) dt +
M
∑

j=1

νj

√

aj(Y(t)) dWj(t), (10)

where the {Wj(t)}M
j=1 are independent Brownian motions.

As background for the SDE analysis in section 6, we now state the relevant
part of Ito’s lemma; see, for example, [23]. For the general Ito SDE system
with n components and d independent Brownian motions

dYi(t) = bi (Y(t)) dt +
d
∑

j=1

σij (Y(t)) dWj(t), 1 ≤ i ≤ n, (11)

we let

a (Y(t)) := σ (Y(t)) σ (Y(t))T ∈ R
n×n. (12)

Then for any function f : R
n → R that is twice continuously differentiable,

Ito’s lemma tells us that

d f (Y(t))=

(

n
∑

i=1

∂f (Y(t))

∂xi

bi (Y(t)) + 1
2

∑n
i=1

∑n
j=1

∂2f(Y(t))
∂xi∂xj

aij (Y(t))

)

dt

+ mart., (13)

where “mart.” denotes a martingale whose precise form is not relevant to our
work. We will use two particular cases of f . When f (Y) = Y 2

k , (13) becomes

d
(

Y 2
k

)

= (2 Yk bk (Y(t)) + akk (Y(t))) dt + mart. (14)

and when f (Y) = YkYl, for k 6= l, it becomes

d (YkYl) =
(

Ylbk (Y(t)) + Ykbl (Y(t)) + 1
2
akl (Y(t)) + 1

2
alk (Y(t))

)

dt + mart.

(15)
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4 Gene Regulation Model

We now consider a model of eukaryotic gene regulation, originally proposed
in [25]. This model incorporates two states of promoters: an inactive state,
D, not permissive of transcription, and an active state D? that is competent
for transcription. Transition between the two states of promoter is reversible
and the total number of promoters is conserved, i.e. D +D? = DT . Transcrip-
tion takes place from the active state D? with the linear rate kr, resulting in
production of messenger RNA (mRNA) molecules that decay with rate γr.
Proteins P are translated from mRNA molecules with linear rate kp and they
decay with rate γp.

This model of gene regulation could be described by the following reactions:

ka

D 
D? (16)

kd

kr

D? →M + D? (17)

γr

M →∅ (18)

kp

M →P + M (19)

γp

P →∅. (20)

A formal and complete specification of the system in terms of stoichiometric
vectors and propensity functions can be found in section 6.

It is tempting to reduce the first two reactions (16) that involve two species D
and D? to just one reaction involving D? by exploiting the constraint D+D? =
DT . We could argue that D? is produced with the rate kaDT and decays with
the rate (ka + kd)D

?:

kaDT

∅ → D?

ka + kd

D? → ∅.

In this formalization, however, we cannot guarantee that once D? = DT no
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more production of the active state D? will occur. This opens up the possibility
of D? > DT , which violates the conservation law. Hence, we will work with
the full system.

5 Moments for Chemical Master Equation

Gadgil et al. [11] considered generic systems of first-order chemical reactions
and derived ODEs that describe the evolution of the first two moments of all
species. They split first-order reactions into four categories. The gene tran-
scription model (16)–(20) fits into that framework and involves three of these
categories. Reactions D 
 D? are of conversion type, D? → M + D? and
M → P +M are catalytic, i.e. the reaction affects one species at a rate that is
proportional to some other species, and M → ∅ and P → ∅ are degradation

type reactions. The fourth type of reaction in [11], production from a source,
is not present in this model.

If we use the symbols D(t), D?(t), M(t) and P (t) to denote the number of
molecules of each species present at time t, [11, equation (28)] shows that the
mean values arising from the CME model satisfy the ODE system

d

dt





















E [D(t)]

E [D?(t)]

E [M(t)]

E [P (t)]





















= K ·





















E [D(t)]

E [D?(t)]

E [M(t)]

E [P (t)]





















, where K =





















−ka kd 0 0

ka −kd 0 0

0 kr −γr 0

0 0 kp −γp





















.

(21)

Then introducing a time dependent symmetric matrix V (t) ∈ R
4×4 to store

the second moments and correlations in the form

V (t) :=




















E [D(t)2 − D(t)] E [D(t)D?(t)] E [D(t)M(t)] E [D(t)P (t)]

E [D(t)D?(t)D(t)] E [D?(t)2 − D?(t)] E [M(t)D?(t)] E [P (t)D?(t)]

E [M(t)D(t)] E [M(t)D?(t)] E [M(t)2 − M(t)] E [M(t)P (t)]

E [P (t)D(t)] E [P (t)D?(t)] E [M(t)P (t)] E [P (t)2 − P (t)]





















,

we may appeal to [11, equation (29)], which says

d

dt
V (t) = KV (t) + (KV (t))T + Γ(t) + Γ(t)T , (22)
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where, in our case, Γ(t) ∈ R
4×4 has the form

Γ(t) =





















0 0 0 0

0 0 krE[D?(t)] 0

0 0 0 kpE[M(t)]

0 0 0 0





















.

Substituting the expressions in (21) for the means, we obtain ODEs for the
second moments;

d E[D2]

dt
=−2kaE[D2] + 2kdE[DD?] + kaE[D] + kdE[D?], (23)

d E[D?2]

dt
=−2kdE[D?2] + 2kaE[DD?] + kaE[D] + kdE[D?], (24)

d E[M2]

dt
=−2γrE[M2] + 2krE[D?M ] + krE[D?] + γrE[M ], (25)

d E[P 2]

dt
=−2γpE[P 2] + 2kpE[MP ] + kpE[M ] + γpE[P ]. (26)

Here, and henceforth, to avoid cluttering the equations we suppress the time
dependence, so, for example, D(t) is written simply as D. Similarly, for the
correlations we find that

d E[DD?]

dt
=−(ka + kd)E[DD?] + kaE[D2] + kdE[D?2] − kaE[D]

− kdE[D?], (27)

d E[DM ]

dt
=−(ka + γr)E[DM ] + krE[DD?] + kdE[D?M ], (28)

d E[DP ]

dt
=−(ka + γp)E[DP ] + kpE[DM ] + kdE[D?P ], (29)

d E[D?M ]

dt
=−(kd + γr)E[D?M ] + krE[D?2] + kaE[DM ], (30)

d E[D?P ]

dt
=−(kd + γp)E[D?P ] + kaE[DP ] + kpE[D?M ], (31)

d E[MP ]

dt
=−(γr + γp)E[MP ] + kpE[M2] + krE[D?P ]. (32)

6 Moments for Chemical Langevin Equation

The CLE formulation described in subsection 3.2 uses a general state vector
Y(t). For the model (16)–(20), in order to make comparisons easier, we will
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re-use the notation from section 5, so that





















Y1(t)

Y2(t)

Y3(t)

Y4(t)





















=:





















D

D?

M

P





















.

However, we emphasize that D, D?, M and P in the CLE are real-valued
random variables, whereas those in CME take non-negative integer values. We
also emphasize that the time-dependency is not made explicit in this notation.

The stoichiometric vectors for reactions (16)–(20) take the form

ν1 =





















−1

1

0

0





















, ν2 =





















1

−1

0

0





















, ν3 =





















0

0

1

0





















,

ν4 =





















0

0

−1

0





















, ν5 =





















0

0

0

1





















, ν6 =





















0

0

0

−1





















,

and the propensity functions are a1 = kaD, a2 = kdD
?, a3 = krD

?, a4 = γrM ,
a5 = kpM and a6 = γpP . Hence the CLE (10) is an SDE of the form (11) with
drift function b : R

4 → R
4 given by

b(Y(t)) =





















−kaD + kdD
?

kaD − kdD
?

krD
? − γrM

kpM − γpP





















(33)
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and diffusion function σ : R
4 → R

4×6 given by

σ(Y(t)) =





















−
√

kaD
√

kdD? 0 0 0 0
√

kaD −
√

kdD? 0 0 0 0

0 0
√

krD? −√
γrM 0 0

0 0 0 0
√

kpM −
√

γpP





















. (34)

So a in (12) satisfies

a =





















kaD + kdD
? −kaD − kdD

? 0 0

−kaD − kdD
? kaD + kdD

? 0 0

0 0 krD
? + γrM 0

0 0 0 kpM + γpP





















. (35)

Because the drift coefficient in (33) is linear, taking expectations in the SDE
leads to the linear ODE (21) that we obtained for the CME.

Applying Ito’s lemma to f(Y) = D2, using (14) and the expressions in (33)
and (35), we find that

d
(

D2
)

= (2D (−kaD + kdD
?) + (kaD + kdD

?)) dt + mart.

so, after taking expectations,

d E[D2]

dt
= −2kaE[D2] + 2kdE[DD?] + kaE[D] + kdE[D?],

which matches (23). Similarly, (14) shows that the other second moments
satisfy the ODEs (24)–(26). In the same manner, we may apply Ito’s lemma
to f(Y) = DD?, using (15), to find that

d (DD?) = (D? (−kaD + kdD
?) + D (kaD − kdD

?)

+ 1
2
(−kaD − kdD

? − kaD − kdD
?)
)

dt + mart.

So, after taking expectations,

d E[DD?]

dt
= −(ka + kd)E[DD?] + kaE[D2] + kdE[D?2] − kaE[D] − kdE[D?],

matching (27). Similarly, the other correlations are found to satisfy (28)–(32).
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In summary, the means, variances and correlations for all components satisfy
the same ODEs for both the CME and CLE formulations of the model, and
hence they are equal for all time.

7 Numerical Experiment for a Bimolecular Case

All reactions in the model (16)–(20) are first-order in the sense of [11]. An
important instance where a first-order model is not sufficient arises when pro-
teins produced from the mRNA may combine to form complexes, such as
dimers. There is ample experimental evidence to suggest that protein sub-
units can degrade less rapidly when associated in multimeric complexes, an
effect referred to in [4] as “cooperative stability”. For dimeric transcription
factors, this effect leads to a concentration-dependence in the degradation
rate because monomers, which are predominant at low concentrations, will be
more rapidly degraded. Thus, cooperative stability can effectively widen the
accessible range of protein levels in vivo and a few-fold difference between the
degradation rate of monomers and dimers can already enhance the function of
these circuits substantially. In [4], the effect of cooperative stability through
nonlinear degradation in a simple genetic circuit with feedback was studied
without incorporating stochastic effects. On the other hand, SSA simulations
were used in [5], but without considering rapid degradation of monomers com-
pared to dimers.

To illustrate a model that incorporates dimerization, we begin with a simplified
version of the model in section 4 where there is only a single, active, state of
the gene

kr

D? → M + D?

kp

M → P + M

γr

M → ∅
γp1

P → ∅.

Then we may allow the protein monomers P to form dimers P2, which degrade
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less rapidly than the monomers (γp2
< γp1

):

ka

P + P 
 P2

kd

γp2

P2 → ∅.

Our aim is to test whether the correspondence between first and second mo-
ments for the CME and CLE that we proved for the model with unimolecular
reactions in section 4 carries through to this case, where a dimerization (and
hence second-order) reaction is present. A full Monte Carlo simulation of the
CME and CLE would be very expensive (for example, the CLE contains seven
independent Brownian motions, so an expected value corresponds to an in-
tegral over seven dimensions). Hence, we will focus on a reduced model that
contains dimerization. If we assume that the protein arises as production from
a source and ignore any possible reversibility of the dimerization, we arrive at
the computationally simpler model

∅ k1→ P (36)

P + P
ka→ P2 (37)

P
γp→∅ (38)

P2

γp2→∅. (39)

We emphasize that we are using this model simply to test whether the con-
clusions of sections 5–6 are close to holding in an example with second order
reactions. Writing the state vector as







X1(t)

X2(t)






=:







P

P2






,

the stoichiometric vectors take the form

ν1 =







1

0





 , ν2 =







−2

1





 , ν3 =







−1

0





 , ν4 =







0

−1





 ,

and the propensity functions are a1 = ka, a2 = kaP (P − 1)/2, a3 = γPP and
a4 = γP2

P2.

In this case the CLE takes the form

14



d







P

P2






=







k1 − kaP (P − 1) − γPP

kaP (P − 1)/2 − γP2
P2






dt

+







√
k1 dW1 −

√

kaP (P − 1) dW2 −
√

γPP dW3
√

kaP (P − 1)/2dW2 −
√

γP2
P2 dW4





 .

In this SDE the first equation shows that P is uncoupled from P2 (a fact
which is also clear from the original formulation (36)–(39)), so we may consider
separately the SDE

dP = (k1 − kaP (P − 1) − γPP ) dt+
√

k1 dW1−
√

kaP (P − 1) dW2−
√

γPP dW3.

Taking expectations leads to an ODE for E[P ] that involves E[P 2]. Similarly,
applying Ito’s lemma to f(Y ) = P 2 gives an ODE for E[P 2] that involves
E[P 3]. Because the system is not closed, this does not lead to an analytical
formula for the moments, and also hints that our moment matching approach
from sections 5 and 6 is unlikely to be successful.

We therefore proceed computationally. Choosing the values k1 = 5, ka = 0.01,
γP = 0.1 and γP2

= 0.01 with initial conditions P (0) = 10 and P2(0) = 2,
we consider the time interval 0 ≤ t ≤ 20. For the purposes of illustration,
in Figure 3 we show one path for the monomer P and the dimer P2 from
the CME, computed with SSA, and from the CLE, approximated with the
Euler–Maruyama method [18,23]. We note that the two computations use
different, independent, noise sources (from MATLAB’s rand and randn) and
hence there is no reason for the two paths to be close. Then, using Monte Carlo
simulations over K = 105 paths we computed sample mean approximations to
E[P ], E[P 2], E[P2] and E[P 2

2 ] at time t = 20. The results are given in Table 1.
Here, we have presented 95% confidence intervals for each sample mean by
adding ±1.96 std/

√
K, where std denotes the sample’s standard deviation.

All values have been rounded to four significant digits. CLEa denotes the
results for Euler–Maruyama using a stepsize 20/500 = 0.04. The table also
shows results for Euler–Maruyama with stepsize 0.004, labeled CLEb, in order
to check that numerical discretization errors are not significant.

We see from Table 1 that there is overlap between the computed CME and
CLE confidence intervals for both sets of first and second moments. We con-
clude that, to the typical accuracy obtained from large scale Monte Carlo
simulations, the first two moments are indistinguishable.

We conclude with two remarks.

(1) Further computational testing would help to reveal the extent to which
moments match for more general models, and in this case some analysis
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Fig. 3. One path from the Chemical Master Equation (CME) and Chemical
Langevin Equation (CLE) for the dimerization model (36)–(39). Diamonds: P from
CME; Squares: P2 from CME; Triangles: P from CLE; Circles: P2 from CLE.

E[P ] E[P 2] E[P2] E[P 2
2 ]

CME [17.97, 18.01] [337.3, 339.0] [28.05, 28.10] [806.1, 809.2]

CLEa [17.96, 18.01] [337.0, 338.8] [28.07, 28.13] [807.6, 810.8]

CLEb [17.97, 18.02] [337.4, 339.2] [28.06, 28.11] [807.0, 810.1]

Table 1
95% confidence intervals for Monte Carlo sample mean approximations to E[P ],
E[P 2], E[P2] and E[P 2

2 ] at time t = 20 in (36)–(39) from the CME and CLE. CLEa
uses Euler–Maruyama with stepsize 0.04 and CLEb uses Euler–Maruyama with
stepsize 0.004.

might be possible that gives bounds on the discrepancies and indicates
parameter regimes where there is a close match.

(2) Generally, there is a need for existence and uniqueness results for the
SDEs that can appear in the CLE formulation. The conditions under
which the CLE (10) is derived in [15] make it clear that the model is
likely to be unrealistic when components Yi(t) approach zero—this is
precisely where the issue of negative arguments inside the square root
function rouses itself.
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