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Abstract. Three well studied progress conditions for implementing con-
current algorithms without locking are, obstruction-freedom, non-bloc-
king and wait-freedom. Obstruction-freedom is weaker than non-blocking
which, in turn, is weaker than wait-freedom. While obstruction-freedom
and non-blocking have the potential to significantly improve the per-
formance of concurrent applications, wait-freedom (although desirable)
imposes too much overhead upon the implementation.

In [5], Fich, Luchangco, Moir, and Shavit have presented an interesting
transformation that converts any obstruction-free algorithm into a wait-
free algorithm when analyzed in the unknown-bound semi-synchronous
model. The FLMS transformation uses n atomic single-writer registers,
n atomic multi-writer registers and a single fetch-and-increment object,
where n is the number of processes.

We define a time complexity measure for analyzing such transfor-
mations, and prove that the time complexity of the FLMS transforma-
tion is exponential in the number of processes n. This leads naturally to
the question of whether the time and/or space complexity of the FLMS
transformation can be improved by relaxing the wait-freedom progress
condition. We present several efficient transformations that convert any
obstruction-free algorithm into a non-blocking algorithm when analyzed
in the unknown-bound semi-synchronous model. All our transformations
have O(1) time complexity. One transformation uses n atomic single-
writer registers and a single compare-and-swap object; another transfor-
mation uses only a single compare-and-swap object which is assumed to
support also a read operation.

1 Introduction

1.1 Motivation

Three well studied progress conditions for implementing concurrent algorithms
without locking are, obstruction-freedom, non-blocking and wait-freedom. An
algorithm is wait-free if it guarantees that every process will always be able to
complete its pending operations in a finite number of its own steps. An algorithm
is non-blocking if it guarantees that some process will always be able to com-
plete its pending operation in a finite number of its own steps. An algorithm is
obstruction-free if it guarantees that a process will be able to complete its pend-
ing operations in a finite number of its own steps, if all the other processes “hold
still” long enough (that is, in the absence of interference from other processes).
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Clearly, obstruction-freedom is weaker than non-blocking which, in turn, is
weaker than wait-freedom. The term lock-free algorithms refers to algorithms
that do not use locking in any way. Wait-free, non-blocking and obstruction-free
algorithms are by definition lock-free algorithmsE Advantages of using lock-free
algorithms are that they are not subject to deadlocks or priority inversion, they
are resilient to process crash failures (no data corruption on process failure), and
they do not suffer significant performance degradation from scheduling preemp-
tion, page faults or cache misses.

While non-blocking and obstruction-freedom have the potential to signifi-
cantly improve the performance of concurrent applications, and can be used in
place of using locks in various cases, wait-free synchronization (although desir-
able) imposes too much overhead upon the implementation. Wait-free algorithms
are often very complex and memory consuming, and hence considered less prac-
tical than non-blocking algorithms. Furthermore, starvation can be sometimes
efficiently handled by collision avoidance techniques such as exponential backoff.

Requiring implementations to satisfy only obstruction-freedom can signifi-
cantly simplify the design of concurrent algorithms, as it eliminates the need to
ensure progress under contention. However, since obstruction-free algorithms do
not guarantee progress under contention, they may suffer from livelocks. Vari-
ous contention management techniques have been proposed to efficiently improve
progress of obstruction-free algorithms under contention. Existing lock-free con-
tention managers, which allow processes to run without interference long enough
until they can complete their operations, do not provide full guarantee to ensure
progress in all cases.

While obstruction-free algorithms are easier to design and are efficient in var-
ious cases, it is most desirable that a lock-free implementation do satisfy the
stronger non-blocking progress condition. Hence the importance of designing
efficient transformations that automatically convert any obstruction-free algo-
rithm into a non-blocking algorithm. Such transformations should not affect the
behaviour of the original (obstruction-free) algorithm in uncontended cases, or
in executions where the contention management technique used is effective.

The focus of this paper is on the design of such transformations in the
unknown-bound semi-synchronous model, where it is assumed that there is an
unknown upper bound on memory access time. All practical systems satisfy the
unknown-bound assumption.

1.2 Results

In [5], Fich, Luchangco, Moir, and Shavit have presented an interesting transforma-
tion that converts any obstruction-free algorithm into a wait-free algorithm when
analyzed in the unknown-bound semi-synchronous model. The FLMS transforma-

! In the literature, the terms lock-free and non-blocking are sometimes used as synony-
mous, or even with opposite meaning to the way they are defined here. As suggested
in [I6], it is useful to distinguish between algorithms that do not require locking
(i-e., lock-free algorithms) and those that actually satisfy the non-blocking progress
condition.
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tion uses n atomic single-writer registers, n atomic multi-writer registers and a sin-
gle fetch-and-increment object.

We start by defining a time complexity measure for analyzing such trans-
formations, and prove that the time complexity of the FLMS transformation
is exponential in the number of processes n. Then, we present several efficient
transformations that convert any obstruction-free algorithm into a non-blocking
algorithm when analyzed in the unknown-bound semi-synchronous model.

All our transformations have O(1) time complexity. One of transformation
uses n atomic single-writer registers and a single compare-and-swap object; an-
other transformation uses only a single compare-and-swap object which is as-
sumed to support also a read operation.

1.3 Related Work

Our work is based on the transformation presented in [5]. A comprehensive
discussion of wait-free synchronization is given in [8]. In [11], the concept of a
non-blocking data structure is introduced. The notion of obstruction-freedom is
introduced in [9]. Contention management is discussed in [GITOJT3].

The importance of the unknown-bound semi-synchronous model in the con-
text of shared memory systems was first investigated in [I]. In [I214], indulgent
algorithm are investigated in semi-synchronous shared memory systems. The in-
terested reader will find in [I5] a pedagogical description of several families of
semi-synchronous and timing-based algorithms. Message-passing algorithms for
partially synchronous systems were presented in various papers [314].

In [7], the weakest failure detectors that allow boosting an obstruction-free
implementation into a wait-free or a non-blocking implementation have recently
been identified (eventual prefect failures detector [2] is the weakest to implement
a wait-free contention manager, and 2* is the weakest to implement a non-
blocking contention manager).

2 The Computational Model

The system is made up of n processes, denoted p1,...,p,, which communicate
via shared objects. It is assumed that any number of processes may crash. A
process that crashes stops its execution in a definitive manner.

The possibility and complexity of synchronization in a distributed environ-
ment depends heavily on timing assumptions. We focus on a semi-synchronous
shared-memory model of computation which provides a practical abstraction of
the timing details of concurrent systems. In this model, it is assumed that there
is an unknown upper bound on the time it takes a process to execute one step
and, in particular, on the time it takes to execute a step which involves access the
shared memory. This assumption is inherently different from the asynchronous
model where no such bound exists.

In the semi-synchronous model a process can delay itself explicitly by execut-
ing a statement delay(d), for some constant d. Executing the statement delay(d)
by a process p delays p for at least d time units before it can continue, and
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there is some (unknown) upper bound (as a function of d) on the time a correct
process can be delayed (for example, this bound can be 2d).

A key idea in designing algorithms for the semi-synchronous model is that a
process can delay itself for increasingly longer periods, and by doing so it can
ensure that eventually other processes will take “enough” steps during one of
these waiting periods. The appeal of the semi-synchronous model lies in the fact
that while it abstracts from implementation details, it is a better approximation
of real concurrent systems compared to the asynchronous model, as all practical
(shared memory) systems satisfy the unknown-bound assumption. Furthermore,
it enables to obtain more efficient solutions.

We point out that the semi-synchronous model, as defined here, is similar
(but not identical) to a model where it is assumed that there is an unknown
bound on the ratio of the maximum time and minimum time between the steps
of the processes. That is, some unknown bound exists on the relative execution
rates of any two processes in the system. In such a model, the delay statement
is simply implemented by counting steps. All our results and algorithms apply
also to this variant of the unknown bound semi-synchronous model.

Lock-free algorithms usually require the use of powerful atomic operations
such as compare-and-swap (CAS). A CAS operation takes three parameters: a
shared register r, and two values: old and new. If the current value of the register
r is equal to old, then the value of r is set to new and the value true is returned;
otherwise r is left unchanged and the value false is returned.

We consider three types of shared objects: (1) Atomic register — a shared
register that supports atomic read and write operations; (2) Compare-and-swap
object — a shared object that supports an atomic CAS operation; (3) Compare-
and-swap/read object — a shared object that supports both atomic CAS and
atomic read operations.

The FLMS transformation, and our transformations are all black box transfor-
mations: A transformation does not change anything in the original obstruction-
free algorithm, it only adds code to ensure that a stronger progress condition
is satisfied. Thus, a transformed algorithm performs the original algorithm on
the original shared objects and does not apply any other steps to these objects.
Below we define a time complexity measure for analyzing such transformations.
Let T be a transformation that converts an arbitrary obstruction-free algorithm,
denoted ALG, into a non-blocking or a wait-free algorithm.

Enabled Process: A process is enabled in a given finite run of transformation
T if its next step is a step of the original obstruction-free algorithm ALG, or if
its last step was a step of ALG.

Being enabled corresponds to holding a lock (i.e., being in the critical section)
in lock-based algorithms. We notice that being enabled is not exactly like being
in a critical section since exclusiveness is not guaranteed.

Time Complexity: The time complezity of transformation T, is the maximum
number of steps which involve access to the shared memory that a process may
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need to take until it becomes enabled since the last time some process has been en-
abled. Or, if no process has been enabled yet, since the beginning of the execution.

This definition corresponds to the way time complexity is usually defined in
lock-based (mutual exclusion) algorithms. In lock-based algorithms, time com-
plexity is usually measured by counting the amount of “work” (time units) a
winning process, a process that gets to enter its critical section, may need to do
(wait) since the last time some process has released its critical section.

Since all our algorithms require very few accesses to shared memory locations,
the definition does not distinguish between different types of shared memory
accesses. In a different context, it would make sense to distinguish between rel-
atively cheap operations like reads and writes to more expensive operations like
compare-and-swap.

Remark: The new complexity measure is a special case of the following more
general new complexity measure for synchronization algorithms, which might be
interesting in its own right. Given an algorithm, denoted SYNC, let us divide
its steps into three disjoint groups,

1. group A — the group of synchronization steps;
2. group B — the group of real work steps;
3. group C — the group of inexpensive steps.

In mutual exclusion algorithms, A may include the steps in the entry section, B
the steps in the critical section, and C' all other steps. For a transformation that
converts an arbitrary obstruction-free algorithm, ALG, into a non-blocking or a
wait-free algorithm, A may include all the step which involve access to the shared
memory, B all the step of ALG, and C all other steps. A process is enabled in a
given finite run of SYNC if its next step is a step from B or if its last step was
a step from B. Next we define two possible complexity measures,

1. The maximum number of steps from group A that a process may need to
take until it becomes enabled since the last time some process has been
enabled. Or, if no process has been enabled yet, since the beginning of the
execution.

2. The longest time interval where no process is enabled, assuming there is an
upper bound of one time unit for step time and no lower bound.

The first measure generalizes the one used in this paper, the second measure
is called system response time in the context of mutual exclusion algorithms.
Other variants of these measures can be obtained by generalizing corresponding
measures for lock-based algorithms (see [I5], Section 1.4).

3 The Time Complexity of the FLMS Transformation

We prove that the time complexity of the FLMS transformation is at least expo-
nential in the number of processes n. This exponential bound holds even when
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the transformation is executed in a fault-free environment. As already mentioned,
the transformation converts any obstruction-free algorithm into a wait-free al-
gorithm when analyzed in the unknown-bound semi-synchronous model, and
uses n atomic single-writer registers, n atomic multi-writer registers and a single
atomic fetch-and-increment object.

In the following, we describe only the part of the FLMS transformation that
is needed for proving the time complexity bound. When a process p; notices
that there is contention, it begins to participate in a strategy to ensure progress,
called the panic mode.

This strategy is as follows: using an atomic fetch-and-increment object,
process p; first acquires a timestamp, and initializes an atomic multi-
writer register, denoted T'[i], with the value of its timestamp. Then p;
searches for the minimum timestamp by scanning the array T[1..n]. (Ini-
tially all entries of the T' array are set to oco.) During the search, all
timestamps that are not oo, but are larger than the minimum times-
tamp p; has observed so far, are replaced by oco. If process p; determines
that it has the minimum timestamp then p; becomes enabled.

If process p; determines that some other process, say pg, has the mini-
mum timestamp, p; waits for some time (the amount of time waited is
not relevant here), and then checks the status of py. If p; does not notice
(after checking some shared register) that p, has taken steps while p;
was waiting, p; overwrites pi’s timestamp by setting T[k] to co. Then
p; restarts executing the strategy to ensure progress (i.e., go to the be-
ginning of the panic mode) using its original timestamp (i.e., p; uses the
same timestamp from the previous round). Similarly, if after it waits, p;
notices that T[k] = oo, then p; also restarts executing the strategy to
ensure progress using its original timestamp.

The above partial description of the FLMS transformation is sufficient for prov-
ing its exponential time complexity.

Theorem 1. The time complexity of the FLMS transformation is exponential,
in the number of processes n.

Proof. Consider a finite run o where: (1) all the n processes have just started to
execute the strategy to ensure progress (i.e, the panic mode); (2) each process
has chosen a timestamp such that process p; has chosen timestamp i, for all
i € {1,...,n}; and (3) all the entries of the T array are still set to their initial
value co.

For every i € {1,...,n—1}, let R; denotes the maximum number of times, that
process p,, has to scan the array T'[1..n] starting from (the end of) run o before
prn becomes the first enabled process, assuming that only the i + 1 processes
Dns--Pn—; may take steps in an extension of ¢. We prove by induction that
R; > 2! for every i € {1,...,n — 1}, which would imply that the time complexity
is of order 27! x n. Actually, we prove by induction the following (stronger)
claim:
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For every i € {1,...,n — 1}, there is an extension o; of o where:
1. p, has performed 2! scans of T in o;.
2. Only the ¢+ 1 processes py,...,pn—; have taken steps in the extension
o; of 0.
3. py is enabled in o;, and no process is enabled in any strict prefix of
o; which extends o.
4. For every j € {1,...,n — 1}, process p; is (again) at the beginning of
the (code of the) panic mode in o;, with timestamp j and T'[j] = co.
5. In the last steps in o; process p, has scanned the array T[1..n]. We
denote by o the prefix of o; which result from omitting this last
single scan of T' by py,.
We notice that the existence of run ¢; implies that R; > 2°.

When i = 1, o7 is constructed as follows: we first let process p,—1 set T'n—1] to
n — 1. Then, we run p,, alone. Process p, searches for the minimum timestamp
by scanning the array T'[1..n] once, and determines that process p,—1 has the
minimum timestamp. Then, process p, delays itself for some time and then
checks the status of p,_1. Since p,_1 has taken no steps while p,, was waiting,
Pn Overwrites p,_1’s timestamp by setting T[n — 1] to co. Then p,, restarts
executing the strategy to ensure progress (i.e., go to the beginning of the panic
mode) using its original timestamp. Next, p,, sets T'[n] to n, searches again for
the minimum timestamp by scanning 7', determines that it has the minimum
timestamp and becomes enabled. Since p,, has scanned T twice in o1, we get,

Ry > 2% (1)

When ¢ = 2, 05 is constructed as follows: we first repeat the extension from the
previous case and stop just before the last scan on T by p, (i.e., the extension
o7). Then we let process p,—2 set T'[n — 2] to n — 2, and let both p,—1 and p,
scan T (notice that so far the number of scans of p,, equals 2! as in o1). Both
determine that process p,_o has the minimum timestamp, each one delays itself
for some time and then checks the status of p,_o. Since p,,_o has taken no steps
while p,_1 and p, were waiting, they overwrite p,_s’s timestamp by setting
T[n — 2] to oco. Then they restart executing the strategy to ensure progress. At
this point, from process p,_1 and process p, point of view, they are back at a
situation similar to the one at run o. So, we repeat the construction from the
previous case of i = 1 (in which the number of scans of p,, equals 2!). Since p,
has scanned T four times in o2, we get,

Ry > 22. (2)

Induction hypothesis: we assume that a run o;_1 exists and prove that run o;
exists.

We consider now the general case where ¢ + 1 processes participate. We first
repeat the extension from the case when only ¢ processes participate and stop
just before the last scan on T by p, (i.e., the extension o} ;). Then we let
process p,—; set T[n —i] to n — 4, and let the ¢ processes p,—;+1 through p,
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scan T' (notice that so far the number of scans by p,, equals 2¢~1 as in o;_1). All
the processes determine that process p,—o has the minimum timestamp, they
delay themselves for some time and then check the status of p,_;. Since p,_;
has taken no more steps, they overwrite p,—;’s timestamp by setting T'[n —i] to
00. Then they restart executing the strategy to ensure progress. At this point,
from processes p,—;+1 through p, point of views, they are back at a situation
similar to run o. So, we repeat the construction from the ¢ — 1 case in which only
i processes participate (in which the number of scans of p, equals 2¢~1). Since
pr has scanned T 2 x 2/~! times in o;, we get,

R; > 2. (3)

Thus, from the construction of run o, _1 where all the n processes participate,
we get,
R,_1 >2"1 (4)

We have proved that there is an extension of ¢ where the number times, that
process p, has to scan the array T[l..n] before it becomes the first enabled
process is at least 27~ !. Each such scan involves n accesses to shared memory
location. Thus, we conclude that the time complexity the FLMS transformation
is at least of order 2"~! x n. 0

4 The Main Transformation

We now present our main transformation. It has O(1) time complexity, and uses
n atomic single-writer registers and a single compare-and-swap object which
supports also a read operation. The other transformations, presented later, are
variants of this transformation. One important strength of all the transforma-
tions is their simplicity.

To understand how the transformation works, let us start by assuming a
fault-free model in which no process ever crashes. In such a model, we can
design a simple transformation by using a single (mutual exclusion) lock. To
avoid interference between different operations, a process performs steps of the
original obstruction-free algorithm, denoted ALG, only inside its critical section
(after it has acquired the lock), within which the process is guaranteed exclusive
access with no interference to the original algorithm shared objects.

Using a single lock to prevent interference between different operations of
ALG may degrade the performance, as it enforces processes to wait for a lock
to be released, and thus, does not allow several processes with non-interfering
operations to proceed concurrently. Furthermore, when there is no contention,
acquiring the lock introduces additional overhead.

To overcome these limitations, before a process tries to acquire the lock, it
first tries to complete its operation of ALG without holding the lock. If there is
no contention or if the contention manager is effective the process will complete
its operation without any overhead. Otherwise if the process, after taking many
steps, does not succeed in completing its operation, it tries to acquire the lock.
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Of course, as a result of such an approach, a process that is already holding the
lock may experience interference. However, either some process will manage to
complete its operation (without holding the lock), or this interference will vanish
after some finite time.

Going back to our original model where processes may crash, using locks is
problematic as a process may crash while holding the lock, preventing all other
processes from ever completing their operations. Resolving this problem, is the
main difficulty in designing efficient transformations, and is done as follows: The
winner — the process that is currently holding the lock — is required to increment
a (single-writer) counter, denoted W winner] every few steps, of ALG. A process
p that fails to acquire the lock, reads the value of the winner’s counter and delays
itself for W{winner| time units. Then, p checks Wwinner| again, and if the value
was updated p delays itself again, and so on. Otherwise, if W [winner] has not
been changed, p assumes that the winner has crashed and releases the lock.

Releasing the lock by a process p, which is not the winner, is a very delicate
issue, since the winner might be alive but very slow, and as a result: (1) the
winner will notice that the lock has been released although it is interested in
holding it further; (2) we might end up with two or more processes holding the
lock at the same time; and (3) process p might be suspended just before releasing
the lock, and may release the lock at some unexpected time later on.

We address these problems as follows: when a winner process, say p;, notices
that the lock has been released p; tries to acquire the lock again. However, before
doing so, p; waits long enough so that other processes that have mistakenly
concluded that p; has crashed, will have enough time to release the lock (again)
before p; tries to acquire it again. Ensuring that eventually at most one correct
process will hold the lock, has to do with the fact that the value of the counter
of a winning process Wwinner] keeps on increasing over time. Thus, forcing
processes that fail to acquires the lock to delay themselves for increasingly longer
periods, and eventually — by the unknown-bound assumption, the waiting time
is long enough to guarantee that only one process will hold the lock and that
some process will complete its operation of ALG.

The code of our main transformation, Transformation 1, is given in Figure
[l Transformation 1 converts an arbitrary obstruction-free algorithm, denoted
ALG, which may include a contention manager, into a non-blocking algorithm.

Process p; first tries to execute X steps (for some predetermined constant X)
of the original obstruction-free algorithm ALG (line 1). If p; succeeds to complete
its operation, it returns (line 2), otherwise p; tries to acquire the lock. The lock
is implemented by a compare-and-swap object, named 7. T" = 0 means that the
lock is free, T' = i means that process p; has acquired the lock. So process p; tries
to acquire the lock by setting the value of T to i (line 5). If p; succeeds it tries
to complete its operation by taking steps of the original algorithm ALG (lines
6 — 12). Every X such steps p; increments its counter Wi] by 1. It continues
doing so until it either completes its operation and releases the lock (line 9) or
finds that it is no longer holding the lock (line 12).
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shared
T: CAS/read object, initially 0 /* “the lock” */
W(1..n]: array of atomic single-writer registers /* initial values immaterial */
local /* initial values immaterial */

winner: ranges over {0, ...,n}; wait: integer; b: boolean

invoke(op)

1 execute up to X steps of ALG /¥ ALG is the original algorithm */
2 if op is completed then return response fi

3 Wli:=1 /* contention possible — set initial delay */
4 repeat /* tries to execute op without interference */
5 if CAS(T,0,4) then /* tries to acquires the “lock” */
6 repeat /* p; is enabled */
7 execute up to X steps of ALG /* original algorithm */
8 if op is completed then

9 CAS(T,1,0) /* release “lock” */
10 return response

11 else Wi :=W[i|+ 1 fi /* increase delay */
12 until read(T) # i /* equivalent to ~C'AS(T,i,1) */
13 delay(2 x Wi]) /* flash out processes waiting in lines 16-22 */
14 else /* loser */
15 winner := read (T') /* tricky to imp. efficiently using CAS only */
16 if winner # 0 then /* “lock” is captured by winner */
17 repeat /* wait for the winner to proceed */
18 wait := Wlwinner] /* delay time */
19 delay (wait) /* wait as requested */
20 b := read(T) = winner /¥ b:= CAS(T, winner, winner) */
21 until wait = W{winner] V —b /* winner crashed? */
22 if wait=W [winner] A b then CAS(T, winner,0) fi i i /*release */

23 until op is completed

Fig. 1. Transformation 1. Program for process p; which invokes operation op.

In line 13, process p; delays itself, so that other processes that may have
concluded that p; has crashed (lines 16-21), will have enough time to release
the lock (line 22) before p; tries to acquire the lock again. After executing the
delay (line 13), process p; tries to acquire the lock again. We notice that p; may
decrease the value of W{i] only after it completes its operation of ALG.

If p; fails to acquire the lock (line 5), it executes the code at lines 15 — 22. Tt
finds out the identity of the winner (line 15), and waits for W[winner] time units.
Then, p; checks W[winner] again, and if the value has been updated (meaning
the winner is alive) p; delays itself again, and so on. p; does so until it notices
that either Wwinner] has not been changed or that the lock has been released
(line 21). If W[winner] has not been changed, p; assumes that the winner has
crashed, releases the lock (line 22), and tries to acquire the lock (line 5).

Theorem 2. Transformation 1 converts any obstruction-free algorithm into a
non-blocking algorithm when analyzed in the unknown-bound semi-synchronous
model.
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Proof. Assume to the contrary that there exists an obstruction-free algorithm,
ALG, such that the transformation does not convert ALG into a non-blocking
algorithm when analyzed in the unknown-bound semi-synchronous model. Thus,
there exists a suffix, g, of an infinite run ¢ in which (1) no process succeeds to
complete an operation of ALG; and (2) no process executes line 1 or line 2. Let
P denotes the set of all correct processes that do no succeed to complete their
operations in ogg.

Clearly, there must be at least one process p; € P, which succeeds to capture
the “lock” in line 5 infinitely often (that is, its compare-and-swap operation in
line 5 is successful infinitely often) and hence it executes the repeat loop in lines
6-12 infinitely often. This implies that the value of Wi] grows without bound in
0. Thus, there exists a suffix o1 of o, in which the value of W{i] is big enough
such that immediately after p; executes the delay statement delay (2 x Wi]) in line
13, no correct process is in the middle of executing any of the lines 16 — 22 while
having its local variable winner set to i. In particular, no process can successfully
execute the statement CAS(T,4,0) in line 22 (without p; taking further steps).

Let us denote by r an upper bound on the number of time units required for
pi to go through the repeat loop at lines 6 — 12 once regardless of the activity
of the other processes (such a bound exists by the properties of the unknown-
bound semi-synchronous model). Let o2 be a suffix of o1 where (1) p; succeeds
in capturing the “lock” in line 5, and starts executing the repeat loop at lines 6
- 12, (2) W[i] > r, and (3) no correct process is in the middle of executing any
of the lines 16 — 22 while having its local variable winner set to i.

Clearly, in o2, no process p; will ever be able to successfully executes the
statement CAS(T,,0) in line 22, because each time p; will execute the delay
statement in line 19, p; will go through the loop at least once and increment W [i].
Thus, (1) from that point on the value of T forever equals 4, and (2) process p;
will never leave the repeat loop at lines 6 — 12. Thus, in g2, every other process
that is in the middle of executing the repeat loop at lines 6 — 12 will eventually
execute line 12 and exits the repeat loop. Thus, there exists a suffix o3 of o9
where p; forever executes the loop at lines 6 — 12 alone. This implies that in o3
processes p; will execute its operation on ALG continuously without interference
and hence this operation must eventually be completed. A contradiction ]

Theorem 3. Transformation 1 has O(1) time complexity, and uses n atomic
single-writer registers and one CAS/read object.

Proof. Assume that process p; becomes enabled. Lets examine what is the max-
imum number of steps which involve access to the shared memory that p; may
need to take until it becomes enabled since the last time some process has been
enabled. Process p; can becomes enabled in one of three ways: (1) when it starts
it execution (line 1); (2) immediately after it succeeds to set the value of the
CAS object T to its id (line 5), and (3) starting to execute another round of
the repeat loop after executing lines 11 and 12. Option 1 requires 0 steps by p;.
Option 3 requires 2 steps by p; since p; was last enabled. So, lets assume that p
becomes enabled as a result of option 2. Process p; succeeds in setting the value
of T to its id (line 5) only when 7" = 0. As soon as the value of T is 0 it will
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take p; at most 5 steps (which involve access to the shared memory) to reach
line 5. Finally, if T = j and process p; crashes or is slow, it will take p; or some
other process at most 8 steps until they set T to 0 in line 22. The result about
the space complexity is obvious. ]

5 Transformation 2: Using a CAS Object with n Atomic
Registers

Our second transformation is a modified version of Transformation 1, in which
the three read (T') operations from Transformation 1 (in lines 12, 15, and 20), are

shared
T: CAS object, initially 0 /* “the lock” */
W(1..n]: array of atomic single-writer registers /* initial values immaterial */
local /* initial values immaterial */

winner: ranges over {—1,0, ..., n}; wait, t: integer; b: boolean

invoke(op)
1 execute up to X steps of ALG /¥ ALG is the original algorithm */
2 if op is completed then return response fi
3 Wli:=1 /* contention possible — set initial delay */
4 repeat /* tries to execute op without interference */
5 if CAS(T,0,4) then /* tries to acquires the “lock” */
6 repeat /* p; is enabled */
7 execute up to X steps of ALG /* original algorithm */
8 if op is completed then
9 CAS(T,1,0) /* release “lock” */
10 return response
11 else W[i| :=W[i|+1fi /* increase delay */
12 until ~CAS(T,i,1)
13 delay(2 x Wi]) /* flash out processes waiting in line 22 */
14 else /* loser */
15.1 j = 0; winner := —1
15.2 repeat /* find the winner’s id*/
15.3 if j (mod n) +1 # i then

ji=j(modn)+1lelsej:=j+1 (modn)+1fi
15.4 if CAS(T,j,j) then winner := j fi /* is j the winner? */
15.5 if CAS(T,0,0) then winner := 0 fi /* “lock” is released ? */
15.6 until winner # —1 /* winner found */
16 if winner # 0 then /* “lock” is captured by winner */
17 repeat /* wait for the winner to proceed */
18 wait := W winner] /* delay time */
19 delay (wait) /* wait as requested */
20 b := CAS(T, winner, winner)
21 until wait = Wwinner] V —b /* winner crashed? */
22 if wait=W [winner] A b then CAS(T, winner,0) fi i i /*release */

23 until op is completed

Fig. 2. Transformation 2. Program for process p; which invokes operation op.
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type

lock: record {id: integer ; W[l..n]: array of integers}
shared

T: CAS/read object of type lock , initially T.id = 0 /* “the lock” */
local /* initial values immaterial */

temp, temp,, tempy: of type lock; winner, wait: integer; b: boolean

invoke(op)

1 execute up to X steps of ALG /¥ ALG is the original algorithm */
2 if op is completed then return response fi

3 setW(1) /* set W[i] to1*/
4 repeat /* tries to execute op without interference */
5 if setTid(0,4) then /* tries to acquires the “lock” */
6 repeat /* p; is enabled */
7 execute up to X steps of ALG /* original algorithm */
8 if op is completed then

9 setTid(z,0) /* release “lock” */
10 return response

11 else temp := read(T); setW (temp.W[i] + 1) fi /* increment Wi] */
12 until temp.id # 1 /* until p; does not hold the lock */
13 delay(2 x temp.Wi]) /* flash out processes waiting in lines 16-22 */
14 else /* loser */
15 temp := read(T); winner := temp.id

16 if winner # 0 then /* “lock” is captured by winner */
17 repeat /* wait for the winner to proceed */
18 wait := temp. W [winner] /* delay time */
19 delay (wait) /* wait as requested */
20 temp = read(T); b := temp.id = winner

21 until wait = temp. W [winner] V —b /* winner crashed? */
22 if wait = temp. W|winner] A b then setTid(winner,0) fi fi fi/*rel.*/
23 until op is completed

function setW (wal: integer) /¥ Wi] := val */
1 repeat

2 temp, := read(T); tempy := temp,; temp, . W[i] = val

3 until CAS(T, temp,, temp,)

end

function setTid (old:integer, new:integer) return: boolean /* CAS(T, old, new) */
1 temp, := read(T); b:= false

2 while temp,.id = old do

3 temp, 1= temp; temp,.id = new

4 b:= CAS(T, temp,, temp,)

5 temp, := read(T) od

6 return(b)

end

Fig. 3. Transformation 3. Program for process p; which invokes operation op.
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implemented without using an implicit read operations of T'. Transformation 2
has O(1) time complexity, and uses n atomic single-writer registers and a single
compare-and-swap object (which does not support a read operation). The code
of Transformation 2, is given in Figure

The read(T) operations in lines 12 and 20 are easy to implement, as we are
only interested in knowing whether the value of T equals some specific value.
Implementing the read(T) operation in line 15, while preserving the O(1) time
complexity of the transformation is slightly more complicated. The easiest way to
implement read(T) is to check, for each value i € {0, ..., n}, whether the operation
CAS(T,i,i) returns true. However, such an implementation would increase time
complexity of the transformation to O(n). This can be easily fixed. First, we
observe that as long as the value of T (in Transformation 1) is different from
0, some process is enabled; and that only steps that are taken while no process
is enabled are counted. Thus, after each time we check whether the value of T
equals i for ¢ # 0 (by executing CAS(T,4,4)) we check whether the value of T
equals 0 (by executing CAS(T,0,0)). The final implementation can be seen in
lines 15.1 to 15.6. Correctness follows from that of Transformation 1.

6 Transformation 3: Using a Single CAS/Read Object

Our third transformation is also a modified version of Transformation 1, in which
the values of the atomic registers Wl..n] are encoded as part of the state of the
CAS/read object T. Transformation 3 has O(1) time complexity, and uses a
single compare-and-swap/read object (with no atomic registers).

Using only a single shared object may degrade the performance, as it forces all
processes to reference the same shared memory location. Thus, under contention,
the average waiting time to access the shared object would be high. The code
of Transformation 3, is given in Figure Bl The correctness of Transformation 3
follows from that of Transformation 1.

7 Discussion

We have introduced a new complexity measure and presented three transforma-
tions which are shown very efficient according to this measure. The transforma-
tions convert any obstruction-free algorithm into a non-blocking algorithm when
analyzed in the unknown-bound semi-synchronous model.

As we have shown, the FLMS transformation has exponential time complexity.
It is an open question whether achieving wait-freedom must require exponential
time complexity when using only atomic registers and fetch-and-increment ob-
jects. It would be interesting to find tight bounds also when using other base
objects. In particular, in what cases obstruction-free to non-blocking transfor-
mations have better time complexity than obstruction-free to wait-free trans-
formations? Are transformations to wait-free implementations are inherently
expensive?
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