Skip to main content

Consonant Belief Function Induced by a Confidence Set of Pignistic Probabilities

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4724))

Abstract

A new method is proposed for building a predictive belief function from statistical data in the Transferable Belief Model framework. The starting point of this method is the assumption that, if the probability distribution ℙ X of a random variable X is known, then the belief function quantifying our belief regarding a future realization of X should have its pignistic probability distribution equal to ℙ X . When PX is unknown but a random sample of X is available, it is possible to build a set \(\mathcal{P}\) of probability distributions containing ℙ X with some confidence level. Following the Least Commitment Principle, we then look for a belief function less committed than all belief functions with pignistic probability distribution in \(\mathcal{P}\). Our method selects the most committed consonant belief function verifying this property. This general principle is applied to the case of the normal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aregui, A., Denœux, T.: Constructing predictive belief functions from continuous sample data using confidence bands. In: De Cooman, G., Vejnarová, J., Zaffalon, M. (eds.) Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications (ISIPTA 2007), Czech Republic, pp. 11–20 (July 2007)

    Google Scholar 

  2. Aregui, A., Denœux, T.: Fusion of one-class classifiers in the belief function framework. In: Proceedings of the 10th Int. Conf. on Information Fusion, Quebec, Canada (July 2007)

    Google Scholar 

  3. Arnold, B.C., Shavelle, R.M.: Joint confidence sets for the mean and variance of a normal distribution. The American Statistician 52(2), 133–140 (1998)

    MathSciNet  Google Scholar 

  4. Dempster, A.P.: Upper and lower probabilities generated by a random closed interval. Annals of Mathematical Statistics 39(3), 957–966 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Denœux, T.: Constructing belief functions from sample data using multinomial confidence regions. International Journal of Approximate Reasoning 42(3), 228–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Denœux, T., Smets, P.: Classification using belief functions: the relationship between the case-based and model-based approaches. IEEE Transactions on Systems, Man and Cybernetics B 36(6), 1395–1406 (2006)

    Article  Google Scholar 

  7. Dubois, D., Prade, H.: On several representations of an uncertainty body of evidence. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 167–181. North-Holland, Amsterdam (1982)

    Google Scholar 

  8. Dubois, D., Prade, H.: A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets. International Journal of General Systems 12(3), 193–226 (1986)

    Article  MathSciNet  Google Scholar 

  9. Dubois, D., Prade, H., Smets, P.: New semantics for quantitative possibility theory. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 410–421. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Dubois, D., Prade, H., Smets, P.: A definition of subjective possibility. International Journal of Approximate Reasoning (in press, 2007)

    Google Scholar 

  11. Hacking, I.: Logic of Statistical Inference. Cambridge University Press, Cambridge (1965)

    Book  MATH  Google Scholar 

  12. Masson, M.-H., Denœux, T.: Inferring a possibility distribution from empirical data. Fuzzy Sets and Systems 157(3), 319–340 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ristic, B., Smets, P.: Target classification approach based on the belief function theory. IEEE Transactions on Aerospace and Electronic Systems 41(2), 574–583 (2005)

    Article  Google Scholar 

  14. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  15. Smets, P.: Un modèle mathématico-statistique simulant le processus du diagnostic médical. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium (in French) (1978)

    Google Scholar 

  16. Smets, P.: Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9, 1–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Smets, P.: Belief induced by the partial knowledge of the probabilities. In: Heckerman, D., et al. (eds.) Uncertainty in AI 1994, pp. 523–530. Morgan Kaufmann, San Mateo (1994)

    Chapter  Google Scholar 

  18. Smets, P.: Practical uses of belief functions. In: Laskey, K.B., Prade, H. (eds.) Uncertainty in Artificial Intelligence 15 (UAI 1999), Stockholm, Sweden, pp. 612–621 (1999)

    Google Scholar 

  19. Smets, P.: Belief functions on real numbers. International Journal of Approximate Reasoning 40(3), 181–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38, 133–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smets, P., Kennes, R.: The Transferable Belief Model. Artificial Intelligence 66, 191–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yager, R.R.: The entailment principle for Dempster-Shafer granules. Int. J. of Intelligent Systems 1, 247–262 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aregui, A., Denoeux, T. (2007). Consonant Belief Function Induced by a Confidence Set of Pignistic Probabilities. In: Mellouli, K. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2007. Lecture Notes in Computer Science(), vol 4724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75256-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75256-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75255-4

  • Online ISBN: 978-3-540-75256-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics