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Abstract. The Any-World Assumption (AWA) has been introduced for normal
logic programs as a generalization of the well-known notions of Closed World
Assumption (CWA) and the Open World Assumption (OWA). The AWA allows
any assignment (i.e., interpretation), over a truth space (bilattice), to be a de-
fault assumption and, thus, the CWA and OWA are just special cases. To answer
queries, we provide a novel and simple top-down procedure.

1 Introduction

The Any-World Assumption (AWA) for normal logic programs [16] is a generalization
of the notions of the Closed World Assumption (CWA) (which asserts that by default
the truth of an atom is false) and the Open World Assumption (OWA) (which asserts
that the truth of the atoms is supposed to be unknown by default). Essentially, the AWA
allows any interpretation over a truth space to be a default assumption. The truth spaces
considered are so-called bilattices [13] and the semantics generalizes the notions of
Kripke-Kleene, well-founded and stable model semantics [10,11,26].

The AWA has many applications (see [16]), among which: (i) Extended Logic Pro-
grams (ELPs) (e.g., [2,3,12]); (ii) many-valued logic programming with non-monotone
negation (e.g., [5,23]); (iii) paraconsistency (e.g., [1,3,4]) and (iv)representation of de-
fault rules by relying on the so-called abnormality theory [19].

In [16] a declarative and a fixed-point characterization for the AWA is presented. As
a consequence, in order to answer queries we have to compute the intended model I of
a logic program P by a bottom-up fixed-point computation and then answer with I(A).
[24] provides a top-down query answering procedure. However, it requires the ground-
ing of the logic program. Furthermore, queries are ground atoms only. This approach
is clearly not satisfactory in case we are looking for all answers to a query atom of the
form q(x). Indeed, the size of the grounded instance of a logic program as well as the
number of query instances q(c) to query may be large and generally exponential with
respect to the size of the non-ground expressions.

In this paper we further improve the query answering procedure related to the AWA.
We present a simple, yet general top-down query answering procedure, which focuses
on computing all answers of a query. This is important as it is quite natural that a
user would like the answers c to a query q(x) be ranked according to the degree of
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q(c). Essentially, the basic idea of our procedure is to collect, during the computation,
all correct answers incrementally together in a similar way as it is done for classical
Datalog [25]. Hence, for instance, we do not rely on any notion of atom unification,
but rather iteratively access relational tables using relational algebra. Besides being the
procedure novel for the AWA, we get for free a novel top-down query procedure for
many-valued normal logic programs. This is the first time the issue of computing all
answers has been addressed for many-valued normal logic programs under the OWA,
CWA or more generally under the AWA in a many-valued semantics setting.

We proceed as follows. In the next two sections we recall concisely the AWA (we
refer the interested reader to [16]). Then we present our top-down query procedure.

2 Preliminaries

Bilattice. The truth spaces we consider are bilattices [13]. Bilattices play an impor-
tant role in (especially in theoretical aspects of) logic programming, and in knowledge
representation in general, allowing to develop unifying semantical frameworks [10]. A
bilattice [13,10] is a structure B = 〈B, �t, �k〉 where B is a non-empty set and �t

(the truth order) and �k (the knowledge order) are both partial orderings giving B the
structure of a complete lattice. Meet (or greatest lower bound) and join (or least upper
bound) under �t are denoted ∧ and ∨, while meet and join under �k are denoted ⊗
and ⊕. Top and bottom under �t are denoted t and f, and top and bottom under �k

are denoted 	 and ⊥, respectively. We assume that each bilattice has a negation, i.e., an
operator ¬ that reverses the �t ordering, leaves unchanged the �k ordering, and veri-
fies ¬¬x = x 1. We also provide a family F of �k and �t-monotone n-ary functions
over B to manipulate truth values. Furthermore, we assume that bilattices are infinitary
distributive bilattices in which all distributive laws connecting ∧, ∨, ⊗ and ⊕ hold. Fi-
nally, we also assume that every bilattice satisfies the infinitary interlacing conditions,
i.e., each of the lattice operations ∧, ∨, ⊗ and ⊕ is monotone w.r.t. both orderings (e.g.,
x �t y and x′ �t y′ implies x ⊗ x′ �t y ⊗ y′).

Generalized Logic Programs. We extend logic programs where computable functions
f ∈ F are allowed to manipulate truth values (see [23,24]). 2 That is, we allow any
f ∈ F to appear in the body of a rule to be used to combine the truth of the atoms
appearing in the body. The language is sufficiently expressive to accommodate almost
all frameworks on many-valued logic programming with or without negation [23].

A term, t, is either a variable or a constant symbol. An atom, A, is an expression
of the form p(t1, . . . , tn), where p is an n-ary predicate symbol and all ti are terms. A
literal, L, is of the form A or ¬A, where A is an atom. A formula, ϕ, is an expression
built up from the literals, the truth values b ∈ B of the bilattice and the functions
f ∈ F . Note that the members of the bilattice (i.e., truth values) may appear in a
formula, as well as functions f ∈ F . A rule is of the form A ← ϕ where A is an atom

1 The dual operation to negation is conflation i.e., an operator ∼ that reverses the �k ordering,
leaves unchanged the �t ordering, and ∼∼ x = x. We do not deal with conflation in this
paper.

2 With computable we mean that for any input, the value of f can be determined in finite time.
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Table 1. Models, Kripke-Kleene, well-founded and H-founded models of P

Ii

q(a) q(b) r(a) r(b) p(a) p(b) KK(P) WF (P)
I1 ⊥ t t f ⊥ ⊥ •
I2 f t t f f f •
I3 t t t f t f

Hi

q(a) q(b) r(a) r(b) p(a) p(b)
H1 f f f f f f
H2 f f f f f f
H3 t f f f t f

s
Hi
P (Ii)

q(a) q(b) r(a) r(b) p(a) p(b) UP (Ii)
I1 f ⊥ ⊥ f f f {q(a), r(b), p(a), p(b)}
I2 f ⊥ ⊥ f f f {q(a), r(b), p(a), p(b)}
I3 ⊥ ⊥ ⊥ f t f −

and ϕ is a formula. For instance, p ← max(0, q + r − 1) is a rule dictating that p is
at least as true as the conjunction of q and r with respect to the Lukasiewicz t-norm
x ∧ y = max(0, x + y − 1). A generalized normal logic program, or simply logic
program, P , is a finite set of rules.

The notions of Herbrand universe HP of P and Herbrand base (as the set of all
ground atoms) BP of P are as usual. Additionally, given P , the generalized normal
logic program P∗ is constructed as follows: (i) set P∗ to the set of all ground instan-
tiations of rules in P ; (ii) replace several rules in P∗ having same head, A ← ϕ1,
A ← ϕ2, . . . with A ← ϕ1 ∨ ϕ2 ∨ . . . (recall that ∨ is the join operator of the bilattice);
and (iii) if an atom A is not head of any rule in P∗, then add the rule A ← f to P∗ (it is
a standard practice in logic programming to consider such atoms as false). This already
acts as a kind of default assumption on non-derivable facts. We will change this point
once we allow any default value as assumption later one. Note that in P∗, each atom
appears in the head of exactly one rule and that P∗ is finite.

We next recall the usual semantics of logic programs over bilattices (cf. [16]). For
ease, we will rely on the following simple example.

Example 1. Consider the logic program P with the following rules. q(x) ← q(x) ∨
¬r(x), p(x) ← p(x), r(a) ← t, and r(b) ← f. In Table 1 we report three models Ii of
P , the Kripke-Kleene and the well-founded model of P marked by bullets. The other
tables will be discussed later on.

Interpretations. An interpretation I on the bilattice B = 〈B, �t, �k〉 is a mapping
from atoms to members of B. I is extended from atoms to formulae in the usual way:
(i) for b ∈ B, I(b) = b; (ii) for formulae ϕ and ϕ′, I(ϕ ∧ ϕ′) = I(ϕ) ∧ I(ϕ′),
and similarly for ∨, ⊗, ⊕ and ¬; and (iii) for formulae f(A), I(f(A)) = f(I(A)),
and similarly for n-ary functions. �t, �k are extended from B to the set I(B) of all
interpretations point-wise: (i) I1 �t I2 iff I1(A) �t I2(A), for every ground atom A;
and (ii) I1 �k I2 iff I1(A) �k I2(A), for every ground atom A. With If and I⊥ we
denote the bottom interpretations under �t and �k respectively (they map any atom
into f and ⊥, respectively). 〈I(B), �t, �k〉 is a bilattice as well.

Models. I is a model of P , denoted I |= P , iff for all A ← ϕ ∈ P∗, I(A) = I(ϕ).
Note that usually a model has to satisfy I(ϕ) �t I(A) only, i.e., A ← ϕ ∈ P∗

specifies the necessary condition on A, “A is at least as true as ϕ”. But, as A ←
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ϕ ∈ P∗ is the unique rule with head A, the constraint becomes also sufficient (see
e.g., [10,16,17]). Among all the models, two models play a special role: namely the
Kripke-Kleene model (KKP), which is the �k-least model of P , and the Well-Founded
model (WFP ) [10,26]. It is well-know that the WFP is more informative (provides
more knowledge) than KKP . For the definition of the well-founded semantics over bi-
lattices refer to [10,17]. It is the generalization of the classical well-founded semantics
to bilattices. We obtain it as a special case of the AWA, too. Furthermore, we note that
the existence and uniqueness of KKP is guaranteed by the fixed-point characterization
based on the �k-monotone function ΦP : for an interpretation I , for any ground atom A
with (unique) A ← ϕ ∈ P∗, ΦP (I)(A) = I(ϕ). Then all models of P are fixed-points
of ΦP and vice-versa, and KKP can be computed in the usual way by iterating ΦP
over I⊥.

Classical Logic Programs. In classical logic programs the body is a conjunction of
literals, i.e., for A ← ϕ ∈ P∗ (except for the case A ← f ∈ P∗) ϕ = ϕ1 ∨ . . .∨ϕn and
ϕi = Li1∧. . .∧Lin . For a set of literals X , with ¬.X we indicate the set {¬L : L ∈ X},
where for any atom A, ¬¬A is replaced with A. A classical interpretation (total or
partial) can be represented as a consistent set of literals, i.e., I ⊆ BP ∪ ¬.BP and for
all atoms A, {A, ¬A} �⊆ I . Of course, the opposite is also true, i.e., a consistent set of
literals can straightforwardly be turned into an interpretation over FOUR.

The classical WF semantics has been defined in terms of the well-known notion of
unfounded set (see e.g., [14,26]), which identifies the set of atoms that can safely be
assumed false if the current information about P is given by an interpretation I . Indeed,
given a partial classical interpretation I and a classical logic program P , a set of ground
atoms X ⊆ BP is an unfounded set (i.e.,, the atoms in X can be assumed as false) for
P w.r.t. I iff for each atom A ∈ X , if A ← ϕ ∈ P∗, where ϕ = ϕ1 ∨ . . . ∨ ϕn and
ϕi = Li1 ∧ . . . ∧ Lin , then ϕi is false either w.r.t. I or w.r.t. ¬.X , for all 1 ≤ i ≤ n.
The greatest unfounded set for P w.r.t. I (which exists) is denoted by UP(I). Then, the
well-founded semantics WFP is defined to be [14]: WFP = “ �k-least model I of P
such that ¬.UP(I) ⊆ I”. As we will see next, the AWA generalizes this notion.

3 The AWA in Logic Programming

A hypothesis (denoted H) is always an interpretation over a bilattice and represents our
default assumption over the world. The principle underlying the Any-World Assumption
(AWA) is to regard an hypothesis H as an additional source of default information to
be used to complete the implicit knowledge provided by a logic program. The AWA H
dictates that any atom A, whose truth-value cannot be inferred from the facts and rules,
is assigned to the default truth value H(A). For comparison, under the CWA, H = If
is assumed, while under the OWA, H = I⊥ is assumed. Also note that any ground
atom A not appearing in the head of any rule and, thus, not derivable, is mapped (up
to now) into ‘false’. Now, according to the AWA, any such atom A should be mapped
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into H(A). If not specified otherwise, we change Point 3. of the definition of P∗ by
adding A ← H(A) to P∗. It should be noted that this implicitly affects also all defini-
tions based on P∗, e.g., the definitions of model and that of ΦP (which now maps such
atoms into H(A) rather than into f). To emphasize the impact of H to ΦP , we denote
the immediate consequence operator with ΦH

P in place of ΦP . Now, we proceed in two
steps.

The support. At first, we introduce the notion of support, denoted sH
P (I). The sup-

port is a generalization of the notion of unfounded sets. Indeed, sH
P (I) determines the

amount of default information, taken from H , that can safely be joined to I . The support
generalizes the notion of unfounded sets as it turns out that for classical logic programs
P and H = If (see Table 1), sH

P (I) = ¬.UP(I) [16]. The principle underlying the sup-
port can be explained as follows. Consider a ground atom A and the rule A ← ϕ ∈ P∗,
an interpretation I , which is our current knowledge about P , and a hypothesis H . We
would like to determine how much default knowledge can be ‘safely’ taken from H to
complete I . So, let us assume that J �k H amounts to the default knowledge taken
from H . J(A) is the default information provided by J to the atom A. The completion
of I with J is the interpretation I ⊕ J . In order to accept this completion, we have to
ensure that at least the assumed knowledge J(A) is entailed by P w.r.t. the completed
interpretation I ⊕ J , i.e., for A ← ϕ ∈ P∗, J(A) �k (I ⊕ J)(ϕ) = ΦH

P (I ⊕ J)(A)
should hold. Therefore, we say that an interpretation J is safe w.r.t. P , I and H iff
�k H and J �k ΦH

P (I ⊕ J). Note that safe interpretations correspond to unfounded
sets for classical logic programs [16]. Furthermore, like for unfounded sets, among all
possible safe interpretations, we are interested in the �k-maximal (which exists and
is unique). The �k-greatest safe interpretation is called the support provided by H
to P w.r.t. I and is denoted by sH

P (I). Table 1 reports the support for the logic pro-
gram of Example 1. Note that by definition under the OWA H = I⊥, sH

P (I) = I⊥
holds, as expected, while for classical logic programs sH

P (I) = ¬.UP(I), for H = If.
In summary, the support is an extension of the notion of unfounded sets (i) to logic
programming over bilattices; and to (ii) arbitrary default assumptions H . Finally, we
also recall that the support can effectively be computed as the iterated fixed-point of
the �k-monotone function σI,H

P (J) = H ⊗ ΦH
P (I ⊕ J). Indeed, [16] shows that the

iterated sequence of interpretations Ji below is �k-monotone decreasing and reaches
a fixed-point, Jλ = sH

P (I), for a limit ordinal λ, where J0 = H , Ji+1 = σI,H
P (Ji),

Jλ = infi<λ σI,H
P (Ji).

H-models. At second, among all models of a program P , let us consider those models,
which �k-subsume their own support. That is, we say that an interpretation I is a H-
model of P iff I |= P and sH

P (I) �k I . The �k-least H-model is called H-founded
model, and is denoted with HFP . H-models have interesting properties [16].

Proposition 1 ([16]). I is a H-model of P iff I = ΦH
P (I ⊕ sH

P (I)).
From a fixed-point characterization point of view, it follows immediately that the set of
H-models can be identified by the fixed-points of the �k-monotone immediate conse-
quence operator:

ΠH
P (I) = ΦH

P (I ⊕ sH
P (I)) .
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This guarantees the existence and uniqueness of the �k-least fixed-point of ΠH
P (I),

i.e., the H-founded model of a program P .
Note that the definition of H-founded model is nothing else than a generalization

from the classical setting to bilattices of the notion of well-founded model (recall that
the well-founded model is the least model satisfying ¬.UP(I) ⊆ I [14], which is a
special case of the definition of H-founded model). We conclude by remarking that [16]
also generalizes the stable model semantics to the AWA.

Example 2. Consider Example 1 and Table 1. Given the hypothesis Hi described in
the tables (note that H1 = H2 = If, i.e., the CWA is assumed), we observe that
sHi

P (Ii) �k Ii for i = 2, 3 and, thus, both I2 and I3 are H-models, while I1 is not.
Furthermore, it can be verified that both I2 and I3 are also H-founded models and that
I2 corresponds to the classical well-founded semantics, as expected.

We refer the reader to [16,24] for some applications of the AWA. For the sake of il-
lustrative purposes, we recall the following example: a rule expressing the fact that
a car may cross railway tracks if there is no crossing train may be represented by
Cross railway ← ¬Train is comming. In this situation, in order to safely cross
the railway there should be explicit evidence that the train is not coming and, thus, we
assume by default that H(Train is comming) = ⊥ (i.e., the atom is interpreted ac-
cording to the OWA) and H(Cross railway) = f (i.e., the CWA is assumed), for
safety.

Another example is the case where we also want to express default statements of the
form normally, unless something abnormal holds, then ϕ implies A. Such statements
were the main motivation for non-monotonic logics like Default Logic [22], Autoepis-
temic Logic [8,18,20,21] and Circumscription [19]. We can formulate such a statement
in a natural way, using abnormality theories, as A ← ϕ ∧ ¬Ab and Ab ← ¬A, where
Ab stands for abnormality, and then consider the hypothesis H(Ab) = f, i.e., by default
there are no abnormal objects.

4 Top-Down Query Answering

A query is an atom Q (query atom) of the form q(x), intended as a question about the
truth degree of all the instances of Q in the intended model of P . We also allow a query
to be a set {Q1, . . . , Qn} of query atoms. In that latter case we ask about the truth
degree of all instances of the atoms Qi in the intended model.

The procedure we devise in this paper is a generalization of the procedure presented
in [24]. We anticipate that the main reason why the procedure in [24] is not suitable to
be used for computing all answers to a query Q, given P , is that (i) [24] relies on P’s
grounded version P∗, which may be rather huge (exponential with respect to |P|, in
general) in applications with many facts; (ii) [24] answers ground queries only. Strictly
speaking, [24] can compute all answers of a query atom q(x) by submitting as query
the set of all ground instances q(c). This is clearly not feasible if the Herbrand universe
is large. The procedure presented here does not require grounding.

In the following, we assume that a logic program P is made out of an extensional
database (EDB), PE , and an intensional database (IDB), PI . The extensional database
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is a set of facts of the form r(c1, . . . , cn) ← b, where r(c1, . . . , cn) is a ground atom
and b is a truth value. For convenience, for each n-ary extensional predicate r, we rep-
resent the facts r(c1, . . . , cn) ← b in P by means of a relational n + 1-ary table tabr,
containing the records 〈c1, . . . , cn, b〉. Thus, the table contains all the instances of r to-
gether with their degrees. We assume that there cannot be two records 〈c1, . . . , cn, b1〉
and 〈c1, . . . , cn, b2〉 in tabr with b1 �= b2. The intensional database is a set of rules
for the form p(x) ← ϕ(x,y) in which the predicates occurring in the extensional
database (called extensional predicates) do not occur in the head of rules of the in-
tensional database. Essentially, we do not allow that the fact predicates occurring in PE

can be redefined by PI . We also assume that the intensional predicate symbol p occurs
in the head of at most one rule in the intensional database. Due to the expressiveness of
rule bodies, it is not difficult to see that logic programs can be put into this form.

For an atom A of the form p(x), an answer for p is a pair 〈θ, b〉, where θ = {x/c}
is a substitution of the variables x in p(x) with the constants in c and b ∈ L is a truth
degree. We say that the answer 〈θ, b〉 is correct for p with respect to the intended model
I of P iff I(p(c)) = b. That is, by substituting the variables in x using θ, the evaluation
of the query in the intended model is b. An answer set for p is a set of answers for p.
Of course, our goal is to determine the set of all correct answers for the query Q. For a
given n-ary predicate p and a set of answers Δp of p, for convenience we represent Δp

as an n + 1-ary table tabΔp , containing the records 〈c1, . . . , cn, b〉.
Given two answers δ1 = 〈θ, b1〉 and δ2 = 〈θ, b2〉 for the same atom P , we define

δ1 �k δ2 (δ1 �k δ2) iff b1 �k b2 (b1 �k b2). We write δ1 ≺k δ2 (δ1 �k δ2) iff
b1 ≺k b2 (b1 �k b2). If Δ1

p and Δ2
p are two sets of answers for p, we write Δ1

p �k Δ2
p

(Δ1
p �k Δ2

p) iff for all δ1 ∈ Δ1
p there is δ2 ∈ Δ2

p such that δ1 �k δ2 (δ1 �k δ2). We
write Δ1

p ≺k Δ2
p (Δ1

p �k Δ2
p) iff Δ1

p �k Δ2
p (Δ1

p �k Δ2
p) and there is δ2 ∈ Δ2

p such
that for no δ1 ∈ Δ1

p, δ2 �k δ1 (δ2 �k δ1) holds.
We present now our top-down procedure tailored to compute all correct answer of

a query Q in the intended model. The basic idea of our procedure is to try to col-
lect, during the computation, all correct answers incrementally together. At first, con-
sider a general rule of the form p(x) ← ϕ(x,y). We note that ϕ(x,y) depends on
a computable function f and the predicates p1, . . . , pk, which occur in the rule body
ϕ(x,y). Assume that Δp1 , . . . , Δpk

are the answers collected so far for the predicates
p1, . . . , pk. Let us consider a procedure eval(p, Δp1 , . . . , Δpk

), which computes the set
of answers 〈{x/c}, b〉 of p, by evaluating the body ϕ(x,y) over the data provided by
Δp1 , . . . , Δpk

. Formally, let H be a hypothesis, let IH be an interpretation restricted to
the predicates p1, . . . , pk and tuples such that for all ni-ary predicates pi,

IH(pi(c)) =

⎧
⎨

⎩

b, if 〈c, b〉 ∈ tabΔpi

H(pi(c)) if pi is an extensional predicate and 〈c, b〉 �∈ tabΔpi

⊥ otherwise .

The intuition in the definition above is that to an atom pi(c) we assign the current truth
value if this truth value is known. Otherwise, we assign to it the default truth value taken
from the hypothesis (if pi is an extensional predicate). Then

eval(p,H,Δp1 , . . . , Δpk ) = {〈{x/c}, b〉 | b =
∨

c′

IH(ϕ(c, c′)), b �= ⊥} ,
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where c′ is a tuple of constants occurring in
⋃

i Δpi . We omit to report the tuple whose
degree is ⊥. The disjunction

∨
c′ is required as the free variables y in ϕ(x,y) may be

seen as existentially quantified.

Example 3. Consider P = {p(x) ← q(x, y), q(a, b) ← f, q(a, c) ← t}. Assume
Δq = {〈(a, b), f〉, 〈(a, c), t〉}. Then eval(p, Δq) = {〈a, t〉}, which amounts to evalu-
ate q(a, b) ∨ q(a, c).

We are not going to further investigate the implementation details of the eval(p, H, Δp1 ,
. . . , Δpk

) procedure, though it has to be carefully written to minimize the number of
table look-ups and relational algebraic operations such as joins. It can be obtained
by means of a combination of SQL statements over the tables and the application of
the truth combination functions occurring in the rule body of p. We point out that
eval(p, H, Δp1 , . . . , Δpk

) can also be seen as a query to a database made out by the
relations tabΔp1

, . . . , tabΔpk
and that any successive evaluation step corresponds to the

execution of the same query over an updated database. We refer the reader to e.g., [6,7]
concerning the problem of repeatedly evaluating the same query to a database that is
being updated between successive query requests. In this situation, it may be possible
to use the difference between successive database states and the answer to the query in
one state to reduce the cost of evaluating the query in the next state.

Query answering: Kripke-Kleene semantics. We start showing how to compute all
answers with respect to the Kripke-Kleene semantics, i.e., the �k-least fixed-point of
ΦH
P . The procedure is detailed in Table 2. Assume, we are interested in determining all

correct answers of q(x) w.r.t. the Kripke-Kleene semantics. We call the procedure with
Answer(P , Q, H). We start with putting the predicate symbols q ∈ Q in the active list
of predicate symbols A. At each iteration step (step 2) we select a new predicate p from
the queue A and evaluate it using the eval function with respect to the answers gathered
so far (steps 4 or 5). If the evaluation leads to a better answer set for p (step 6), we update
the current answer set v(p) and add all predicates p′, whose rule body contains p (the
parents of p), to the queue A, i.e., all predicate symbols that might depend on p are put
in the active set to be examined. At some point (even if cyclic definitions are present)
the active list will become empty and we have actually found all correct answers of
q(x). The procedure in Table 2 uses some auxiliary functions and data structures: (i)
for predicate symbol pi, s(pi) is the set of predicate symbols occurring in the rule body

Table 2. General top-down algorithm

Procedure Answer(P, Q, H)
Input: Logic program P , set Q of query predicate symbols, hypothesis H;
Output: Mapping v containing all correct answers of predicates in Q w.r.t. lfp(ΦH

P )
1. A := Q, dg := Q, in := ∅, for all predicate symbols p in P do v(p) = ∅, exp(p) = false
2. while A �= ∅ do
3. select pi ∈ A, A := A \ {pi}, dg := dg ∪ s(pi)
4. if (pi extensional predicate) ∧ (v(pi) = ∅) then v(pi) := tabpi
5. if (pi intensional predicate) then Δpi

:= eval(pi, H, v(pi1 ), ..., v(piki
))

6. if v(pi) ≺k Δpi
then v(pi) := Δpi

, A := A ∪ (p(pi) ∩ dg)
7. if not exp(pi) then exp(pi) = true, A := A ∪ (s(pi) \ in), in := in ∪ s(pi)

endwhile
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of pi, i.e., the sons of pi; (ii) for predicate symbol pi, p(pi) = {pj : pi ∈ s(pj)},
i.e., the parents of pi; (iii) in step 5, pi1 , . . . , piki

are all predicate symbols occurring
in the rule body of pi, i.e., the sons s(pi) = {pi1 , . . . , piki

} of pi; (iv) the variable dg
collects the predicate symbols that may influence the result of the query predicates; (v)
the array variable exp traces the rule bodies that have been “expanded” (the predicate
symbols occurring in the rule body are put into the active list); (vi) the variable in
keeps track of the predicate symbols that have been put into the active list so far due to
an expansion (to avoid, to put the same predicate symbol multiple times in the active
list due to rule body expansion).

Example 4. Consider Example 1. Let us consider the hypothesis H = I⊥ (i.e., the
OWA). The extensional database is shown in the relational table tabr = {〈a, t〉, 〈b, f〉}.
Of course, tabr is also the set tabΔr of correct answers of predicate r, while it can be
verified (by a straightforward bottom-up fixed-point computation iterating ΦH

P over I⊥)
that the set of correct answers of predicate q is given by: Δq = {〈b, t〉}. We do not
report the tuple 〈a, ⊥〉, as if c does not occur in an answer set Δ then its truth degree is
assumed to be ⊥. We next show the computation of Answer(P , {q}, H). The execution
is shown below reporting also Δpi and v(pi) at each iteration i. Each line is a sequence
of steps in the ‘while loop’. What is left unchanged is not reported.

1. A := {q}, pi := q, A := ∅, dg := {q, r}, Δq := ∅
exp(q) := 1, A := {q, r}, in := {q, r}

2. pi := q, A := {r}, Δq := ∅
3. pi := r, A := ∅, v(r) ≺k Δr, v(r) := Δr, A := {q}, exp(r) := 1
4. pi := q, A := ∅, v(q) ≺k Δq, v(q) := Δq, A := {q}
5. pi := q, A := ∅, Δq = v(q)
6. stop. return v(q)

Iter i Δpi
v(pi)

0. − v(pi) = ∅
1. Δq = ∅ −
2. Δq = ∅ −
3. Δr = {〈a, t〉, 〈b, f〉} v(r) = Δr

4. Δq = {〈b, t〉} v(q) = Δq

5. Δq = {〈b, t〉} −

It can be shown that the procedure Answer behaves as expected.

Proposition 2. There is a limit ordinal λ such that after |λ| steps Answer(P , Q, H)
returns the set of all correct answers of P with respect to the predicates in Q and the
Kripke-Kleene semantics under hypothesis H .

Computatonally, it is well known that, despite the Herbrand base is finite, many-valued
logic programs may not have a finite bottom-up least model computation and our frame-
work does inherit the same problems as well. There are, however several useful options
to guarantee termination of the top-down procedure such as: (i) the bilattice has a finite
number of truth values; (ii) the truth combination function f in a rule body is a upper-
bounded, i.e., f(x1, . . . , xn) �t xi, for all i (e.g., a t-norm satisfies this condition); (iii)
if B is [0, 1] × [0, 1], all f are continuos then for any ε > 0 the procedure stops after
a finite number of steps such that the final truth of an atoms diverges from the actual
value at most ε (this result is similar to the one established in [27]).

Query answering: H-founded semantics. As we have seen, the H-founded model of a
logic program P is the �k-least fixed-point of the operator ΠH

P (see Proposition 1) and
the support sH

P (I) coincides with the iterated fixed-point of the function σI,H
P (J) begin-

ning the computation with H . In the following, we show how we can slightly change the
Answer procedure to compute the support. That is, we want a top-down procedure that,
for a set of atoms p(x), computes all answers 〈{x/c}, b〉 such that sH

P (I)(p(c)) = b.
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So, let Support(P , Q, H, I) be the procedure, which is as the Answer procedure
except that:

– Step 1 is replaced with

P := PH
I , A := Q, dg := Q, in := ∅, for all predicate symbols p in P do v(p) = ∅, exp(p) = false

where logic program PH
I is obtained from P in the following way:

• for each intensional predicate p in P , replace the rule p(x) ← ϕ(x,y) in P with the
rule

p(x) ← H(p)(x) ⊗ (I(pϕ)(x) ⊕ ϕ(x,y)) . (1)

With H(p)(x) we mean a built-in predicate that given a substitution c for x, re-
turns H(p(c)). This can easily be encoded in the semantics, which we omit. The case
I(pϕ)(x) is similar: I(pϕ)(x) is a built-in predicate that given a substitution c for x,
returns

∨
c′ I(ϕ(c,c′)).

• for each extensional predicate r in P , replace the rule r(c) ← b in P with the rule

r(c) ← b′ , (2)

where b′ is the truth value b′ = H(r(c)) ⊗ b.
We point out that the rules above are the result of applying σI,H

P to the support sH
P (I) and

to all rules:

sH
P (I)(p(c)) = [H ⊗ ΦH

P (I ⊕ sH
P (I))](p(c)) = H(p(c)) ⊗ [I ⊕ sH

P (I)](
∨

c′ ϕ(c, c′))
= H(p(c)) ⊗ (I(

∨
c′ ϕ(c, c′)) ⊕ sH

P (I)(
∨

c′ ϕ(c, c′)))
= H(p(c)) ⊗ (

∨
c′ I(ϕ(c, c′)) ⊕

∨
c′ sH

P (I)(ϕ(c,c′))) .

Since the above equation holds for all predicates p and all c, we get rules (1) and (2). Built-
in predicates do not count as sons and, thus, do not appear in the A, s, p, v, in, dg variables.

– Step 6 is replaced with
if v(pi) �k Δpi

then v(pi) := Δpi
, A := A ∪ (p(pi) ∩ dg) fi

Essentially, in Step 6 we replace ≺k with 
k. This modification is motivated by the fact that
during the computation of the support, Δpi is now decreasing in the knowledge order �k.

Example 5. Consider Example 1, interpretation I2 and hypothesis H2. We have seen
that I2 is the H-founded model of P w.r.t. H2 and corresponds to the well-founded
semantics of P . We next want to show the computation of Support(P , {q, r}, H2, I2).
We first determine PH2

I2
. As predicate p does not play any role in the computation, we

report the modified rule for predicate q and r only. PH2
I2

related to q and r is {q(x) ←
H2(q)(x) ⊗ (I2(qϕ)(x) ⊕ (q(x) ∨ ¬r(x))), r(a) ← ⊥, r(b) ← f} ⊆ PH2

I2
.

We recall that H2(q)(a) = H2(q)(b) = f and that I2(qϕ)(a) = I2(q(a) ∨ ¬r(a)) =
f, while I2(qϕ)(b) = t. Then, it can be verified that (by a straightforward fixed-point
computation iterating σI,H

P starting with H2) that the set of correct answers of predicate
q, r of P w.r.t. sH2

P (I2) are: Δq = {〈a, f〉}, Δr = {〈b, f〉}.
Below is a sequence of Support(P , {q, r}, H2, I2), returning the expected values.

1. A := {q, r}, pi := q, A := {r}, dg := {q, r}, Δq �k v(q),
exp(q) := 1, A := {r, q}, in := {q, r}

2. pi := r, A := {q}, v(r) �k Δr , v(r) := Δr, exp(r) := 1
3. pi := q, A := ∅, Δq = v(q)
4. stop. return v(q)

Iter i Δpi
v(pi)

0. − v(pi) = ∅
1. Δq = {〈a, f〉} v(q) = Δq

2. Δr = {〈b, f〉} v(r) = Δr

3. Δq = {〈a, f〉} −
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It can then be shown that:

Proposition 3. There is a limit ordinal λ such that after |λ| steps Support(P , Q, H, I)
returns the set of all correct answers of P with respect to the predicates in Q and the
support sH

P (I).
We are now ready to define the top-down procedure AnswerHF (P , Q, H), which com-
putes all correct answers to a query Q under the H-founded semantics. We define
AnswerHF (P , Q, H) as Answer(P , Q, H), except that Step 5 is replaced with the
statements

5. if (pi intensional predicate) then
5.1. Q′ : = s(pi);
5.2. I : = v;
5.3. supp : = Support(P, Q′, H, I);
5.4. v′ : = I ⊕ supp;
5.5. Δpi

:= eval(pi, H, v′(pi1 ), ..., v′(piki
)) fi

These steps correspond to the application of the ΠH
P (I) = ΦH

P (I ⊕ sH
P (I)) operator to

pi. Indeed, at first we ask about all the correct answers of the predicates occurring in
the body of pi w.r.t. the support and the current interpretation I : = v (Steps 5.1 - 5.3).
The variable supp holds these answers. Then we join them with I, i.e., we compute
I ⊕ sH

P (I) (Step 5.4), where this latter is defined pointwise: (i) v′ = v1 ⊕ v2 iff for all
p, v′(p) = v1(p) ⊕ v2(p) = {〈θ, b〉 | 〈θ, b1〉 ∈ v1(p), 〈θ, b2〉 ∈ v2(p), b = b1 ⊕ b2}
(if 〈θ, bi〉 �∈ vi(p) then bi = ⊥ is assumed). Finally, we evaluate the body of pi with
respect to I ⊕ sH

P (I) (Step 5.5), i.e., apply ΦH
P (I ⊕ sH

P (I)).
Example 6. Consider Example 1 and hypothesis H2 (i.e., the CWA). Let us compute all
correct answers to the query q(x) w.r.t. the well-founded semantics. As the interpreta-
tion I2 in Example 6 is the well-founded model (i.e., H2-founded model), we expect to
retrieve Δq = {〈a, f〉, 〈b, t〉}. Below is the computation of AnswerHF (P , {q}, H2).

1. A := {q}, pi := q, A := ∅, dg := {q, r}, supp := {〈r(b), f〉},
v′ := {〈r(b), f〉},
v(q) ≺k Δq, exp(q) := 1, A := {q, r}, in := {q, r}

2. pi := q, A := {r}, supp := {〈r(b), f〉},
v′ := {〈q(b), t〉, 〈r(b), f〉}, Δq = v(q)

3. pi := r, A := ∅, supp := {〈r(b), f〉}, v′ := {〈q(b), t〉, 〈r(b), f〉},
v(r) ≺k Δr, v(r) := Δr, A := {q}, exp(r) := 1

4. pi := q, A := ∅, supp := {〈q(a), f〉, 〈r(b), f〉},
v′ := {〈q(a), f〉, 〈q(b), t〉, 〈r(a), t〉, 〈r(b), f〉},
v(q) ≺k Δq, v(q) := Δq, A := {q}

5. pi := q, A := ∅, supp := {〈q(a), f〉, 〈r(b), f〉},
v′ := {〈q(a), f〉, 〈q(b), t〉, 〈r(a), t〉, 〈r(b), f〉}, Δq = v(q)

6. stop. return v(q)

Iter i Δpi
v(pi)

0. − v(pi) = ∅
1. Δq = {〈b, t〉} v(q) = Δq

2. Δq = {〈b, t〉} −
3. Δr = {〈a, t〉, 〈b, f〉} v(r) = Δr

4. Δq = {〈a, f〉, 〈b, t〉} v(q) = Δq

5. Δq = {〈a, f〉, 〈b, t〉} −

Therefore, AnswerHF (P , {q}, H2) returns Δq = {〈a, f〉, 〈b, t〉} as expected.

It can then be shown that:

Proposition 4. There is a limit ordinal λ such that after |λ| steps AnswerHF (P , Q, H)
returns the set of all correct answers of P with respect to the predicates in Q and the
H-founded semantics.

Termination of the query answering procedure is guaranteed whenever the termination
of the basic procedure in Figure 2 is guaranteed (e.g., the same options as for the Kripke-
Kleene semantics can be applied).
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5 Conclusions

We have presented a simple, general, yet effective top-down algorithm to retrieve all
correct answers to queries for normal logic programs under the AWA and, thus, under
the CWA and OWA. To the best of our knowledge, this is the first time the problem
of computing all answers has been addressed in this context, and under the CWA in
particular, where arbitrary monotone functions in the body can manipulate truth values
taken from a bilattice. We believe that its interest relies on its easiness for an effective
implementation. Computing all answers is the first step towards top-k query answering,
as it is developed in the context relational databases [9,15] and will be our primary topic
of future research.
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