Skip to main content

On the Communication Surplus Incurred by Faulty Processors

  • Conference paper
Distributed Computing (DISC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4731))

Included in the following conference series:

Abstract

We study the impact of faulty processors on the communication cost of distributed algorithms in a message-passing model. The system is synchronous but prone to various kinds of processor failures: crashes, message omissions, (authenticated) Byzantine faults. One of the basic communication tasks, called fault-tolerant gossip, or gossip for short, is to exchange the initial values among all non-faulty processors. In this paper we address the question if there is a gossip algorithm which is both fault-tolerant, fast and communication-efficient? We answer this question in affirmative in the model allowing only crash failures, and in some sense negatively when the other kinds of failures may occur. More precisely, in an execution by n processors when f of them are faulty, each non-faulty processor contributes a constant to the message complexity, each crashed processor contributes Θ(f ε) (ε> 0 could be an arbitrarily small constant independent from n,f but dependent on the algorithm), each omission (or authenticated Byzantine) processor contributes Θ(t), and each—even potential—Byzantine failure results in additional Θ(n) messages sent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attiya, H., Welch, J.: Distributed Computing. John Willey & Sons, West Sussex, England (2004)

    Book  Google Scholar 

  2. Capalbo, M.R., Reingold, O., Vadhan, S.P., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: Proc. of 34th ACM Symposium on Theory of Computing (STOC), pp. 659–668 (2002)

    Google Scholar 

  3. Chlebus, B.S., Kowalski, D.R.: Robust gossiping with an application to consensus. Journal of Computer and System Sciences 72, 1262–1281 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chlebus, B.S., Kowalski, D.R.: Time and communication efficient consensus for crash failures. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 314–328. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple-access channel. In: Proc. of 25th ACM Symposium on Principles of Distributed Computing (PODC), pp. 92–101 (2006)

    Google Scholar 

  6. Chlebus, B.S., Kowalski, D.R., Shvartsman, A.A.: Collective asynchronous reading with polylogarithmic worst-case overhead. In: Proc. of 36th ACM Symposium on Theory of Computing (STOC), pp. 321–330 (2004)

    Google Scholar 

  7. Diks, K., Pelc, A.: Optimal adaptive broadcasting with a bounded fraction of faulty nodes. Algorithmica 28(1), 37–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine Agreement. Journal of ACM 32(1), 191–204 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fischer, M., Lynch, N.: A lower bound for the time to assure interactive consistency. Information Processing Letters 14(4), 183–186 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fujita, S., Yamashita, M.: Optimal group gossiping in hypercubes under circuit switching model. SIAM J. on Computing 25(5), 1045–1060 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Galil, Z., Mayer, A., Yung, M.: Resolving message complexity of Byzantine agreement and beyond. In: Proc. of 36th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 724–733 (1995)

    Google Scholar 

  12. Georgiou, C., Kowalski, D.R., Shvartsman, A.A.: Efficient gossip and robust distributed computation. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 224–238. Springer, Heidelberg (2003)

    Google Scholar 

  13. Hromkovic, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of information in communication networks: broadcasting, gossiping, leader election, and fault-tolerance. In: Theoretical Computer Science. EATCS Series, Springer, Heidelberg (2005)

    Google Scholar 

  14. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  15. Neiger, G., Toueg, S.: Automatically increasing the fault-tolerance of distributed systems. Journal of Algorithms 11, 374–419 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrzej Pelc

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kowalski, D.R., Strojnowski, M. (2007). On the Communication Surplus Incurred by Faulty Processors. In: Pelc, A. (eds) Distributed Computing. DISC 2007. Lecture Notes in Computer Science, vol 4731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75142-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75142-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75141-0

  • Online ISBN: 978-3-540-75142-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics