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A bstract. Ruppert and Sylvester matrices a.re very common for COIll­

pming irreducible factors of bivariate polynomials a nd computing poly­
nomial greatest common divisors, respectively. Since Ruppert matrix 
comes from Ruppert cri terion for bivariate polynomial irredllcibility lest­
ing and Sylvester matrix com es from the usual subrcsultant mapping, 
they arc used for different pllrposes and their relat ions have Hot bt'en 
focused yet. [ 11 t his paper, we show some relations between Ruppert and 
Sylvester matrices as the usual subrcsultallt nw.pping for oomputillg (ex­
act / approximate) polynomial ecos, llsing Ruppert matrices. 

1 Intro duction 

Computing irreducible factol"s and gl"eatest common divisors is the most populal" 
ari thmetic for symbolic algebraic computations. I II fact , t here are lots of stud ies 
for exact factorization ([1],[2] ,[3],[4] and more), approximate factorization ([5], [61 
and more) , polynomial CGO ([7], [8], [9] and more) and approx imate CGO ([10], 
[11], [12] and more) . For computing GGOs, the Sylvester matrix or its variants 
play important roles in 1110st of t he algorithms. T he structure, properties and 
useful lemmus related to Sylvester matrix are widely kllown and well published. 
For computing irreducible factors , there are several approaches but thei r basic 
ideas have thc com mon idea: converti ng the problcm to linear equations. Such 
linear systems fonn Berlel".'lmp, Nicderreiter and Ruppert matrices for example. 
Hence, such structured mat rices are very important for symbolic computations 
and studying those matrices is one of interesting topics: Lee and Vanstone [13] 
show Beriekaillp ami Niederreiter sllbspaces and their relation , the structure of 
Ruppert matrix is given by Nagasa&"\ [14] and the displacement structure of 
Sylvester matrix for computing approx imate c e o is studied by Zhi [15]. 

In t his paper, we show some relations between Ruppert and Sylvester ma,­
trices as the usual subresultant mapping for compu ti ng (exact/ approximate) 
polynomial ceos via Ruppert matrix. 

1.1 Not ation s a nd Sy lvest er Matrix 

In this paper1 P(f) denotes the Newton polytope of the support of polynomial 
f. Pk denotes the set of polynomials of degree k. Pk1.kZ (k] :5 k2 ) is the natll-

, ... [ "...k ,x l 6'kZXl " . , () ' (b b ) ra lllJcetlon rom..... to'U sue 1 t 18t ")k, .kC] a = 1 - .. k~ -~' l Q] ..• a k, 

where b = t(bi) is the (k2 - kJ}-dimcnsional zero vector and a = t(o;). For 



polynomial I(x , Yl, . .. ,y",}, we abbreviate it to I(x , y ). The range of matrix 
A = (a l '" am) where a iS are k-dimensional column vectors, is defined as 
range(A) = {A b I b E a:;kxl}. We consider about polynomial eCDs of the 
following polynomials Io(x), 11 (x), " ' , h(x). 

Io(x) = Io.'lo x"o + ... + 10.1 X + 10,0, 
II (x) = Il.,,,x'" + ... + 11.1 X + 11.0, 

(1.1 ) 

h(x) = h ." ... x"k + ... + lux + h.o· 

\\Te assume that ni 2: ni+l and /;,,,; t: o. 
Cd1)) denotes the following convolution matr ix of polynomial p(x), of s ize 

(n+k)xk. 
P .. 0 0 0 

P,, - 1 1)" 

]),,-1 0 

Cdp)~ 
Pu p" 0 

0 Pu . 1),,-1 P .. 

0 P,, - I 

Po 
0 0 0 Pu 

where p(x) = p"x'· + ... + ])IX + Po. 
Let Sr be the following subresultant mapping . 

S, . {P''l- r-I X P"o-r-I -+ P"o+"l-r- I. 
. (-uo,ul)l-+ 1tIIo+v.oI" 

(1.2) 

where PI; denotes the set of univariate polynomials of degree k. This mapping 
can be expresred by the following Sylvester subresultant matrix SrUO , fd. 

\\Te note a well known fact: if 1" is the largest integer that Sr is not injective, 
we can compme the greatest common divisor of 10(x) find h(x) from the r ight 
llull vector of Sr(Jo,/d (see the proof in Rupprecht [16J and so on). Moreover, 
the greatest OJ1ll1ll0n div isor also can be com puted by QR-decomposition of 
SoUo, II) (see the proof in [8, 9J and so on): the last non-zero row vector of the 
upper triangular matrix is the coefficient vector of the polYllomial CCD of 10 
and IJ. SoUo, f l) also has another useful property that the dimension of the null 
space i8 the degree of the polynomial CCD. 

1.2 Ruppert Matrix 

Ruppert matrix is the coefficient matr ix of the c..'Orresponding linear equation 
of the following absolute irreduci bility criterion due to Ruppert [17] (Gao and 
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Rodrigues [IS) studied t.he sparse polynomial version of this criterion). 

a9 of {}f ah f-a - .9-a + h-a - f~ = 0, y,h E !l".: [x, u], 
y y x vX 

(1.3) 

deg;r; 9 ::; deg:r; J - I , degy 9 ::; degy j , 
deg:.; II. ::; eleg", J, elegy h ::; degy f - 2. 

T he criterion is that f (x, y) is absolutely irreducible if and only if this differ­
ential equation does not have any non-trivial solutions. The matrix is useful 
for computing irreducible factors (6, II and the irreducibility ra<lius [19, 14, 20]. 
Since Ruppert mat.rix is the set of coefficient vectors \V.Lt. unknowns of 9 and 
h, matrices by different term orders arc not the same. For the Ruppert matrix 
of I , we use the lexicogmphic order of x, V and x , VI , ... , Yrn, as in Nagasaka [1'1, 
20], and by RU) we denote the Rupper t. matrix of polynomial I. 

For multivariate polynomials, May [21 ] st.udied t.he generalized version of t.he 
Ruppert criterion , with the follow ing d ifferential eq uatioll and degree constraints. 

09 of af aI., 
f

a
- - g~ + h;-a - f"""E) = 0, g,h E C[X,Yl: ·· · , Ym ], (1.4) 

!Ji vy, x v x 

May [2 1] also studied the generalized Ruppert criterion with degree bounds via 
Newton polytopes as follows. 

P(xg) \; P(f ) and P (y,h ,) \; P(f ). (1.5) 

T he generalized two criteria have the sallle argument that the givell polynomial 
I(x , y ) is absolutely irreducible if and only if this differential equation docs 
not have any lion-trivial solutions. For these criteria, we call also construct the 
coefficient mat.rix of the corr('!:;ponding linear system, with the lexicographic 
order of X,YI, .. . ,y", . 

2 G C D of two polynomials 

In t his section, we consider the subresultullt mapping of two polynomials via 
Ruppert matri..'''' We define the fo llowing polynoruial f {x,y) 

f( x, y) ~ fo(x) + f, (x)y . (2.1 ) 

It is obviolls that J (x,y) is reducible if and only if fo(x) and II (x) have a non­
triviul GCD. This means that we can check whether fo{x ) and II (x) have a non­
trivial GCD or not via the differential equalion (1.3) of the Ruppert criterion , 
with f (x, y) = fo{x) + fl {x) y. We note that Idx) + lo(x)y can be used instead of 
l o(x) + II (x) y for our purpose, since the degree constraints of Ruppert criter ion 
arc given by each variables separately. 
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2.1 C ase 1-1: Simple R e sult 

Substituting degrees of I (x , y ) for that of I in (1.3), we have 

8g 8/ /-a -g-8 = 0, g Ee[z ,V]' dcg", g ::;'Ilo-l , dcgy g ::: 1. (2.2) 
y y 

Let g(x ,y) be the following polynomial satisfy ing (2.2). 

g{x, y} = 90 {X} + 91 (x} y. 

Substituting g(x, y ) for 9 in (2.2), we have 

(Jo(x ) + I> (X)9)9' (X) - (!Jo (x) + 9, (X)9)/' (X) ~ O. 

Collecting terms with respect to y , we have 

g, (x) / o(x) - go(x) /, (x) ~ O. (2.3) 

T his equations can be represented as a linear equat ion W .Lt. coefficients of poly­
nomials g(x , y ). The coefficient matrix is the Ruppert mat rix of I (x , y ) and 
its struct ure is given by Nagasaka [14] . ~doreover , the structure of t his matrix 
is the Sylvester matrix 50(/0, - f d since the degree constraints of u;(x) and 
9;(X) a.re the same if "110 = n t . For 110 > n ], t he RuppClt mat rix has extra 
column vectors that arc not included in t he Sylvester mat r ix, hence we have 
P "o+,,,.211o(range(So(/0, / d)) C range( R(/)) . By compari ng between t he both 
s ides of (2.3), degrees of deg(Yl/o) and deg(yol1 ) must be the same. Therefore, 
we have the following lemma. 

Le mma 1. Fm' an y polynomials fo (x) and l1 (x) , the S ylveste7' matrix and the 
Ruppe1't mat1'ix oj jo(x) and l1 (x) have the same injonnntion lor c(J1nlJUting 
thei7' CeD, with the Ruppe1·t 's original differential equation and constmints. <l 

2.2 Case 1-2: Alternative Result 

T he degree bound s of t he differential equat ion (1 .3) are not t he same as the 
following general version of the Ruppert criterion by John i\'!ay [211 fo r bivariate 
polynomials, though the difference is only the ["oles of variables and not essentia l. 

ag a/ a/ ah . 
i-a - g-a + h~ - f-

a 
:::: 0, g,h E [: [x, y], 

y y v X X 
(2.4) 

deg", 9 ::: deg", f - 2, degy 9 ::: degy f, 
deg", h ::;: deg", f. degy h ::;: degy! - 1. 

(2.5) 

We have the followi ng corollary (see [21] or [6]) . 

Corollary 1. For a given f (x , y) E !C[x ,y] that is square-fn;e ove7' C(y), the 
dimension (over !C) oj the null space oj R.(f) is equal to " ( the num be1' oj 
absolutely il1cducible factors of f over 0::: ) - I " 
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Substituting degrees of I(x , y) fot' that. of I in (VI), we have 

og of Of ah 
I!,} - g7} + h7:\ - I z- = 0, g, II. E [: [x, v], 

uy vy u X v X 

dcg", g ::; 110 - 2, degy g ::; 1, dcg", II. ::; 110 , dcg~ h ::; O. 

Let g(x, y) and h(x,y) be the following polynomials satisfying (2.6). 

9{X, y) = 90(X) + 91 {X)Y, h{x, y) = 1I0 {x). 

Substituting 9(X, y) and h(x,y) fot' 9 and h, respectively, in (2.6), we have 

(J,(x) + h (x)y)", (x) - (g,(x) + g, (x)y) h (x) 
+1!0(x)(O/~1") + O/~1"') y} - (fo(x) + Il(X)Y)OI~J'>:) = O. 

Collecting terms with respect to y , we have 

(2.6) 

aj,(x) Oho(x) 
",(x)j,(x) - Yo(x)h (x) + h,(x)-o- - fo(x)-o- ~ 0, (2.7) 

v X v X 

h,(x) oJ,(x) _ h (x/ho(x) ~ O. (2.8) ax ax 
T his is 1I0t as same as the subresultant mapping in the previous subsection and 
is not reduces to the usual subresultant mapping (2.3). 

Le mma 2. For any polynomials UI(X) E P", _ I and 1Io(x) E P "o - I satislying 
deg(ullo + 110/.) < no + 11.1 - 1, the7Y~ exist polyn.omials 90(X), 91 (x) and lIo(x) 
satislying their deglY!e constraints, the elflJ.ation (2.8) and 91fo - 9011 - 100/1: + 
hoPJi = UI!O + ·uoll. <0 

Pmoj. If dcg(ud :::; nl - 2 :::; 11 0 - 2 and degeuo) ::; 110 - 2, thc lemma follows 
from (2.7) and (2.8), with 90(X) = - 1I0{x), 91(X) = "lLI(X) and !to(x) = O. 
We suppose that d eg(ud = nl - J and deg(uo) = no - I since the leading 
coefficients of u.t!o and uoh must be canceled. \Ve put ·uo (x) = :L ;~~I ·uo.;x; 

( ) 'C' ''' - ' . and U.l x = L.. i",O 11·UX', and transform ttl ! O + tlO!l as follows. 

'+ f-( · "0- ' ) ' ( + "o-') f UIJO tlo 1 - U I - U\'''o _ IX )0 ~ -tlo UO'''o_ IX I 

+U. l. "o - IX"O- I!O + 1I0' ''0_IX''0- 1 11 
( 110 - 1 + "O." q _ ' (f f ''')') , = U. I -1I1."0-IX ""/0."0 I - l."oX )0 

( + "0 - 1 + "0·"0 _ ' ( f f ."o)' )f 
- - uo 1I0."0_ IX " U/O."o )0 - JO,no X I 

+U I ,,,o_ IX,,o- 1 fo + 110,no _ IX"o - 1 11 
,",0]0 _ ' (f f X"O) ' f + "°]0 _ ' (f f x"o)'f 

- "0 0."0 I - 1."0 JO "0 0 ."0 JO - JO."o I 

- ( ,1\0 - 1 + "0.",, - , (f f ,no)') ' 
- 1/. 1 - 111."0_ 12: "0/0."0 I - 1,1102: )0 

( + "0 - 1 + " 0]0 _ ' ( f f ."o) ' )f 
- -110 lIO,no_ IX " 0 0 ."0 )0 - JO,,,o X I 

_ '"'0"j'Q _ 1 f' f + "0.",, _ 1 flf + (1 + ~)X"O- I f 
"00."0 uO n%."o)O 1 tl· " o - l UO.1I.0- I /o.,,0 JO, 



where l' =~ , If no = n\ , we haveu\ 1ln _ l + 'UO "n _ l~ = 0 since the leading 
,,;I: 'v ' v 10'''0 

coefficients of u1/0 +11011 must be canceled. For 110 > 'Itl , we also have 11 1'''0 - 1 + 
110 ."0 - 1 ~ = 0 s ince Ul.no - i = II "0 = O. Therefore, the following 9o (X), 9l (x) }o ... o . , 

and ho(x) prove the lemma. 

o 
Le m m a 3. Pm' any lwlynomia/s 9o (X), 9] (x) an ti ho{x) satisfying thei7' degree 
constmints and the equations (2.7) and (2.8), then~ exist polynomials 'U \ (xJ E 
P", - 1 and lIo(x) E P "o- l satisfYing udo + 11.011 = 91 fo - 90/1 - fo fflj;: + ho~ , 
if f (x, y ) = fo (x) + fl (X)Y is squan-jree over C(y ). <0 

Pmof. Let 90(X), Yl (X) and ho(x) be a solution of (2.7) and :2.8) with f (x, y) = 
f o(x) + fl (X)Y. By the lemma 3.1 ill John rvlay [21] (or see 16]), we have 

ho{x) = ).11 (x) with). E ([;. 

Ifni $. dcg(91 )::; no - 2, we have deg(9,lo ):::; 110 + n, - 1 s ince max{deg(901, ), 
deg(JofD , degU,I~)} = 'Ilo+nl -1. However , deg(9110) :5 rlo+n,-i contrad icts 
n, :::; deg(91 ). Hence, we have deg(91 ) :::; 'lt l - I and the follow ing polynomials 
'!lo (x ) and UI (X) prove the lemma. 

o 
The following Lheorem follows from the above lemmas, directly. 

Theore m 1. The polyn.omial GCD 01 fo (x) and II (x) can iJe computed by Sin­
gular Value DecomrlOSition (SVD) 01 Ruppe,t matrix of l {x, 'Y) = l o{x) + II (x) y 
in (2.4), ij I (XdJ ) is sq1La1'C-jrce OiJe1' [;(JJ ). <0 

For col'npming polynomial eeDs, one of well known methods is computing 
the QR decomposition of the Sylvester matrix of fo (x) and II (x) as in [81, [9] 
and so on. In the below , we show that we can compute polynomial eCDs by the 
QR decompositioll of the Ruppert matrix of I (x , Y) = 10 (x) + II (x) y. The figUl'e 
1 illustrates the structure of the Ruppert matrix of I (x , y ) = l o(x ) + fl (x) y , as 
in Nagasaka [14]. T he size of this matrix is (4no) x (3710 - I) . 

Le mma 4 . The ronge (and the span of column vectors) of the Ruppe1·t matrix 
of f (x , y ) incltldes the descending coefficient vedo)' (i ts constant term is the last 
element) olno(Jo,lloll (x ) - h',o f o(x})X"o - l . oQ 
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F ig. 1. Ruppert matrix RU) = RUo(x) + /1 (x)y) 

- / 0,110 0 b.llo 0 

- / 0'''0- 1 b ,"O-1 

- /O.no b .llo 

'. - / 0.110-1 '. / 1,110-1 

flU) ~ ("" ' 0 ) , Rl.2 = R2.1 1l"l .2 

- / 0.1 /1 .1 

- /0.0 /1.0 

- / 0. 1 /1.I 
0 - / 0.0 0 /1.0 

0 0 0 0 0 

h ."o- l -/1. "0 0 

2/1."0- "1 0 0 

b .no-2 . (2 - '/(l) /J. IIO 0 

( l - no) /l nn 0 
RI. I = 

110 fl .o -710 11 .no 

0 (110 - I) 11 ,0 0 

0 11.1 - /1.2 

0 2/1.0 0 - 2/1.2 
0 0 0 /1.0 - /. .1 
0 0 0 0 0 

10.110 - 1 -/0'''0 0 

2/0.no_2 0 0 

10' ''0 - 2 . (2 - 110) f o.llo 0 

( I - "/10) 10'''0 0 
R2 .1 = 

" 0 f o.o - no 10'''0 

0 (no - I) 10.0 0 

0 10.1 - / 0.2 

0 2/0.0 0 -2/0.2 
0 0 0 10.0 / 0.1 
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Pmo[. Put RU ) = (r l , ' . , , r3!10- 1) where r j is 4110 dimensional column vector. 
\Ve note that lower 2no - 1 rows of (r "0+2, "' , r 3"0- d is the usual Sylvester 
subresuital1t matrix 51 (II , - fo). If we apply fraction-free column reductions to 
the first column rl by r 2, "' , r"o+ I, then the first column becomes 

'" 
;01 = L h ,no-i r i+l . 

• = 0 

Let r be the following column vector. 

"0- 2 " 0-2 

r = ;Ol + L (no - I - 'i)fLno-l-ir l>0+2+i + L (no - I - ·i)fo.,,0-I-jr 21l0+1 ' 
; = 0 ;= 0 

r is the descending coefficient vector (its constant term is the last element) of 
1I0{fo,"ofl (x) - h.I>oio(x))X"o- l, 0 

T heore m 2. The polynomial GCD of fo(x) and fl (x) can be campI/ted by ap­
plying the QR decomposition to the tmnsl'ose of the last 3no mws of their Rup1)ert 
matrix RU) = RUo(x) + h (x)y) . The last non-zero row Vect07' of the triangular 
mat1"ix is the coefficient vector 01 their' polynomial GCD. <0 

Proof. Let R 1m the t ranspose of the last 3110 rows of their Ruppert matrix HU). 
As in the proof [81 , the ia<;t non-zero row vector of the triangular matrix of the 
QR decomposit ion is the coefficient vector of the lowest degree non-constant 
polynomial of linear combinations of polynomials whose coefficient vectors are 
row vectors of R. Hence, we show that the lowest degree non-constant polynomial 
is the polynomial GCD of 1o (x) and II(x). 

The rank of the upper (110 + 1) x 3no submatrix is rio at least s ince its upper 
left 110 x no submatrix is a triangular matrix and its diagonal elements are non­
zero clements: 11011,0, ... , 2fl.o , h .0 - If the linear combination includes some of 
the first 110 row vectors, t he degree of the c:ombination is larger than 2no. Since 
R has l'OW vectors whose corresponding degrees are less than or equal to 2110, 
the lowest degree nOIl-eollstant polynomial does not include the first '/10 rows. 

However, a.:; in the proof of the lemma 4 , another row vector gencrated from 
the first 110 rows, can be included in the linear combination for the lowest degree 
non-constant polynomial. Hence, we only have to prove that the lowest degree 
non-constant polynomial of lineal' combinations of polynomials whose coefficient 
vectors are row vectors of the following matrix k is the polynomial GCD of 10(x) 
and fI (x) . 

o the coefficient vector of 110(10,1Ioil(X) - il,1IojO (x))x"0-1 
O - fO ,IIO - fo ,IIo - 1 ... - fo ,1 - fO,fi 0 

R. = 0 0 - fo,,,o - fO,I> o-1 . - 10,1 -10.0 

o fl."o 11."0- 1 11.1 il ,o 0 

o o 11.1 fLo 
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The last 2no - 2 rows form t.he usual Sylvester subresultant. Illa~r ix 51 (/1, - io) 
whose range is the set of coefficient vectors of 'I1lfo + 'Uoil where 'Uo and UI arc 
polYliomials of degree no - 2 at most, and this is enough to compute lion-trivial 
eeo s of io and ii, 1'"loroo\"er, the first row of R is the (nJ - l )-th row reduced 
by the fi rst 1'0'>'1 , of SoU], - Io)- Therefore, lho las t. nOll-zero row vector of t.he 
triangular matrix of the QR decomposition of fl, is that of SO(fI, - io) · 0 

\Ve note that for practical computations of polynomial eeos, we do not have to 
use the Ruppert or Sylvester matrices because the usual Sylvester subresultant 
matrix which is smaller, is enough for ceos, especially for approximate ceo s. 

3 GCD of several polynomia ls 

In this section , we l;how brief overview of relations between Sylvester matrix and 
RUPPCl-t matrix for several polynomials 10(x), .. . , h(x) . Basically, the relat ions 
are natural extensions of the results in the previous section. 

3 .1 G e ne ralized Sy lvest er llla tI-ix for seve ra l poly no lllia ls 

Let S r be the following generalized subresuitant mapping_ 

(3.1 ) 

T his mapping can be expressed by the following Sylvester subresuitant matrix 
S r(fo, - , . ,h)· 

We note a well known fact: if r is t.he largest integer t.hat Sr is not injective, we 
can compute the greatest common divisor of 10(x), "" h(x) from t.he right null 
vector of 5,·(fo , ... , id (see [16]). 

3 _2 E x te nsion for several p o ly nomials 

Let 1 (x , y ) be the following polynomial. 

f(x ,y ) ~ fo(x) + h(x)y, + ... + h(X)Yk' (3.2) 
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This polynomial is irreducible if and only if the polynomials l o(x), II (x), ... , 
ik- I(X) and fI, (x) do not have a ny non-trivial GCD. As in t he previous sec­
tion , we call check whether 1;{x) have a non-trivial GCD or not by the dif­
ferent.ia l equation (1.4) of the generalized Ruppert criterion , with I (x, y ) = 

l o(x) + I:~'=I l i(x)Yi . The degree constraints of ( lA ) with I (x, y ) of (3.2), be­
comes 

degx y :::;no- 2, degy; y :::; I, 

dcg", Mil :::; no , dcgYj 11. (;) :5: {~ : ~; 
In the previous sect ion , we define 9(x, y ) and Mkl(x, y ) satisfying the following 
different ial equat. ion. However, the degree COllstrajllts arc not by totul-dC!,'1'ccs so 
the number of possible terms increases exponenti ally. 

og oj oj Elh, 
1- - 9-+h,- - J- ~ O. 

ay; ay; ax ax 

Hence, we limit the solution polynomials 9(X, Y) and Mi1(x, y ) as follows. 
, 

(3.3) 

"""' (I) (I) ~k) _ (k ) 9(X, y )= yo(x ) + L 9j(X)Yj, It (x, y )= ho (x ), ... , It (x, y )- ho (x) . 
i=i 

\Ve note t hat this limitation may be harmless since by the lemma 3.1 in John 
lvJay [21] (or sec [6]), we have 

hgl(x ) = ),,;I;(x ) with Ai E !C. 

Substituting t he above 9(X, y ) and h(i)(X,y) fo r 9 and hi, respcctively, in (3.3), 
we have 

J (X, Y)9,(X) - 9(X, y )J,(x) + ',~)(x) aJb~ y ) 
(') 

J ( ' )EI" ,' (x) ~ 0 
X, Y n . 

u X 

Collect.ing terms with respect to y and substituting ),,;/;(x), we have 

{ 

J, g, - g, /; + A;(M , ' - l oJ() ~ 0, 
J,g, - g,J, + ),, (1;],' - J, j( ) ~ 0, 

hy; - 9kit + )" j(f; ik' - hi/ ) ~ O. 

T his system of C<lllations is t.he systcm of equat ion (2.7) for all the combina­
tions of 10, .. . , h s ince the equation (2.8) wit h 10, ... ,h is always satisfied by 

hg){x) = ),, ;/;(x) . As in t.he proof of lemma 3, for the solut.ion of thc above 
system, there exist. polynomials 1I;(x) E P,,;- l (i = 0, . .. , k): 

{ 
tlo(x) = 90(X) - >'010', 
1l;(x) = -y;(x) + )"o/;' (i = 1, ... , k ). 

For the other lemma and theorem for two polynomials) t he author thinks t hat 
the same relations arc hold for several polynomials since the rallks of null spaces 
of Ruppert matrix and generalized Sylvester subresultant mat rix are the same. 
Howcver, these problems arc postponed as a future work. 

)0 



4 Conclusion 

In t.his paper, we show some relat.ions on Ruppert. mat.rix and Sylvester matrix 
from the point of computing the greatest common divisors of two polynomials. 
T hough no algorit hm is present in this paper and does not compete with the 
fi nest recent algorithms for computing approximale e CDs, the author hopes 
that factoring polynomials and computing polynomial GCDs are the basics of 
symbolic computations, and revealing their relations will make some progress in 
the futurc. 
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