Skip to main content

Stability Investigation of a Difference Scheme for Incompressible Navier-Stokes Equations

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4770))

Abstract

We investigate the stability of the modified difference scheme of Kim and Moin for numerical integration of two-dimensional incompressible Navier–Stokes equations by the Fourier method and by the method of discrete perturbations. The obtained analytic-form stability condition gives the maximum time steps allowed by stability, which are by factors from 2 to 58 higher than the steps obtained from previous empirical stability conditions. The stability criteria derived with the aid of CAS Mathematica are verified by numerical solution of two test problems one of which has a closed-form analytic solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armfield, S.W., Street, R.: The fractional-step method for the Navier-Stokes equations on staggered grids: the accuracy of three variations. J. Comp. Phys. 153, 660–665 (1999)

    Article  MATH  Google Scholar 

  2. Boersma, B.J., Brethower, G., Nieuwstadt, F.T.M.: A numerical investigtion on the effect of the inflow conditions on the self-similar region of a round jet. Phys. Fluids 10, 899–909 (1998)

    Article  Google Scholar 

  3. Ganzha, V.G., Vorozhtsov, E.V.: Computer-Aided Analysis of Difference Schemes for Partial Differential Equations. Wiley-Interscience, New York (1996)

    Google Scholar 

  4. Ganzha, V.G., Vorozhtsov, E.V.: Numerical Solution for Partial Differential Equations: Problem Solving Using Mathematica. CRC Press, Boca Raton, Ann Arbor (1996)

    Google Scholar 

  5. Ganzha, V.G., Vorozhtsov, E.V.: Symbolic-numerical computation of the stability regions for Jameson’s schemes. Mathematics and Computers in Simulation 42, 607–615 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  Google Scholar 

  7. Ilyushin, B.B., Krasinsky, D.V.: Large eddy simulation of the turbulent round jet dynamics. Thermophysics and Aeromechanics 13(1), 43–54 (2006)

    Article  Google Scholar 

  8. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comp. Phys. 59, 308–323 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kirkpatrick, M.P., Armfield, S.W., Kent, J.H.: A representtion of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid. J. Comp. Phys. 184, 1–36 (2003)

    Article  MATH  Google Scholar 

  10. Marella, S., Krishnan, S., Liu, H., Udaykumar, H.S.: Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations. J. Comp. Phys. 210, 1–31 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Minion, M.L.: On the stability of Godunov-projection methods for incompressible flow. J. Comp. Phys. 123, 435–449 (1996)

    Article  MathSciNet  Google Scholar 

  12. Roache, P.J.: Computational Fluid Dynamics. Hermosa, Albuquerque, New Mexico (1976)

    Google Scholar 

  13. Schlichting, H., Truckenbrodt, E.: Aerodynamics of the Airplane. McGraw-Hill, New York (1979)

    Google Scholar 

  14. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comp. Phys. 209, 448–476 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. van der Vorst: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13, 631–644 (1992)

    Google Scholar 

  16. Yang, J., Balaras, E.: An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comp. Phys. 215, 12–40 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor G. Ganzha Ernst W. Mayr Evgenii V. Vorozhtsov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chibisov, D., Ganzha, V., Mayr, E.W., Vorozhtsov, E.V. (2007). Stability Investigation of a Difference Scheme for Incompressible Navier-Stokes Equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2007. Lecture Notes in Computer Science, vol 4770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75187-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75187-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75186-1

  • Online ISBN: 978-3-540-75187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics