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Abstract. We use a PVS embedding of the stable failures model of
CSP to verify non-repudiation protocols, allowing us to prove the cor-
rectness of properties that are difficult to analyze in full generality with a
model checker. The PVS formalization comprises a semantic embedding
of CSP and a collection of theorems and proof rules for reasoning about
non-repudiation properties. The well-known Zhou-Gollmann protocol is
analyzed within this framework.

1 Introduction

Over the past decade, formal methods have been remarkably successful in their
application to the analysis of security protocols. For example, the combination
of CSP and FDR [9, 7, 11] has proved to be an excellent tool for modelling and
verifying safety properties such as authentication and confidentiality. However,
non-repudiation properties have not yet been mastered to the same degree since
they must often be expressed as liveness properties and the vast bulk of work to
date has been concerned only with safety properties.

Schneider has shown in [12] how to extend the CSP approach to analyze
non-repudiation protocols. His proofs of correctness, based on the traces and the
stable failures models of CSP as well as on rank functions, are constructed by
hand. For safety properties, one usually assumes that one honest party wishes
to communicate with another honest party, and one asks whether a dishon-
est intruder can disrupt the communications so as to effect breach of security.
When considering non-repudiation, however, we are concerned with protecting
one honest party against possible cheating by his or her interlocutor. Thus a
non-repudiation protocol enables parties such as a sender Alice and a responder
Bob to send and receive messages, and provides them with evidence so that nei-
ther of them can deny having sent or received these messages when they later
resort to a judge for resolving a dispute.

There are two basic types of non-repudiation: Non-repudiation of Origin
(NRO) provides Bob with evidence of origin that unambiguously shows that
Alice has previously sent a particular message, and Non-repudiation of Receipt
(NRR) provides Alice with evidence of receipt that unambiguously shows that
Bob has received the message. Unforgeable digital signatures are usually the
mechanism by which NRO and NRR can be obtained.



However, a major problem often arises: there may come a point during the
run at which either Alice or Bob reaches an advantageous position; for example,
Alice may have collected all the evidence she needs before Bob has collected his,
and Alice may then deliberately abandon the protocol to keep her advantageous
position. Usually we will want to ensure that the protocol is fair.

– Fairness guarantees that neither Alice nor Bob can reach a point where he
or she has obtained non-repudiation evidence, but where the other party is
prevented from retrieving any required evidence that has not already been
obtained.

Obviously fairness is the most difficult property to achieve in the design of such
protocols, and several different solutions have been proposed. Two kinds of ap-
proach are discussed in [5], classified according to whether or not the protocol
uses a third trusted party (TTP). The first kind of approach providing fairness
in exchange protocols is based on either a gradual exchange [15] or probabilistic
protocol [8]. Without the involvement of a TTP, a sender Alice gradually releases
messages to a responder Bob over many rounds of a protocol, with the number
of rounds chosen by Alice and unknown to Bob. Bob is supposed to respond for
every message, and any failure to respond may cause Alice to stop the protocol.
However, such protocols require that all parties have the same computational
power, and a large number of messages must be exchanged. The other kind of
approach uses a TTP to handle some of the evidence. Many fair non-repudiation
protocols use the TTP as a delivery authority to establish and transmit some
key evidence. The efficiency of such protocols depends on how much a TTP is
involved in the communication, since heavy involvement of the TTP may become
a bottleneck of communication and computation.

In the CSP model, fairness is naturally described as a liveness property. It
is impossible for fairness to guarantee that both Alice and Bob can collect the
required evidence simultaneously, since we are dealing with an asynchronous
network, but it does guarantee that either of them must be able to access the
evidence as long as the other party has obtained it. In this paper, we will verify
the correctness of fairness of the Zhou-Gollmann protocol [18] using the process
algebra CSP and its semantics embedding in a PVS theorem prover.

We have shown how to go some way towards verifying fairness of the ZG
protocol using CSP and the FDR model checker in a recent paper [17]. However,
in order to keep the problem tractable, it was necessary there to model a system
with very small numbers of parties and messages; it was not possible to use the
model-checking approach to prove fairness of the protocol in its full generality,
or even for a system of a moderate size.

Evans and Schneider [3, 12] give a useful start on this issue by using rank
functions and the PVS embedding of the traces model of CSP to verify safety
properties such as NRO and NRR. Our model, to some degree extending their
work, can verify not only safety specifications, but also liveness specifications
by means of embedding the stable failures model of CSP into the PVS theorem
prover; in consequence, we can prove fairness, which cannot be tackled within
their model.



In the remainder of this paper, we give a brief introduction to the CSP
notation and to the embedding of CSP in PVS. We present the ZG protocol and
its analysis, and then show the formalization of the protocol modelling and of
its verification in PVS. Finally, we discuss and compare with other verification
approaches for non-repudiation protocols.

2 CSP notation

In CSP, a system can be considered as a process that might be hierarchically
composed of many smaller processes. An individual process can be combined
with events or other processes by operators such as prefixing, choice, parallel
composition, and so on. There are four semantic models available—traces, sta-
ble failures, failures/divergences, and failures/divergences/infinite traces—and
which one is chosen depends on what properties of the system one is trying to
analyze. For safety properties, the traces model of CSP is enough. In this paper,
we use the stable failures model of CSP to verify fairness in the ZG protocol.
We will briefly illustrate the CSP language and the semantic models; for a fuller
introduction, the reader is referred to [10, 13].

Stop is a stable deadlocked process that never performs any events. The
process c → P behaves like P after performing the event c. An event like c
may be compounded; for example, one often used patten of events is c.i .j .m
consisting of a channel c, a sender i , a receiver j and a message m. The output
c!x → P describes a process which is initially willing to output x along channel
c, and then behave as P . The input c?x : T → P(x ) denotes that it is initially
ready to accept any value x of type T along channel c, and subsequently behave
as P(x ).

The external choice P1 2 P2 may behave either like P1 or like P2, depending
on what events its environment initially offers it. The traces of internal choice
P1 u P2 are the same as those of P1 2 P2, but the choice in this case is non-
deterministic.

The interface parallel P1 ‖
A

P2 is the process where all events in the set

A must be synchronized, and other events can be performed independently by
P1 and P2 respectively. An interleaving P1 ||| P2 executes each part entirely
independently and is equivalent with P1 ‖

∅
P2.

A trace is defined to be a finite sequence of events. A refusal set is a set of
events from which a process can fail to accept anything no matter how long it
is offered; refusals(P/t) is the set of P ’s refusals after the trace t ; then (t ,X ) is
a failure in which X denotes refusals(P/t). If the trace t can make no internal
progress, this failure is called a stable failure.

Liveness is concerned with behaviour that a process is guaranteed to make
available, and can be inferred from stable failures; for example, if, for a fixed
trace t , we have a 6∈ X for all stable failures of P of the form (t ,X ), then a
must be available after P has performed t .

Verification of property specifications is done by means of determining whether
one process satisfies a specification. In the stable failures model, this equates to



checking whether the traces and failures of one process are subsets of the traces
and failures of the other:

P sat S ⇔∀ tr ∈ traces(P) • S (tr) ∧ ∀(tr ,X ) ∈ failures(P) • S (tr ,X )

where traces(P) collects all traces of the process P and failures(P) denotes the
set of stable failures of P .

For the properties we are considering, if S satisfies the property specification
we are verifying, then P also holds such a property.

3 Embedding CSP semantics in PVS

Full details of the embedding of the stable failures model of CSP in PVS for
mechanizing proofs is presented in [16].

In the analysis of security protocols, we usually do not require modelling of
successful termination; therefore, we here use a simplified version of the embed-
ding of CSP in order to reduce the complexity of verification to some extent.

The stable failures model is represented by pairs (T ,F ) in which T is a set
of traces that forms the semantics of a process in the traces model. The classic
formalization of traces is to simply consider traces as lists of events. PVS has
provided a predefined abstract datatype list. Thus, the type trace is defined
as follows:

trace: TYPE = list[E]

where E is a parameter to denote the events appearing in the lists.
Processes in the stable failures model consist of pairs (T ,F ) that satisfy

various conditions, which can be found in [16], or in [10, 13]. Some of CSP’s main
operators are listed in Table 1 in Appendix, with the standard CSP syntax and
PVS’s syntax. We also use the relation ‘<=’ to denote satisfaction; for example,
P sat S is represented as P<=S in PVS.

Recursive processes in CSP are defined in terms of equational definitions. We
here formalize such processes by using the ‘µ-calculus’ theory to compute the
least fixed point of a monotonic function1. We also have proved a general fixed
point induction theorem to verify recursive processes. In order for fixed points
to be useful, we have extended the least fixed point theory to represent mutually
recursive processes and to prove whether a function has a unique fixed point.

In addition, we have proved a number of algebraic laws which are essential
in the verification of properties of processes; these laws can also help us to verify
the consistency of the CSP semantics. For more detailed explanations of the
embedding of CSP in PVS, readers are advised to consult [16].

1 A monotonic function in this context is a function F such that if Q v P then
F (Q) v F (P).



4 The Zhou-Gollmann protocol

Zhou and Gollmann present a basic fair non-repudiation protocol using a lightweight
TTP in [18], which supports non-repudiation of origin and non-repudiation of
receipt as well as fairness. The main idea of the Zhou-Gollmann protocol is that
a sender Alice delivers the ciphertext and the message key to Bob separately;
the ciphertext is sent from the originator Alice to the recipient Bob, and Alice
then sends the message key encrypted with her secret key to the TTP. Finally
Alice and Bob may get their evidence from the TTP to establish the required
non-repudiation. The notation below is used in the protocol description.

– M : message to be sent from A to B .
– K : symmetric key chosen by A.
– C : commitment (ciphertext) for message M encrypted with K .
– L: a unique label used to identify a particular protocol run.
– fEOO , fEOR, fSUB , fCON : flags indicating the purpose of a signed message.
– si : an asymmetric key used to generate i ’s digital signature.

After cutting down the plaintext part, the simplified protocol can be described
as follows:

1. A → B : sA(fEOO ,B ,L,C )
2. B → A : sB (fEOR,A,L,C )
3. A → TTP : sA(fSUB ,B ,L,K )
4. B ↔ TTP : sT (fCON ,A,B ,L,K )
5. A ↔ TTP : sT (fCON ,A,B ,L,K )

We briefly examine the protocol step by step to see how it works. Firstly,
Alice composes a message including a flag, a unique label L, the receiver’s name
B and a ciphertext C = K (M ); Alice then signs the message with her private
key and sends it to Bob. Secondly, Bob collects the message as one piece of
evidence in which the label L identifies the run of the protocol, and then Bob
responds with his signed message to provide A with evidence that B really has
received C in this run. After she has got a response, Alice submits the encrypted
message key K to the TTP. The TTP then decrypts it to get the K , generates
the associated evidence encrypted with its private key and makes it available to
Alice and Bob. Finally, Alice and Bob can fetch the evidence respectively.

The guarantee of fairness of such a protocol comes from an assumption that
the channels between TTP and the parties are resilient ; that is, messages may
be delayed, but will eventually arrive in a finite amount of time. However, the
channels between Alice and Bob can be unreliable; that is, the medium may
delay, lose or misdirect messages.

5 CSP modelling

Schneider in [12] gives an excellent overview of how to extend the CSP approach
to analyze non-repudiation protocols. Because of the absence of mechanizing
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Fig. 1. Network for the ZG protocol

support, however, his proof of correctness has to be constructed by hand. Our
version, whilst based on his analysis, is machine-assisted and makes various
changes to the model in order to bring it closer a real-world implementation
of the protocol.

Fairness says that if either A or B has managed to retrieve full evidence, the
other party cannot be prevented indefinitely from retrieving the evidence. We
cannot assert for verifying fairness that once A has obtained the evidence then B
must have obtained the evidence as well, because there may be a delay between
A’s reception and B’s reception. However, we can ensure that the evidence must
be available to B, or that a specific action must be about to happen to enable
B to get the evidence in the future.

To check a protocol like this one with CSP, we have to build models of the
parties, the TTP and the medium and see how they can interfere with each other.
Since the protocol is used to protect parties that do not trust each other, we do
not adopt the traditional Dolev-Yao model [2], which provides a special intruder;
instead, in our model, one of two communicating parties is an intruder. Fairness
is only guaranteed to the party who runs in accordance with the protocol; for
example, if A releases the symmetric key K before B responds, A will certainly
place herself in a disadvantageous position.

It is also important, for a fully general proof, to allow other agents to partic-
ipate on the network, since the protocol is expected to be correct no matter how
many parties there are. We use a similar structure to that given by Schneider;
the structure is shown in Figure 1.

The transmission of messages between parties is modelled by a CSP channel
trans: the event trans.i .j .m denotes that party i transmits a message m to
party j . Similarly, the receipt of messages is modelled as a channel rec: the event
rec.i .j .m means that i receives a message m from j . The medium plays a role of
the unreliable channel, whereas the the resilient channel is removed out of the
medium and is used to directly link parties and the TTP. The communication in



the resilient channel is modelled as send and get . In addition, the parties have
an evidence channel which they use to announce the evidence.

The different channels (one unreliable, one resilient) effectively partition the
message space. Messages with the flags fEOO and fEOR can appear only on the
unreliable channel; the messages with fSUB and fCON can occur only in the send
and get channels. This enables us to determine which kind of channel carries
a particular message when a party is announcing the evidence on the evidence
channel.

The entire network is the parallel combination of these components:

NETWORK =((PartyA ||| PartyB ) ‖
{send,get}

TTP) ‖
{trans,rec}

Medium

In our scenario, we will treat A as a dishonest party, or a spy, and B as an
honest party who always performs in accordance with the protocol; A and B
may behave either as a sender or as a responder. A and B may run the protocol
many times, and A may make use of the information deduced from B’s messages
to initiate a new run. We now consider how to model the behaviour of the various
components.

5.1 Defining honest parties

The basic assumption underlying the definition is that the party B is not able to
release his private key, reuse a label, or lose evidence he has already got. In our
model, the party B can act either as a sender or as a responder. When acting as
a sender, the party B running the protocol will then be described as follows:

SEND = trans.B .A.(sB (fEOO .A.L.C )) → rec.B .A.(sA(fEOR.B .L.C ))
→ send .B .TTP .(sB (fSUB .A.L.K ))
→ get .B .TTP .(sT (fCON .A.B .L.K )) → PartyB

The responder process performs the protocol from the opposite perspective. B
acting as a responder is described as follows:

RESP = rec.B .A.(sA(fEOO .B .L.C )) → trans.B .A.(sB (fEOR.A.L.C ))
→ get .B .TTP .(sT (fCON .A.B .L.K )) → PartyB

In order to allow a party to declare the evidence as soon as he has obtained
it, we provide the SHOW process described as follows:

SHOWB (S ) = rec.B .A?m → SHOWB (S ∪ {m})
2 get .B .TTP?m → SHOWB (S ∪ {m})
2 evidence.B !m : S → SHOWB (S )

Finally, the whole process representing the honest party B is

PartyB = (SEND 2 RESP) ‖
{rec,get}

SHOWB (∅)



5.2 Creating a spy

In our modelling of the non-repudiation protocol, we do not define a special
party, a spy, as different from the legitimate parties. We assume that one of two
communicating parties is a spy who may be able to deduce something of value
from the messages it has received. The non-repudiation protocol is supposed to
provide fairness for an honest party even if the other party is a spy.

The behaviour of a spy on the network is therefore described by the CSP
process PartyA:

PartyA(S ) = trans.A.B !m : S → PartyA(S )
2 rec.A.B?m → PartyA(Close(S ∪ {m}))
2 send .A.TTP !m : S → PartyA(S )
2 get .A.TTP?m → PartyA(Close(S ∪ {m}))
2 evidence.A!m : S → PartyA(S )

The spy is able to transmit anything over the network that can be deduced
from the messages she has already learnt. She is also able to receive anything
transmitted over the network.

The spy has an initial basic knowledge, such as public keys, labels and so on,
and can build a number of legitimate messages before the start of the protocol.
The Close(S ) function returns the set S closed up under these deduction rules.
We here allow the spy to have three types of deduction based on constructing
and extracting sequences, symmetric-key encryption and public-key encryption.
For example, if she knows {K (M ),K}, the spy can deduce M . However, the spy
is supposed not to know other parties’ private keys since they will never transmit
these keys on the network.

5.3 Medium and TTP

The medium provides two types of message delivery service: one is an unreliable
channel where messages might be lost, delayed and sent to any address; another
one is a resilient channel where messages might be delayed, but will eventually
arrive, and also be guaranteed not to arrive at the wrong address. The medium
here is defined only for the unreliable channel, since the resilient channel will be
integrated into the definition of the TTP.

Medium(S ) = ( trans?i?j ?m → Medium(S ∪ {m})
2 rec?i?j !m : S → Medium(S\{m}) ) u idle → Medium(S )

Note that the medium can deliver a message to the wrong destination, which
means that it may lose messages in some sense. The idle channel may cause
messages to be delayed at random.

The trusted third party is expected to act in accordance with its role in the
protocol; that is, the TTP accepts signed messages, generates new evidence and



makes them available to associated parties. It is therefore modelled as follows:

TTP(S ) = ( send?i .TTP?m → TTP(S ∪Gen({(i ,m)})))
2 get !m : S → TTP(S ) ) u idle → TTP(S )

The TTP also plays the role of the resilient channel, along with the idle channel
that causes delays to message delivery. The Gen({(i ,m)})) generates two copies
of the evidence, for example, in this case they are A.TTP .sT (fCON .A.B .L.K )
and B .TTP .sT (fCON .A.B .L.K ), so that only involved parties are able to have
access to the evidence. It is important to note the underlying assumption hidden
in this definition: the TTP always stores evidence it has generated and never
discards it.

5.4 Specification

We here concentrate on fairness of the ZG protocol since Evans and Schneider [3,
12] have provided rigorous verification of Non-repudiation of Origin and Non-
repudiation of receipt in PVS by using the embedding of the traces model of
CSP and rank functions.

Fairness is naturally expressed in the stable failures model of CSP. The
essence of the idea is that if one of the two parties has obtained full evidence,
then the other party either is already in possession of it or is able to access it.
Since fairness is guaranteed only to a party who performs completely in accor-
dance with the protocol, we here give only two specifications according to the
different roles of B.

First, we deal with the case where B acts as a responder; that is, if A has
proof of receipt, then B must be in a position to obtain proof of origin. Thus the
formal specification is given as follows:

FAIR1(tr ,X ) =̂ evidence.A.sB (fEOR.A.L.C ) ∈ tr
∧ evidence.A.sT (fCON .A.B .L.K ) ∈ tr

⇒ evidence.B .sA(fEOO .B .L.C ) 6∈ X
∧ (get .B .TTP .sT (fCON .A.B .L.K ) 6∈ X

∨ evidence.B .sT (fCON .A.B .L.K ) 6∈ X )

and the requirement on the system is that

NETWORK sat FAIR1(tr ,X )

The above specification states that if A holds full evidence, then B must
either be able to get the evidence or have already obtained the evidence.

Secondly, we deal with the case in which B acts as a sender; that is, if A
has proof of origin, then B must be in a position to obtain proof of receipt. It is



therefore modelled as follows:

FAIR2(tr ,X ) =̂ evidence.A.sB (fEOO .A.L.C ) ∈ tr
∧ evidence.A.sT (fCON .A.B .L.K ) ∈ tr

⇒ evidence.B .sA(fEOR.B .L.C ) 6∈ X
∧ (get .B .TTP .sT (fCON .A.B .L.K ) 6∈ X

∨ evidence.B .sT (fCON .A.B .L.K ) 6∈ X )

and the specification is:

NETWORK sat FAIR2(tr ,X )

We now need to verify the two assertions above by translating the specifica-
tions into PVS notation.

6 The fairness model in PVS

The fairness property requires that if A has obtained full evidence, then B ei-
ther is already in possession of it or is able to access it; for example, in the
FAIR1 specification, if A has got sB (fEOR.A.L.C ) and sT (fCON .A.B .L.K ), then
either both messages sA(fEOO .B .L.C ) and sT (fCON .A.B .L.K ) must have been
appeared in the trace of B or the event get .B .TTP .sT (fCON .A.B .L.K ) cannot
be prevented from appearing in the trace of B.

In order to establish such properties, it is useful to construct some general
properties. We here use the assertion that the network satisfies the FAIR1 spec-
ification as an example to show how to prove the fairness property in PVS.

The fairness property is concerned with the fact that certain events should
occur only under particular circumstances. We here first introduce an important
specification inspired by the similar one in Schneider’s rank function theory as
follows:

R precedes T =̂ sigma(tr ¹ T ) = T ⇒ sigma(tr ¹ R) = R

which states that if all events from the set T occur in a trace, then the events
from R must appear earlier in the trace. The definition pcd(R,T) is given in
Figure 2 in Appendix where proj corresponding to ¹ is the projection operation
and sigma(t) collects all events of a trace t . A number of proof rules shown in
Figure 2 can be used to make various CSP processes meet the above specification.
In addition, we also define a specification no(R) to represent that any event of
the set R does not appear in the traces.

The benefit of defining such a specification is that it can assist us to prove a
group of lemmas which establish a chain of ‘precedes’.

Lemma 1.

NETWORK sat evidence.A.sB (fEOR.A.L.C ) ∈ tr
⇒ rec.A.B .sB (fEOR.A.L.C ) ∈ tr



Proof. In combination with the rules listed in Figure 2 in Appendix, it is straight-
forward to prove rec.A.B .EOR precedes evidence.A.EOR in the PartyA process,
which is formalized as a recursive process in PVS. The NETWORK process
then holds the property since the interleaving of PartyA and PartyB meets it
according to the rule pcd_interleave, then the parallel combination of such an
interleaving with TTP and Medium also meets the lemma in terms of the rule
pcd_parallel1.

Lemma 2.

NETWORK sat rec.A.B .sB (fEOR.A.L.C ) ∈ tr
⇒ trans.B .A.sB (fEOR.A.L.C ) ∈ tr

Proof. In line with the rule pcd_parallel, the NETWORK inherits this prop-
erty from the Medium process where trans.B .A.EOR always precedes rec.A.B .EOR
which is included in the interface of the Medium with other components .

Lemma 3.

NETWORK sat trans.B .A.sB (fEOR.A.L.C ) ∈ tr
⇒ rec.B .A.sA(fEOO .B .L.C ) ∈ tr

Proof. In PartyB , rec.B .A.EOO obviously occurs earlier than trans.B .A.EOR
since B performs completely in accordance with the protocol, so NETWROK
satisfies the property too no matter how other components behave.

Lemma 4.

NETWORK sat rec.B .A.sA(fEOO .B .L.C ) ∈ tr
⇒ evidence.B .sA(fEOO .B .L.C ) 6∈ X

Proof. This lemma does not use ‘precedes’; however, it can be easily proved in
PVS using the general fixed point induction theorem. According to the definition
of the PartyB , he would like to announce the evidence as long as he gets it.

Therefore, Lemmas 1–4 together with the rule pcd_transitive establish the
following lemma, which is the first part of the FAIR1 specification.

Lemma 5.

NETWORK sat evidence.A.sB (fEOR.A.L.C ) ∈ tr
⇒ evidence.B .sA(fEOO .B .L.C ) 6∈ X

To finish the proof of the fairness property, we then introduce the second
specification as follows:

T is unpreventable after R =̂sigma(tr ¹ R) = R
⇒ sigma(tr ¹ T ) = T ∨ X ∩ T = ∅



which states that if all events from the set R occur in a trace, then all events
from T either have appeared earlier in the trace or are not included in the
refusal set X after this trace; the function sigma converts a trace into a set.
Such a specification corresponding to the second part of the FAIR1 specification
is here used to prove that evidence.B .CON is unpreventable after A has got
full evidence. The definition of upt(T,R) and some important rules are given in
Figure 3 in the appendix.

Since both parties always get the evidence before they announce it on the
evidence channel, the lemma we really want to reach here is described as follows:

Lemma 6.

NETWORK sat rec.A.B .sB (fEOR.A.L.C ) ∈ tr
∧ get .A.TTP .sT (fCON .A.B .L.K ) ∈ tr

⇒ get .B .TTP .sT (fCON .A.B .L.K ) ∈ tr
∨ get .B .TTP .sT (fCON .A.B .L.K ) 6∈ X

On face of it, the assertion is too tricky to be reached simply by applying the
rules listed in Figure 3. The solution is to rewrite the NETWORK process so
that it matches with the rule upt_parallel.

NETWORK = (PartyA ||| PartyB )
‖

{trans,rec,send,get}
(Medium ||| TTP)

Obviously, this new definition is equivalent to the original one, but makes the
proof become rather easier when combined with the following lemmas.

Lemma 7.

Medium ||| TTP sat get .A.TTP .sT (fCON .A.B .L.K ) ∈ tr
⇒ get .B .TTP .sT (fCON .A.B .L.K ) ∈ tr
∨ get .B .TTP .sT (fCON .A.B .L.K ) 6∈ X

Proof. Once the TTP has received a legitimate submission, the evidence is al-
ways available to the parties involved. Hence, get .B .TTP .CON is always unpre-
ventable after get .A.TTP .CON has occurred.

Lemma 8.

PartyA ||| PartyB sat trans.B .A.sB (fEOO .A.L.C ) ∈ tr
⇒ get .B .TTP .sT (fCON .A.B .L.K ) ∈ tr
∨ get .B .TTP .sT (fCON .A.B .L.K ) 6∈ X

Proof. The PartyB has to perform get .B .TTP .CON after he responds to A with
sB (fEOO .A.L.C ), so that get .B .TTP .CON is unpreventable.



Lemma 9.

NETWORK sat trans.B .A.sB (fEOR.A.L.C ) ∈ tr
∧ get .A.TTP .sT (fCON .A.B .L.K ) ∈ tr

⇒ get .B .TTP .sT (fCON .A.B .L.K ) ∈ tr
∨ get .B .TTP .sT (fCON .A.B .L.K ) 6∈ X

Proof. This is proved using the rule upt_parallel with Lemma 7 and Lemma 8.

Also, from the proof of the first part of the FAIR1 specification, we may
prove the fact that trans.B .A.EOR precedes rec.A.B .EOR, so that Lemma 6
can be proved using the rule upt_pcd_transitive with Lemma 9. Using this
rule again, we can prove the second part of the FAIR1 specification that is
described as follows:

Lemma 10.

NETWORK sat evidence.A.sB (fEOR.A.L.C ) ∈ tr
∧ evidence.A.sT (fCON .A.B .L.K ) ∈ tr

⇒ get .B .TTP .sT (fCON .A.B .L.K ) ∈ tr
∨ get .B .TTP .sT (fCON .A.B .L.K ) 6∈ X

This completes the proof; we have formalized all this in PVS. The proof of the
FAIR2 specification has also been formally completed in a similar way, making
use of the above lemmas.

7 Discussion

In this paper, we have modelled and verified the Zhou-Gollmann non-repudiation
protocol with respect to correctness of fairness, which requires that neither of
two parties can establish evidence of origin or evidence of receipt while still
preventing the other party from obtaining such evidence. Proving fairness in a
theorem prover can help us to extract some general understanding of how to
design such a kind of protocol. For instance, from the Lemma 7 and Lemma 8,
we can clearly see that least two factors should be considered: one is that the
TTP should always make the evidence available to the parties involved when it
has received a legitimate submission; the other is that B cannot be prevented
from accessing the evidence when he has responded to the first part of evidence
from A.

Although the Zhou-Gollmann protocol is rather simple, our formal verifi-
cation shows that it does provide strong fairness under the assumptions de-
scribed in this paper. However, there is an attack [4] if we slightly change our
assumptions. Suppose that we allow the TTP and B to lose the evidence, and
A first completes a protocol run with B and possesses sB (fEOR.A.L.C ) and
sT (fCON .A.B .L.K ); a couple of weeks later, A then uses the same symmetric



key and label but sends a new plaintext message to initiate a new run; A ends
the run by obtaining the new EOR and presenting it with sT (fCON .A.B .L.K )
to a judge; A might be lucky enough to discover that TTP and B have discarded
their old evidence.

Incorporating this assumption into our model would mean that the correct-
ness of the fairness property cannot be proved because of the presence of the
hidden attacks. For example, Lemma 4 would not hold any more if B could lose
the evidence. In investigating why these lemmas can no longer be proven, it is
likely that one would uncover the attack.

We here give a suggestion that all evidence should have incorporated into it
a tag provided by the TTP, such as timestamp, so as to make it clear when the
two parts of the evidence match each other.

Some related work can be found in the literature concerning verification of
non-repudiation protocols using different approaches. Zhou et al. in [19] firstly
use ‘BAN-like’ belief logic to check only safety properties of the non-repudiation
protocols. Schneider [12] gives an excellent overview of the CSP modelling and
proves the correctness of properties using stable failures and rank functions; how-
ever, the proofs are constructed by hand. Evans [3] extends Schneider’s work to
prove safety properties such as NRO and NRR in the PVS theorem prover.
Shmatikov and Mitchell in [14] verify fairness as a monotonic property using
Murϕ; that is, if fairness is broken at one point of the protocol, the proto-
col will remain unfair. This approach also cannot deal with liveness properties.
Kremer and Raskin [6] use the finite state model checker MOCHA to verify non-
repudiation and fair exchange protocols. This approach, which is rather different
from ours here, can also cope with liveness properties as well as safety properties.
However, they have modelled networks in which A and B can engage in only one
run of the protocol. In addition, Abadi and Blanchet [1] formalize and verify
the key security properties of a cryptographic protocol for certified email that
has many commonalities with the Zhou-Gollmann protocol. Most of verification
work is done with an automatic protocol verifier, however such a tool has not
been verified and finished.

We have proved the fairness property of the Zhou-Gollmann protocol in its
full generality in the case of two parties that are able to perform multiple runs
and act in different roles, along with an unbounded number of atomic messages.
Admittedly, verifying a system like this requires considerable work. However,
PVS is a deductive system in which all completed proofs can be used in later
proofs. In the course of constructing this proof, we have amassed many lemmas
and theorems that will make proving properties of similar systems substantially
less time-consuming, both for us and for others.

We aim to extend our model to deal with protocols that involve more than
two parties. We also wish to cover timeliness; that is, we wish to verify that
all honest parties can reach a point where they can stop the protocol while
preserving fairness. We will develop our current model to cover this issue in
future work.
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Appendix

Operation CSP PVS

Stop Stop Stop

Prefix a → P a >> P

External choice P1 2 P2 P1 \/ P2

Internal choice P1 u P2 P1 /\ P2

Interface parallel P1 ‖
A

P2 Par(A)(P1,P2)

Interleave P1 ||| P2 P1 // P2

Table 1. CSP syntax



property_pcd[E:TYPE]:THEORY

a: VAR E

t: VAR trace[E]

R,T,X,A: VAR set[E]

P,Q: VAR process[E]

pcd(R,T):[set[trace[E],set[[trace[E],set[E]]]]

=({t|sigma(proj(t,T))=T IMPLIES sigma(proj(t,R)=R},{(t,X)|true})

no(R): [set[trace[E]],set[[trace[E],set[E]]]]

= ({ t | proj(t,R)=null }, {(t,X) | proj(t,R)=null} )

pcd_stop: LEMMA nonempty?(T) IMPLIES Stop <= pcd(R,T)

pcd_prefix: LEMMA P <= pcd(R,T) AND NOT T(a) IMPLIES a>>P <= pcd(R,T)

pcd_extchoice: LEMMA P<=pcd(R,T) AND Q<=pcd(R,T)

IMPLIES P\/Q <= pcd(R,T)

pcd_parallel: LEMMA P <= pcd(R,T) AND subset?(T,A)

IMPLIES Par(A)(P,Q) <= pcd(R,T)

pcd_parallel1: LEMMA P <= pcd(R,T) AND Q <= no(T)

IMPLIES Par(A)(P,Q) <= pcd(R,T)

pcd_interleave: LEMMA P <= pcd(R,T) AND Q <= no(T)

IMPLIES P//Q <= pcd(R,T)

pcd_transitive: LEMMA P<=pcd(R,X) AND P<=pcd(X,T)

IMPLIES P <= pcd(R,T)

END property_pcd

Fig. 2. Proof rules for precedes



property_upt[E:TYPE]:THEORY

a: VAR E

t: VAR trace[E]

R,T,X,A: VAR set[E]

P,Q: VAR process[E]

upt(T,R):[set[trace[E],set[[trace[E],set[E]]]]

=({t|true},{(t,X)| sigma(proj(t,R))=R IMPLIES

(sigma(proj(t,T))=T OR disjoint?(T,X))})

upt_stop: LEMMA nonempty?(R) IMPLIES Stop <= upt(T,R)

upt_prefix: LEMMA P <= upt(T,R) AND NOT R(a) AND nonempty?(R)

IMPLIES a >> P <= upt(T,R)

upt_extchoice: LEMMA P<=upt(T,R) AND Q<=upt(T,R)

IMPLIES P\/Q <= upt(T,R)

upt_parallel: LEMMA P<=upt(T,R) AND Q<=upt(T,X) AND

subset?(union(R,X),A) AND subset?(T,A)

IMPLIES Par(A)(P,Q) <= upt(T,union(R,X))

upt_interleave: LEMMA P<=upt(T,R) AND Q<=no(R) IMPLIES P//Q <= upt(T,R)

upt_pcd_transitive: LEMMA P <= upt(T,X) AND P <= pcd(X,R)

IMPLIES P <= upt(T,R)

END property_upt

Fig. 3. Proof rules for unpreventable


