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Ruppert Matrix as Subresultant mapping

Kosaku Nagasaka

Kobe University, Japan
nagasaka@main.h.kobe-u.ac. jp

Abstract. Ruppert and Sylvester matrices are very common for com-
puting irreducible factors of bivariate polynomials and computing poly-
nomial greatest common divisors, respectively. Since Ruppert matrix
comes from Ruppert criterion for bivariate polynomial irreducibility test-
ing and Sylvester matrix comes from the usual subresultant mapping,
they are used for different purposes and their relations have not been
focused yet. In this paper, we show some relations between Ruppert and
Sylvester matrices as the nsual subresultant mapping for computing (ex-
act /approximate) polynomial GCDs, using Ruppert matrices.

1 Introduction

Computing irreducible factors and greatest common divisors is the most popular
arithmetic for symbolic algebraic computations. In fact, there are lots of studies
for exact factorization ([1].[2],[3],[4] and more), approximate factorization ([5], [6]
and more), polynomial GCD ([7]. [8], [9] and more) and approximate GCD ([10],
[11]. [12] and more). For computing GCDs, the Sylvester matrix or its variants
play important roles in most of the algorithms. The structure, properties and
useful lemmas related to Sylvester matrix are widely known and well published.
For computing irreducible factors, there are several approaches but their basic
ideas have the common idea: converting the problem to linear equations. Such
linear systems form Berlekamp, Niederreiter and Ruppert matrices for example.
Hence, such structured matrices are very important for symbolic computations
and studying those matrices is one of interesting topics: Lee and Vanstone [13]
show Berlekamp and Niederreiter subspaces and their relation, the structure of
Ruppert matrix is given by Nagasaka [14] and the displacement structure of
Sylvester matrix for computing approximate GCD is studied by Zhi [15].

In this paper, we show some relations between Ruppert and Sylvester ma-
trices as the usual subresultant mapping for computing (exact/approximate)
polynomial GCDs via Ruppert matrix.

1.1 Notations and Sylvester Matrix

In this paper, P(f) denotes the Newton polytope of the support of polynomial
[ Py denotes the set of polynomials of degree k. @, 1, (k1 < k2) is the natu-
ral injection from €% *! to €***! such that Py, ko (@) ="(br -+ by, a1+~ k)
where & = “(b;) is the (ko — ky)-dimensional zero vector and a = *(q;). For



polynomial f(z.91,...,4.), we abbreviate it to f(z,wy). The range of matrix
A = (a - ay,) where a;s are k-dimensional column vectors, is defined as

range(A) = {Ab | b € C**'}. We consider about polynomial GCDs of the
following polynomials fo(2). fi(z), ---. fru(x).

Jfo(@) = fong®™ + -+ fo1T + fo,0s
Jilz) = frae™ -+ frae+ fe

(1.1)
fll'.(:r'.) = fk‘nkm"’k g LI o fk.l-l-‘ + fﬁ‘.f]-

We assume that n; > niyq and fi,, # 0.
Ci(p) denctes the following convolution matrix of polynomial p(x), of size
(n+k) x k.

(pn 0 == 0 @ X
Pn—=1 Pn ! : :
: pn—] ..' U
0] g e 0
Clpy=| ™ = D ,
0 Po  "-Pn—1 Pn
: 0 Pn—1
E : .'- Po :
\ 0 0 0 p/

where p(z) = p,a™ + -+ pr12 + po.
Let S; be the following subresultant mapping.

,P'n.l—r—l X 'P'n. —r—1 _’Pn +ny—r—1:
. 0 0 1.2
o { (uo, 1) = wr fo + uo fi. (3-2)

where Pj, denotes the set of univariate polynomials of degree k. This mapping
can be expressed by the following Sylvester subresultant matrix S,.(fo. f1)-

Sr(fll-fl) = (Cﬂ-n—v'(fl) Cﬂl—"(f(l)] .

We note a well known fact: if r is the largest integer that .S, is not injective,
we can compie the greatest common divisor of fy(x) and fi(x) from the right
null vector of S,-(fy, f1) (see the proof in Rupprecht [16] and so on). Moreover,
the greatest common divisor also can be computed by QR-decomposition of
So(fo,Jf1) (see the proof in [8,9] and so on): the last non-zero row vector of the
upper triangular matrix is the coefficient vector of the polynomial GCD of f,
and fy. So(fo, f1) also has another useful property that the dimension of the null
space is the degree of the polynomial GCD.

1.2 Ruppert Matrix

Ruppert matrix is the coefficient matrix of the corresponding linear equation
of the following absolute irreducibility criterion due to Ruppert [17] (Gao and



Rodrigues [18] studied the sparse polynomial version of this criterion).

dg af oh
c'J_y_ 6 + b I—O g.h € Clz,y). (1.3)

deg, g < deg, f — 1, deg, g < deg, f,
deg, h < deg, f, deg, h < deg, f—2.

The criterion is that f(z.y) is absolutely irreducible if and only if this differ-
ential equation does not have any non-trivial solutions. The matrix is useful
for computing irreducible factors [6,1] and the irreducibility radius [19,14, 20].
Since Ruppert matrix is the set of coefficient vectors w.r.t. unknowns of g and
h, matrices by different term orders are not the same. For the Ruppert matrix
of f, we use the lexicographic order of @,y and z, y1,. ... ym, as in Nagasaka [14,
20], and by R(f) we denote the Ruppert matrix of polynomial f.

For multivariate polynomials, May [21] studied the generalized version of the
Ruppert eriterion, with the following differential equation and degree constraints.

L ) f oh; . |
aﬂ; 3:;, f_ - U' 9s h € C[I., s ‘y-m]| (14)

deg, g < deg, f — 2, deg, g <deg,, [,

deg, f i#J
deg, h; < deg, f, deg, hi < {deg.yj Pl ey

May [21] also studied the generalized Ruppert criterion with degree bounds via
Newton polytopes as follows,

P(zg) € P(f) and P(yih:) € P(f). (1.5)

The generalized two criteria have the same argument that the given polynomial
f(xz,y) is absolutely irreducible if and only if this differential equation does
not have any non-trivial solutions. For these criteria, we can also construct the
coeflicient matrix of the corresponding linear system, with the lexicographic
order of z, 91, ..., Y.

2 GCD of two polynomials

In this section, we consider the subresultant mapping of two polynomials via
Ruppert matrix. We define the following polynomial f(x,y).

f(z,y) = folx) + fi(x)y. (2.1)

It is obvious that f(x,y) is reducible if and only if fo(x) and f(x) have a non-
trivial GCD. This means that we can check whether fy(z) and fi(x) have a non-
trivial GCD or not via the differential equation (1.3) of the Ruppert criterion,
with f(z,y) = fo(z)+ fi(2)y. We note that fi(x)+ fo(x)y can be used instead of
Sfo(x) 4+ fi(x)y for our purpose, since the degree constraints of Ruppert criterion
are given by each variables separately.



2.1 Case 1-1: Simple Result
Substituting degrees of f(z,y) for that of f in (1.3), we have

8g of
_a 2 s 2.yl deg.g<mng— 1, deg, g <1. g
"Fay gay 0, g€ Clz,y], deg,g<mng—1, deg,g <1 (2.2)

Let g(2:,y) be the following polynomial satisfying (2.2).

g(z,y) = go(x) + g1 (x)y.

Substituting g(z,y) for g in (2.2), we have

(folz) + filz)y)g1(x) — (go(z) + g1(2)y) fr(z) = 0.

Collecting terms with respect to y. we have

g1(z) fo(z) — go(x) f1(z) = 0. (2.3)

This equations can be represented as a linear equation w.r.t. coefficients of poly-
nomials g(x.y). The coefficient matrix is the Ruppert matrix of f(x.y) and
its structure is given by Nagasaka [14]. Moreover, the structure of this matrix
is the Sylvester matrix So(fy,—f1) since the degree constraints of w;(z) and
gi(xz) are the same if ng = n;. For ny > n;, the Ruppert matrix has extra
column vectors that are not included in the Sylvester matrix, hence we have
D otny 2ng (range(So(fo, f1))) € range(R(f)). By comparing between the both
sides of (2.3), degrees of deg(g; fo) and deg(go fi) must be the same. Therefore,
we have the following lemma.

Lemma 1. For any polynomials fo(x) and fi(x), the Sylvester matriz and the
Ruppert matriv of folx) and fi(x) have the same information for computing
their GCD, with the Ruppert’s original differential equation and constraints. <

2.2 Case 1-2: Alternative Result

The degree bounds of the differential equation (1.3) are not the same as the
following general version of the Ruppert criterion by John May [21] for bivariate
polynomials , though the difference is only the roles of variables and not essential.

dg af af

oh
el PP e RHETRS, sl BORRERY s h 2.4
Ay g(’Jy * ‘oz f@:r: 0, g:heClzgl, )
deg, g < deg, f —2, deg, g < deg, f,

deg, h < deg, f, deg, h < deg, f—1. (2:5)

We have the following corollary (see [21] or [6]).

Corollary 1. For a given f(x,y) € Clx.y] that is square-free over C(y), the
dimension (over C) of the null space of R(f) is equal to “ ( the number of
absolutely irreducible factors of f over € ) —1 "



Substituting degrees of f(x,y) for that of f in (2.4). we have

b3 7] 0 oh

deg, g < ng—2, degy g <1, deg, h <ny, dcgy h <0.
Let g(x,y) and h(x,y) be the following polynomials satisfying (2.6).
9(2,y) = go(x) + g1 (x)y, h(z,y) = ho(x).

Substituting g(x,y) and h(x,y) for g and h, respectively, in (2.6), we have

(folz) + fi(z)y)gi(x) — (g0(z) + gr(@)y) f1(x)
+h ( )(6Jrll(-1) 4 2hi=) dfl(.c y ) (fu(i)+f1(1') }ﬂhn(m} 0.

dir

Collecting terms with respect to y, we have

9@ o@) ~ 90(@)1(2) + ho(e) 2D _ g,y _ ()
h.g(;r)% -h (T)% =0. (2.8)

This is not as same as the subresultant mapping in the previous subsection and
is not reduces to the usual subresultant mapping (2.3).

Lemma 2. For any polynomials uy(x) € P, -1 and ug(x) € Pp,—1 satisfying
deg(uy fo + upfi) < ng+ny — 1, there exist polynomials go(x), g1(x) and hg(x)
satisfying their degree constraints, the equation (2.8) and g1 fo — gof1 — fuﬂ“ +

h-o%{r'l = uy fo +uofr. <

Proof. 1f deg(uy) < nqy —2 < ng — 2 and deg(ug) < ng — 2, the lemma follows

from (2.7) and (2.8), with go(x) = —ug(x), ¢1(x) = wi(x) and hy(x) = 0.

We suppose that deg(u;) = ny — 1 and deg(ug) = np — 1 since the leading
ng—1

coefficients of u; fo and up fi must be canceled. We put up(x) = )" g, i
T ;
and wuy(x) = Z:’;u uy o', and transform wy fy + ugf1 as follows.

w1 fo+ uofi = (U1 — w1 ng—12" 1) fo — (—uo + tome—12" ") fi
+uy pg—12" 1 fo + o ng—12™ 1 fi
. 2 u —
= (11 — Yne-12™ 1 + —Q—n:}-:, L (f1 — Frng2™) ) fo

, ng—1 . Hoing—
—(—uo + ugng-12""" + ﬁf’rj(fo — fomngx™)) i

+U1 ng—12" " fo + Ugmo—12™0 L fy

_ Momg-1 (fl fl.n.n-rﬂu )’fD ::}::1 1 (fU fl.l. "“Iﬂ.tl )’fl

Tl[urln" i
= (?11 = 'l'l'-l_n"—lmnuﬂ-l e ﬁ]_._l( f]Jr.u ”‘D)")f(]
—(—uo +ugno—12" "1 + iﬂf—.l‘,_—j(fu — fomoz™) )1

Ui ng U, g — fing Tg—
—moie fifo+ i fofi + (Wing=1 + tome-1722)a"™ ™ o,

ct



where f' = L 1f ng = Ny, we have uq ,,—1 + Uy — 1}:}—& = () since the leading

dx*

coefficients of wy fo + ug f1 must be canceled. For ng > ny, we also have uy ,,,—1 +
U0, ng—1 }rn—'l =0 since uq -1 = f1.ny = 0. Therefore, the following go(z), g1 (x)
and ho(x) prove the lemma.

go(z) = —(up(x) — uo,ng-12""1) + Z?T}nfﬁ(fo P i
91(2) = (ur(x) — g ng—12™ ") + 8= (f1 = f1pp2™)’
ho(z) = %}‘uﬁh'

O

Lemma 3. For any polynomials go(x), gi(x) and ho(x) satisfying their degree
constraints and the equations (2.7) and (2.8), there exist polynomials uy(x) €
Pry—1 and uy(x) € Pp,— 1 satisfying uy fo +uuf1 =agifo—gof1 — fnai‘l -+ h.n—a.%_.
if flx,y) = fola)+ filx)y is square-free over C(y). <

Proof. Let gg(z). g1(x) and hg(x) be a solution of (2.7) and (2.8) with f(x,y) =
Jo(x) + fi(z)y. By the lemma 3.1 in John May [21] (or see [6]), we have

hol(z) = Afi(z) with A € C.

If ny < deg(g1) < ng —2, we have deg(g1 fo) < ng +ny — 1 since max{deg(go f1).
deg(fof1), deglf1 1)} = no+mny—1. However, deg(g) fo) < np-+n;—1 contradicts
ny < deg(g,). Hence, we have deg(g;) < n; — 1 and the following polynomials
ug(z) and uy () prove the lemma.

3fo( 0f1( z)

ug(z) = —go(@) + A—F—, w1(x) = g1(x) -

The following theorem follows from the above lemmas, directly.

Theorem 1. The polynomial GCD of fo(x) and fi(x) can be computed by Sin-
gular Value Decomposition (SVD) of Ruppert mairiz of f(x.y) = fo(x)+ fi(x)y
in (2.4). if f(x,y) is square-free over C(y). <

For compuring polynomial GCDs, one of well known methods is computing
the QR decomposition of the Sylvester matrix of fy(z) and fi(z) as in [8], [9]
and so on. In the below, we show that we can compute polynomial GCDs by the
QR decomposition of the Ruppert matrix of f(z.vy) = fo(a)+ fi(2)y. The figure
1 illustrates the structure of the Ruppert matrix of f(x,y) = fo(z) + fi(x)y, as
in Nagasaka [14]. The size of this matrix is (4ng) x (3ng — 1).

Lemma 4. The range (and the span of column wvectors) of the Ruppert matriz
of f(z.y) includes the descending coefficient vector (its constant term is the last

element) of no( fo,nef1(2) = frmefo(@))z™0 . 9



Fig. 1. Ruppert matrix R(f) = R(fo(z) + fi(z)y)

[ —fone 0 Fiino 0\
— fong—1 [ '.
: . —fomo : Pl
- —Jong-1 “ Jing-
i) = (22: Rg.z)' Haa= ' ¢ f 3
~Joo S
—foo Sio :
—fo fia
\ 0 —fo.0 0 Sfro J
( 0 0 0 0 0\
J1ng—1 =ftng 0
2f1.n0~2 0 0 :
- fimo-a  + (2—70) fiine 0
g : (1=n0) fing 0
R o fi0 ' —=no fing
0 (no—1)fio " 0 :
: 0 fia —fi2
0 f 2f1.0 0 ~2f12
0 0 0 Ao <
\ 0 0 0 0 0o )
( fomg—1  —fo.ng 0 \
2fo.ng—2 0 0
; fomg-2 " (2=10) fomg 0
) : (1 =n0) fomg 0
e no fo.o : =10 fong
0 (no—1) foo 0 :
: 0 foa —foz
0 2fo,0 0 ~2fo,2
\ 0 0 0 Jo.o foa

~1



Proof. Put R(f) = (r1.-++.73,,-1) where 7; is 4ny dimensional column vector.
We note that lower 2ng — 1 rows of (7,42, . T3n,—1) is the usual Sylvester
subresultant matrix S,(f,. —fy). If we apply fraction-free column reductions to
the first columm vy by ra, -+, r,,, 41, then the first column becomes
T
P = Zflm;,—i'-"Hl-

=0

Let # be the following column vector.

ng—2 ng—2
=7+ Z (mo =1 =8) fing—1—iTnot2ti + E (nog =1 =%)fone—1—iT2no+1-
i=( i=0

T is the descending coefficient vector (its constant term is the last element) of

TE{}(fn.'u.u f}_ (-T) — fl,n...fn(.r)};r"""l. —

Theorem 2. The polynomial GCD of fo(x) and fi(x) can be computed by ap-
plying the QR decomposition to the transpose of the last 3ng rows of their Ruppert
matriz R(f) = R(fo(z)+ fi(z)y). The last non-zero row vector of the triangular
matriz is the coefficient vector of their polynomial GCD. <

Proof. Let R be the transpose of the last 3ng rows of their Ruppert matrix R(f).
As in the proof [8], the last non-zero row vector of the triangular matrix of the
QR decomposition is the coefficient vector of the lowest degree non-constant
polynomial of linear combinations of polynomials whose coefficient vectors are
row vectors of R. Hence, we show that the lowest degree non-constant polynomial
is the polynomial GCD of fy(x) and fi(x).

The rank of the upper (ng+ 1) x 3ng submatrix is ng at least since its upper
left ng x ng submatrix is a triangular matrix and its diagonal elements are non-
zero elements: ngfi.9.....2f1.0. f1.0. If the linear combination includes some of
the first ng row vectors, the degree of the combination is larger than 2ng. Since
R has row vectors whose corresponding degrees are less than or equal to 2ng,
the lowest degree non-constant polynomial does not include the first ng rows.

However, as in the proof of the lemma 4, another row vector generated from
the first ng rows, can be included in the linear combination for the lowest degree
non-constant polynomial. Hence, we only have to prove that the lowest degree
non-constant polynomial of linear combinations of polynomials whose coefficient
vectors are row vectors of the following matrix R is the polynomial GCD of Jolz)

and fy(x).
(U the coefficient vector of 1g(fo,nef1(x) = f1.ngfo(x))z™ ™\

0 —fons —Jomg=1 = eon e —fo1 —foo 0
R=1]0 - 0 ~foms —fomg=12+ = = —foa —fo0
0 fimg Jrme—1 =+ weeeee f1a o 0
\U 0 fime fimg—1 *++ v+ oo fi1 fip /



The last 2nq — 2 rows form the usual Sylvester subresultant matrix Si(fi, —fo)
whose range is the set of coefficient vectors of uy fo + ug fi where uy and u; are
polynomials of degree ny — 2 at most. and this is enough to compute non-trivial
GCDs of fy and f;. Moreover, the first row of R is the (ny — 1)-th row reduced
by the first row, of So(f1,—fo). Therefore, the last non-zero row vector of the
triangular matrix of the QR decomposition of R is that of So(fi, —fo). 0

We note that for practical computations of polynomial GCDs, we do not have to
use the Ruppert or Sylvester matrices because the usual Sylvester subresultant
matrix which is smaller. is enough for GCDs. especially for approximate GCDs.

3 GCD of several polynomials

In this section, we show brief overview of relations between Svlvester matrix and
Ruppert matrix for several polynomials fo(x)...., fr(x). Basically, the relations
are natural extensions of the results in the previous section.

3.1 Generalized Sylvester matrix for several polynomials

Let &, be the following generalized subresultant mapping.

ke ke
H;‘:u Pn,—r‘—l == nle Pnn—n.—r—b
Uuq uy fo +uofi

{ e ]

1y, uy fo + uo fi

(3.1)

This mapping can be expressed by the following Sylvester subresultant matrix

Sl Tosevns s
Cioilli) Conslld) ® v B
S fonn fi) = C-uu—:r(fz) 0 Cna—v(fo) U
Bslhy O v O Ceslif)

We note a well known fact: if r is the largest integer that S, is not injective, we
can compute the greatest common divisor of fo(x), ..., fr(z) from the right null
vector of S,.(fg,..., fi) (see [16]).

3.2 Extension for several polynomials

Let f(x,y) be the following polynomial.

f(@,y) = folz) + [l + -+ filz)ys- (3.2)



This polynomial is irreducible if and only if the polynomials fo(2), fi(x). ...,
Se—1(z) and fi(x) do not have any non-trivial GCD. As in the previous sec-
tion, we can check whether f;(z) have a non-trivial GCD or not by the dif-
ferential equation (1.4) of the generalized Ruppert criterion, with f(z,y) =
folz) + Z;;l fi(x)y;. The degree constraints of (1.4) with f(z,y) of (3.2), be-
comes
deg, g <no—2, deg,, g<1,
deg, h) <ny, deg, A < { - : ?_éj
In the previous section, we define g(x,y) and h'*)(z,y) satisfying the following
differential equation. However, the degree constraints are not by total-degrees so
the munber of possible terms increases exponentially.

8 of . of .oh
Y0 9% Thar T ar

Hence, we limit the solution polynomials g(x,y) and h')(x,y) as follows.

=0. (3.3)

9(z.y) = gola +Zfb 2)yi, KV (z,y) =hg'(z), ..., h¥(z,y)=h{"(z).

We note that this llmltatlon may be harmless since by the lemma 3.1 in John
May [21] (or see [6]), we have
b (z) = A fi(z) with ); € C.

Substituting the above g(z,y) and h'(x, y) for g and h;. respectively, in (3.3),
we have

. h (2
fz, y)gi(x) — g(z, y) fi(x) +hm(") fﬁ)i-y) f(g:'y)ag)—:r()

Collecting terms with respect to y and substituting A; f;(z), we have

fogi —gofi + z\:'.(fa.fn: — foli') =0,
hgi—afi+ XN = Hfi’) =0,

= 0.

figi — gefs + M(fifi' — fifi') =0
This system of equations is the system of equation (2.7) for all the combina-
tions of fo,.... fr since the equation (2.8) with fo,..., fi is always satisfied by

ht(]“(.r) = A filz). As in the proof of lemma 3, for the solution of the above
system, there exist polynomials u;(x) € P,y (i =0,...,k):

{Tio(i’) go(z) — Xofo's

ui(z) = —gi(x) + Ao fi’ (i=1,....k).

For the other lemma and theorem for two polynomials, the author thinks that
the same relations are hold for several polynomials since the ranks of null spaces
of Ruppert matrix and generalized Sylvester subresultant matrix are the same.
However. these problems are postponed as a future work.

10



4

Conclusion

In this paper, we show some relations on Ruppert matrix and Sylvester matrix
from the point of computing the greatest common divisors of two polynomials.
Though no algorithm is present in this paper and does not compete with the
finest recent algorithms for computing approximate GCDs, the author hopes
that factoring polynomials and computing polynomial GCDs are the basics of
symbolic computations, and revealing their relations will make some progress in
the future,
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