Models and Tools for Mulan Applications

Lawrence Cabac, Till Dérges, Michael Duvigneau,
Christine Reese, Matthias Wester-Ebbinghaus

University of Hamburg, Department of Computer Science,
Vogt-Kolln-Str. 30, D-22527 Hamburg
http://www.informatik.uni-hamburg.de/TGI

Abstract In this work we describe the development process of multi-
agent application design and implementation with MULAN. Our approach
can be characterized as model driven development by using models in
all stages and levels of abstraction regarding design, implementation and
documentation. Both, standard methods from software development as
well as customized ones are used to satisfy the needs of multi-agent
system development.

1 Introduction

The agent metaphor is highly abstract and it is used to develop software en-
gineering techniques and methodologies that particularly fit the agent-oriented
paradigm. Flexibility and autonomy of an agent’s problem-solving capabilities,
the richness of agent interactions and the (social) organizational structure of a
multi-agent system as a whole must be captured.

Our approach borrows several ideas from well-known methodologies (AO,
0O0) as well as concepts from conventional modeling techniques (UML). We in-
tegrate our techniques and tools with the model-based implementation of the
MULAN framework, which facilitates Petri net-based programming. In the Mu-
LAN architecture, agents and multi-agent systems are modeled through the high-
level Petri net formalism of reference nets.

The result of those efforts is a development methodology that continuously
integrates our philosophy of Petri net-based and model-driven software engineer-
ing in the context of multi-agent systems. In Section [2] we introduce the basic
conceptual features of multi-agent application development with MULAN. The
particular techniques, models and tools are presented in Section [Bl

2 Concepts of Application Development with Mulan

The reference net-based multi-agent system architecture MULAN (Multi Agent
Nets) structures a multi-agent system in four layers, namely infrastructure, plat-
form, agent and protocol |2J3]. In a multi-agent application the organizational
structure has to be defined, such that responsibilities for all aspects of the system
are specified. The general perspectives in the area of multi-agent systems are the

Burkhard et al. (Eds.): Multi-Agent Systems and Applications V, LNCS 4696, pp. 328-330] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Models and Tools for Mulan Applications 329

structure, the interactions, and the terminology. These perspectives are orthogo-
nal with connecting points at some intersections. The structure of a multi-agent
system is given by the agents, their roles, knowledge bases and decision compo-
nents. The behavior of a multi-agent system is given by the interactions of the
agents, their communicative acts and the internal actions related to the inter-
actions. The terminology of a multi-agent system is given as a domain-specific
ontology definition that enables agents and interactions to refer to the same ob-
jects, actions and facts. Without a common ontology, interactions are impossible.

3 Techniques, Models and Development Tools

In this section we describe the techniques applied during the various stages of
multi-agent application development with MULAN. Most of the techniques and
tools mentioned can be seen in Figure [11

& X Reference Net Workshop -kl Y
T EgUEEWIDHAE (SR Lollel Ll fixd

File Edit Layour Auwributes Net Simulation Plugins Tools Windows A7l

DEERRANPNERRECR Description

T i
i i \‘ Defines Agent Roles (hierarchid
@ ®[0/~|~[su|i[n]d | e
setecton Too i RBE can generate all Agants ("
CEquest{HiesRequy st SrRoe =] Class WBHelper will prepend ed

Loflefi<f

D

B W s

The interfaces (and correspond
[workflow-state | [workflow-instance | [workflow- description| | [workflow-definition Tule @ the notification flow is User —>|
B nameString name:string past
@ | wi-instance-id: String rule-expression: Any |user TODO
User: "username" and "passwof
G

usk @er]

—— ;; mu Torm-task
(- Gasarpton workdon- deseripion] mnmmn

LI‘LI"L

rgenttors
CapaAgent

proakiy = generalsgentsetip] <.
ame - zgem-igener

e
'WFEngine
imancate kel =

LE® I v Bl)s JRN]

ey
AuthenticationNeeder GedisionComponerts = {WEEngine.DC.taskOccurrencelstener] ||

instanceCounter = 0
UpgaleACIAIESLISt = [updaleAUIIESLISL 5]
updatelorkitemList = [updateWorkitemist_msg]
cancelactivty = {cancelAyWFE. msg]
confirmaciivty = [confrmActiinWFE_msa]

< s i
instamiateoridion = msg)
= UpSaieTass v =
PR - T o
ol whe
|

updmeTaskLists A hangieEndOtacviy. wie executeorkiiow

initial request for a WFD 55 &0

; x
= T
4 t ek !B
sy Error occured Errorinformation | . i i
[retrieved e N N |
import e renew.agent.repr.acl " —
(=) import java.ul " t N
R import de renaw agent wims.ontolagy: Er < I
= import de renew. agent repr. managemem ontologiy.”; WFDDEHelperReturnValue (C)+-o. [N '
03 import ce.renew agert.regr. common cond = o nstanceokErrorinformation N \ i
B et e renew g e 1 \
A bt o ranew nes Nemaance: N N]
b imbort e renew et Net fase erro |
import e renew agent wims roles widefdb WFDDBHelper; no Errorinformation -
k ... FQ P
s) cton errr = new rortom_l o NS
2o | [] I ol P [=StateDescription
0 - tions =) decsonComponents = [E5.DC._|
. | userpures =it L —
g I >

Figure 1. Models

The coarse design is done mainly in open discussions. The results are cap-
tured in simple lists of system components and agent interactions. This cul-
minates in a use case diagram. The structure of the multi-agent application is

330 L. Cabac, T. Dorges, M. Duvigneau, C. Reese, M. Wester-Ebbinghaus

refined using a role diagram. This kind of diagram uses features from class di-
agrams and component diagrams. The terminology of a multi-agent system is
used in form of an ontology definition by the agents to communicate with each
other and for their internal representation of the environment. The facts about
an agent’s environment are located in its knowledge base. The behavior of the
system components is specified using agent interaction protocol diagrams (AIP,
integrated into PAOSE in [I]). Additionally Decision Components (DC) can be
used to encode behavior not directly related to communication between agents.
Last, but not least monitoring and debugging tools are developed in our group.

4 Conclusion

In this paper we presented an integrated approach to multi-agent application
development with MULAN, which is based on Petri nets and agent-oriented soft-
ware engineering. The approach allows for multiple levels of abstraction. The
tools that are used during the development process support all phases of devel-
opment with modeling power and deployment facilities, although some of the
tools still have prototypical character.

For the future, we follow several directions to refine the approach. On the
practical side, we look into further developments, improvements and integration
of tools and techniques. On the conceptual side, we want to expand the multi-
agent oriented approach to other aspects of the development process like project
organization and agent-oriented tool support. Following these directions, we want
to achieve symmetrical structures in all three aspects of software development:
the system, the development process and the project organization.

References

1. Lawrence Cabac, Daniel Moldt, and Heiko Rélke. A proposal for structuring Petri
net-based agent interaction protocols. In Wil van der Aalst and E. Best, editors,
2/th International Conference on Application and Theory of Petri Nets, Eindhoven,
Netherlands, June 2003, volume 2679 of LNCS, pages 102-120. Springer-Verlag,
June 2003.

2. Michael Kohler, Daniel Moldt, and Heiko Rélke. Modelling the structure and be-
haviour of Petri net agents. In J.M. Colom and M. Koutny, editors, Proceedings of
the 22nd Conference on Application and Theory of Petri Nets 2001, volume 2075 of
LNCS, pages 224-241. Springer-Verlag, 2001.

3. Heiko Rolke. Modellierung von Agenten und Multiagentensystemen — Grundlagen
und Anwendungen, volume 2 of Agent Technology — Theory and Applications. Logos
Verlag, Berlin, 2004.

	Models and Tools for Mulan Applications
	Lawrence Cabac, Till Dörges, Michael Duvigneau, Christine Reese, Matthias Wester-Ebbinghaus

