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Boolean games are a logical setting for representing static games in a succinct way, taking
advantage of the expressive power and succinctness of propositional logic. A Boolean game
consists of a set of players, each of them controlling a set of propositional variables and
having a specific goal expressed by a propositional formula, or more generally a specifica-
tion of the player’s preference relation in some logical language for compact preference
representation, such as prioritized goals. There is a lot of graphical structure hidden in a
Boolean game: the satisfaction of each player’s goal depends on players whose actions have
an influence on her goals. Exploiting this dependency structure facilitates the computation
of pure Nash equilibria, by partly decomposing a game into several sub-games that are only
loosely related.

� 2009 Published by Elsevier Inc.
1. Introduction

Computing solution concepts for games is a challenging problem, and has been addressed in various places under various
assumptions. In particular, as soon as the number of players is not small, or as soon as the strategy set of some players is
combinatorial (which is typically the case when players control several variables), not only the computation of solution con-
cepts is hard, but the representation (or specification) of the game itself is problematic, since the explicit representation of the
utility matrix would be exponentially large. Boolean games [1–4] precisely address this issue. In their basic version, they al-
low for expressing in a compact way static games with binary preferences: each player of a Boolean game controls a set of
propositional variables, and each player’s preferences are expressed by a propositional formula.1

Bonzon et al. [4,5] give a semantical characterization of Nash equilibria in Boolean games, and identify the computational
complexity of several issues, such as the existence of pure-strategy Nash equilibria in a Boolean game (both in the case of
dichotomous preferences and in the case of non-dichotomous preferences expressed by means of CP-nets or prioritized
goals). The conclusions are rather pessimistic: in the case of dichotomous preferences expressed by plain propositional for-
mulas, the existence of a pure-strategy Nash equilibrium is Rp

2-complete.
However, these pessimistic results have to be tempered by the fact that in practical situations, there is a limited degree of

interactions between players. This assumption that the dependencies between players are limited is at the heart of several
frameworks, including local-effect games [6,7], where players may share some actions, and where the utility of a player
depends only on the number of players who chose each action; and graphical games [10,9,11], where the representation
y Elsevier Inc.
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fined in [4], which generalizes the initial proposal [1]. Boolean games can easily be extended to allow for
ompact language for preference representation (see Chapter 8 of [2] and [5,4]).
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of the players’ utilities is based on a dependency relation between variables and players: the utility of player i is described by
a table specifying a numerical value for each combination of values to each of the set of variables that are relevant to i (see
the concluding Section for more details).

In this paper we address a similar issue for Boolean games: using the syntactical nature of goals, we can express the
dependencies between players under the form of a graph: if the satisfaction of a player i depends on some variables con-
trolled by a player j, then i may need some action of j to see her goal satisfied. This intuitive notion of dependency between
players and its graphical representation allow us to exploit the structure of such graphs so as to decompose Boolean games,
and make the computation of pure-strategy Nash equilibria all the easier that the dependency graph is sparse. On the other
hand, our results are still somehow preliminary, because they only pave the way towards designing and implementing effi-
cient algorithms for computing pure-strategy Nash equilibria in Boolean games. Moreover, we do not consider mixed strat-
egies at all.

For the sake of simplicity and presentation, we focus first on the dichotomous preferences, although, as we show in Sec-
tion 5, our notions and results apply much more generally. We give the necessary background on Boolean games in Section 2.
In Section 3 we define the dependency graph between players induced by a Boolean game, and study a few of its properties.
In Section 4 we show how using this dependency graph may make the computation of pure Nash equilibria easier. In Section
5, we show how our notions and results can be reformulated and stated much more generally for Boolean games with non-
dichotomous preferences represented in some language for compact preference representation. Related work and further
issues are discussed in Section 6. Proofs are given in Appendix.
2. n-Player Boolean games

For any finite set V ¼ fa; b; . . .g of propositional variables, LV denotes the propositional language built up from V, the Bool-
ean constants > and ?, and the usual connectives. Formulas of LV are denoted by u;w, etc. A literal is a variable x of V (po-
sitive literal) or the negation of a variable (negative literal). If u 2 LV , then VarðuÞ denotes the set of propositional variables
appearing in u.

2V is the set of the interpretations for V, with the usual convention that for M 2 2V and x 2 V , M gives the value true to x if
x 2 M and false otherwise. Let V 0 # V . A V 0-interpretation, also known as a partial interpretation, is a truth assignment to each
variable of V 0. V 0-interpretations are denoted by listing all variables of V 0, with a � symbol when the variable is set to false: for
instance, let V 0 ¼ fa; b; dg, then the V 0-interpretation M ¼ fa; dg assigning a and d to true and b to false is denoted by abd. If
fV1; . . . ;Vpg is a partition of V and fM1; . . . ;Mpg are partial interpretations, where Mi 2 2Vi , ðM1; . . . ;MpÞ denotes the interpre-
tation M1 [ � � � [Mp.

The partial instantiation of a formula u by an X-interpretation MX is the formula ðuÞMX
obtained from u by instantiating

all positively (resp. negatively) instantiated atoms in MX by> (resp. ?Þ. For instance, if u ¼ ða ^ :bÞ $ ðc _ dÞÞ, X ¼ fa; dg and
MX ¼ a�d, then ðuÞMX

is equivalent to :b$ c.
As usual, � denotes both satisfaction of a formula by an interpretation (M � u) and the classical consequence relation

(u � w). If M is a partial interpretation of VarðuÞ, we write M � u if u is satisfied by every interpretation for VarðuÞ which
agrees with M; equivalently, M � u if the conjunction of all literals assigned true by M logically entails u. Due to this equiv-
alence, we use the same notation for entailment and satisfaction, as it is standard in propositional logic.

Finally, given M 2 2V , switchðM; xÞ denotes the interpretation obtained by switching the value of x in M, and leaving the
values of other variables unchanged.

Given a set of propositional variables V, a Boolean game on V is an n-player game2 where the actions available to each
player consist in assigning a truth value to each variable in a given subset of V. The preferences, or goals, of each player i are
represented by a propositional formula ui formed upon the variables in V. Thus, a player in a Boolean game has a dichotomous
preference relation: either her goal is satisfied or it is not. This restriction is of course an important loss of generality, and may
appear at first glance unreasonable. However, first note that many concrete situations can be modelled as games where agents
have dichotomous preferences: see for instance the kidney exchange problem in [8]. Second (and more importantly), the results
and notions we give in the paper hold for more general Boolean games where preferences are non-dichotomous (see Section 5).
We choose to focus first on the case of dichotomous preferences for the sake of the exposition.

Definition 1. An n-player Boolean game is a 4-uple ðN;V ;p;UÞ, where

� N ¼ f1;2; . . . ;ng is a finite set of players (also called agents);
� V is a finite set of propositional variables;
� p : N # 2V is a control assignment function mapping each player to the variables she controls. For the ease of notation, the

set of all the variables controlled by i is written pi instead of pðiÞ. Each variable is controlled by one and only one agent,
that is, fp1; . . . ;png forms a partition of V;

� U ¼ fu1; . . . ;ung is a set of goals, where each ui is a satisfiable formula of LV .
2 We refer here to the definition of Boolean games as in [4]. See this paper for the relationship to [1,2].
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Definition 2. Let G ¼ ðN;V ;p;UÞ be a Boolean game.
A strategy for player i in G is a pi-interpretation. The set of strategies for player i in G is Si ¼ 2pi .
A strategy profile s for G is a n-uple s ¼ ðs1; s2; . . . ; snÞ where for all i 2 N, si 2 Si. S ¼ S1 � � � � � Sn is the set of all strategy

profiles.

Note that since fp1; . . . ;png forms a partition of V, a strategy profile s is an interpretation for V, i.e., s 2 2V . The following
notations are usual in game theory. A coalition is a subset of N. Let s ¼ ðs1; . . . ; snÞ be a strategy profile. For any non-empty
coalition I # N, the projection of s on I is defined by sI ¼ ðsiÞi2I and s�I ¼ sNnI . If I ¼ fig, we denote the projection of s on fig
by si instead of sfig; similarly, we note s�i instead of s�fig. pI denotes the set of the variables controlled by I, and
p�I ¼ pNnI . The set of strategies for I # N is SI ¼ �i2ISi. If s and s0 are two strategy profiles, ðs�I; s0IÞ denotes the strategy profile
obtained from s by replacing si with s0i for all i 2 I.

The goal ui of player i is a compact representation of a dichotomous preference relation, or equivalently, of a binary utility
function ui : S! f0;1g defined by uiðsÞ ¼ 0 if s � :ui and uiðsÞ ¼ 1 if s � ui. s is at least as good as s0 for i, denoted by s �i s0, if
uiðsÞP uiðs0Þ, or equivalently, if s � :ui implies s0 � :ui; s is strictly better than s0 for i, denoted by s�is0, if uiðsÞ > uiðs0Þ, or,
equivalently, s � ui and s0 � :ui.
3. Dependencies between players

The syntactical expression of goals suggests to associate with each player the set of propositional variables that may have
an influence on the satisfaction of her goal, which in turn allows for defining the set of players her goal depends on. Obvi-
ously, if the goal ui of player i does not mention any variable controlled by player j, then the satisfaction of i does not depend
directly on j. This is only a sufficient condition: it may be the case that the syntactical expression of ui mentions a variable
controlled by j, but that this variable plays no role whatsoever in the satisfaction of ui, as variable y in ui ¼ x ^ ðy _ :yÞ. We
therefore use the notion of formula-variable independency from [12]:

Definition 3 [12]. A propositional formula u is independent from a propositional variable x if there exists a formula w
logically equivalent to u and in which x does not appear.3 The set of all variables on which u depends is denoted by DepVarðuÞ.
A normalization of a propositional formula u is a propositional formula w which does not contain any redundant variable, that is,
such that (a) u and w are logically equivalent and (b) VarðwÞ ¼ DepVarðuÞ.

Definition 4. Let G ¼ ðN;V ;p;UÞ be a Boolean game. The set of relevant variables for a player i, denoted by RVGðiÞ, is the set of
all variables v 2 V such that ui is not independent from v.

For the sake of notation, the set of relevant variables for a player i in a given Boolean game G will be denoted by RVi in-
stead of RVGðiÞ. We are now in position to define the relevant players for a given player i as the set of players controlling at
least one variable of RVi.

Definition 5. Let G ¼ ðN;V ;p;UÞ be a Boolean game. The set of relevant players for a player i, denoted by RPi,
4 is the set of

agents j 2 N such that j controls at least one relevant variable of i: RPi ¼
S

v2RVi
p�1ðvÞ.

Example 1. Three friends (1, 2 and 3) are invited at a party. 1 wants to go to this party. 2 wants to go to the party if and only
if 1 does, whereas 3 wants to go there, wants 2 to goes and 1 not to. This situation can be modelled by the following Boolean
game G ¼ ðN;V ;p;UÞ, defined as follows:

� V ¼ fa; b; cg, with a (resp. b, c) meaning ‘‘1 (resp. 2, 3) goes to the party”;
� N ¼ f1;2;3g,
� p1 ¼ fag, p2 ¼ fbg, p3 ¼ fcg,
� u1 ¼ a, u2 ¼ a$ b and u3 ¼ :a ^ b ^ c.

We can see that 1’s satisfaction depends only on herself, 2’s depends on 1 and herself, whereas 3’s depends on 1, 2 and
herself. So, we have: RV1 ¼ fag, RV2 ¼ fa; bg, RV3 ¼ fa; b; cg, RP1 ¼ f1g, RP2 ¼ f1;2g, RP3 ¼ f1;2;3g.

This relation between players can be seen as a directed graph containing a vertex for each player, and an edge from i to j
whenever j 2 RPi, i.e., if j is a relevant player of i.

Definition 6. Let G ¼ ðN;V ;p;UÞ be a Boolean game. The dependency graph of a Boolean game G is the directed graph
P ¼ hN;Ri, with 8i; j 2 N, ði; jÞ 2 R (denoted by Rði; jÞ) if j 2 RPi.
3 We have this equivalent semantical characterization of formula-variable independency [12]: u is dependent from x if there exists an interpretation s such
that s � u and switchðs; xÞ � :u.

4 Again, the set of relevant players for a Boolean game G should be denoted by RPGðiÞ: for the ease of notation we simply write RPi .
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Note that P is not necessarily acyclic.
RðiÞ is the set of players who may, by performing some action, influence the satisfaction of i’s goal: j 2 RðiÞ if and only if

j 2 RPi. Remark however that this is a weak notion of dependency: there are some cases where j 2 RðiÞ and yet i does not need
any action by j to see to it that her goal satisfied. For instance, let p1 ¼ fag, p2 ¼ fbg and u1 ¼ a _ b. We have 2 2 Rð1Þ, yet 1
has a strategy to see her goal satisfied (namely, setting a to true) and therefore does not need an action by 2. Our notion of
independency is too weak to take this into account: 1 depends on 2 just because there is no equivalent formula of u1 in
which b does not appear, and in spite of that 1 does not need 2.5

We denote by R	 the transitive closure of R. R	ði; jÞ means that there exists a path from i to j in R. Then, R	ðiÞ can be inter-
preted as the set of all players who have a direct or indirect influence on i, and R	�1ðiÞ as the set of all players on which i has a
direct or indirect influence.

Example 1 (continued). The dependency graph P induced by G is depicted as follows:
5 We could work out a stronger notion of dependency
example. Note that this stronger notion of dependency, w
a very interesting topic for further research.

6 Note that the notion of stable set defined here is dif
� Rð1Þ ¼ f1g, Rð2Þ ¼ f1;2g, Rð3Þ ¼ f1;2;3g.
� R�1ð1Þ ¼ f1;2;3g, R�1ð2Þ ¼ f2;3g, R�1ð3Þ ¼ f3g.
� R	ð1Þ ¼ f1g, R	ð2Þ ¼ f1;2g and R	ð3Þ ¼ f1;2;3g.
� R	�1ð1Þ ¼ f1;2;3g, R	�1ð2Þ ¼ f2;3g and R	�1ð3Þ ¼ f3g.
We remark that every directed graph on set of players N is the graph induced by some Boolean game. Indeed, for every
dependency graph P ¼ hN;Ri, we can construct the Boolean game G ¼ ðN;V ;p;UÞ, where V ¼ fv1; . . . ;vng, 8i 2 N, pi ¼ fv ig,
and 8i 2 N, 8j such that j 2 RðiÞ, ui ¼

V
jv j. If 9= j such that j 2 RðiÞ, then ui ¼ >.

We now introduce the notion of stable set. A stable set is a subset B of players whose goal does not depend on players
outside it.6

Definition 7. Let G ¼ ðN;V ;p;UÞ be a Boolean game. B # N is stable for R if and only if RðBÞ# B, i.e., 8j 2 B, 8i such that i 2 RðjÞ,
then i 2 B.

Clearly, £ and N are stable, and the set of stable sets for a Boolean game is closed under union and intersection. These four
properties actually fully characterize the set of coalitions that correspond to the set of stable sets for a Boolean game. This
result is not crucial for the rest of the paper but it sheds some light on the meaning of stable sets.

Proposition 1. Let C 
 2N. There exists a Boolean game G such that C is the set of stable sets for G if and only if C satisfies the
following four properties:

(1) £ 2 C;
(2) N 2 C;
(3) If B, B0 2 C then B [ B0 2 C;
(4) If B, B0 2 C then B \ B0 2 C.

We now define the projection of a Boolean game G on the set of players B # N in order to decompose a Boolean game into
several sub-games:

Definition 8. Let G ¼ ðN;V ;p;UÞ be a Boolean game, and let B # N be a stable set for R. The projection of G on B is defined by
GB ¼ ðB;VB;pB;UBÞ, where VB ¼ [i2Bpi, pB : B! VB such that pBðiÞ ¼ fv jv 2 pig, and UB ¼ fwi j i 2 Bg, where for every i 2 B,
wi is a normalization of ui.

The projection of a Boolean game on a stable set of players is a Boolean game:

Proposition 2. If B is a stable set, then GB ¼ ðB;VB;pB;UBÞ is a Boolean game.

As shown on the following example, this proposition allows us to decompose a Boolean game into several smaller Boolean
games.

Example 2. Let G ¼ ðN;V ;p;UÞ be the Boolean game defined by
, which would be closer to a notion of ‘‘i needs j”, in which 1 would not depend on 2 in our current
hich has an abductive flavour, is much harder to compute than the one developed in this paper. This is

ferent from the usual notion of stable set in graph theory.
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� V ¼ fa; b; cg,
� N ¼ f1;2;3g,
� p1 ¼ fag, p2 ¼ fbg, p3 ¼ fcg,
� u1 ¼ a$ b, u2 ¼ a$ :b and u3 ¼ :c.

We have: RV1 ¼ fa; bg, RV2 ¼ fa; bg, RV3 ¼ fcg, RP1 ¼ f1;2g, RP2 ¼ f1;2g, RP3 ¼ f3g. The dependency graph
P of G follows. The sets of players B ¼ f1;2g and C ¼ f3g are stable. We can decompose G in 2 independent Boolean sub-
games:
� GB ¼ ðB;VB;pB;UBÞ, with B ¼ f1;2g, VB ¼ fa; bg, p1 ¼ a, p2 ¼ b, u1 ¼ a$ b, u2 ¼ a$ :b.
� GC ¼ ðC;VC ;pC ;UCÞ, with C ¼ f3g, VC ¼ fcg, p3 ¼ c, u3 ¼ :c.
Note that Proposition 2 no longer holds when B is not stable. In Example 2, take B ¼ f1;3g, then Gf1;3g ¼ hf1;3g;
fa; cg; ðp1;p3Þ; ða$ b;:cÞi is not a Boolean game, because u3 uses a variable (b) which is not in Vf1;3g ¼ fa; cg.
4. Computing Nash equilibria

Pure-strategy Nash equilibria (PNE) for n-player Boolean games are defined exactly as usual in game theory (see for in-
stance [13]), having in mind that utility functions are induced from players’ goals u1; . . . ;un. A PNE is a strategy profile such
that each player’s strategy is an optimal response to the other players’ strategies.

Definition 9. Let G ¼ ðN;V ;p;UÞ be a Boolean game with N ¼ f1; . . . ;ng. s ¼ fs1; . . . ; sng is a pure-strategy Nash equilibrium
(PNE) if and only if 8i 2 f1; . . . ;ng, 8s0i 2 Si, ðsi; s�iÞ �i ðs0i; s�iÞ.

The following simple characterization of PNEs is straightforward from this definition

Proposition 3 ([4], Proposition 2). A strategy profile s is a pure-strategy Nash equilibrium for G iff for all i 2 N, either s � ui or
s�i � :ui holds.

These definitions lead to some obvious properties of pure-strategy Nash equilibria. If a player does not control any of her
relevant variables, she has no influence on her own goal, and thus has no preference over her strategies. And if all players are
in the same case, all strategy profiles are PNEs.

Proposition 4. Let G be a Boolean game. If i R RPi holds for every i 2 N, then every s 2 S is a PNE.

If each player of a Boolean game depends only on a single player, then players such that RPi ¼ fig will be the only ones
having an influence on their own goals. A strategy profile s will be a PNE if and only if it satisfies the preferences of these
players.

Proposition 5. Let G be a Boolean game such that 8i 2 N, jRPij ¼ 1. s is a PNE if and only if 8i 2 N such that RPi ¼ fig, s � ui.

If the irreflexive part of the players’ dependency graph P of a game G is acyclic, (i.e., if there is no cycle of length P 2),
then we can use a procedure inspired by the ‘‘forward sweep procedure” [14] to find the pure-strategy Nash equilibria. Let us
see this on an example.

Example 1 (continued). The irreflexive part of the dependency graph P of G is acyclic.
RP1 ¼ f1g, so a strategy profile s ¼ ðs1; s2; s3Þ is a PNE only if 1’s goal is satisfied, i.e., s1 ¼ a.
Given 1’s strategy s1 ¼ a, 2 has a best response (namely, s2 ¼ b), because her goal depends only on the variables controlled

by 1 and herself. Finally, given the strategies of 1 and 2, 3’s goal will not be satisfied whatever she does, therefore 3 has two
best responses, namely s3 ¼ c and s3 ¼ :c. Therefore, G has 2 PNEs: fabc; abcg.

Proposition 6. Let G be a Boolean game such that the irreflexive part of the dependency graph P of G is acyclic.
Then, G has at least one PNE. Moreover, s is a PNE of G if and only if for every i 2 N, either ðsi; sR	ðiÞnfigÞ � ui or

sR	ðiÞnfig � :ui.

The computation of the set of PNEs of a Boolean game G such that the irreflexive part of its dependency graph is acyclic is
done by Algorithms 1–3.
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Example 1 (continued). In this example, G has 2 PNEs: fabc; abcg, and we have R	ð1Þ ¼ f1g, R	ð2Þ ¼ f1;2g, R	ð3Þ ¼ f1;2;3g.
For s ¼ abc, we have

� ðsR	ð1Þnf1g; s1Þ ¼ s1 � u1 ¼ a,
� ðsR	ð2Þnf2g; s2Þ ¼ ðs1; s2Þ � u2 ¼ a$ b,
� sR	ð3Þnf3g ¼ ðs1; s2Þ � :u3 ¼ a _ :b _ :c.

A similar line of reasoning holds for s ¼ abc.
However, when the irreflexive part of the dependency graph is not acyclic, the existence of PNE is no longer guaranteed,

as we can see on the following example.

Example 3. Let G ¼ ðN;V ;p;UÞ be the Boolean game defined by V ¼ fa; bg, N ¼ f1;2g, p1 ¼ fag, p2 ¼ fbg, u1 ¼ a$ b and
u2 ¼ ða$ :bÞ.

We have: RV1 ¼ fa; bg, RV2 ¼ fa; bg, RP1 ¼ f1;2g, RP2 ¼ f1;2g.
The dependency graph P of G is the following:
This game has no PNE
However, as shown in Example 4, a game with a cyclic dependency graph may have a PNE.

Example 4. Let G ¼ ðN;V ;p;UÞ be the Boolean game defined by V ¼ fa; b; c; dg, N ¼ f1;2;3;4g, p1 ¼ fag, p2 ¼ fbg, p3 ¼ fcg,
p4 ¼ fdg, u1 ¼ a$ b, u2 ¼ b$ c, u3 ¼ :d, and u4 ¼ d$ ðb ^ cÞ. We have: RP1 ¼ f1;2g, RP2 ¼ f2;3g, RP3 ¼ f4g,
RP4 ¼ f2;3;4g.

The dependency graph P of G is the following:
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G has 2 PNEs: fabcd; abcdg
The following proposition shows that if a strategy profile s is a PNE of a Boolean game G, and if B is a stable set, then the
restriction of s to the variables controlled by players in B is a PNE of the projection of G on B.

Proposition 7. Let G ¼ ðN;V ;p;UÞ be a Boolean game, let B # N be a stable set for R, and let GB be the projection of G on B. If s is a
PNE for G, then sB is a PNE for GB.

Example 4 (continued). Let us recall the dependency graph P of G:
The set of players B ¼ f2;3;4g is stable. GB ¼ ðB;VB;pB;UBÞ is a Boolean game,
with VB ¼ fb; c; dg, p2 ¼ b, p3 ¼ c, p4 ¼ d, u2 ¼ b$ c, u3 ¼ :d, and u4 ¼ d$ ðb ^ cÞ.
G has 2 PNEs: fabcd; abcdg.
fbcd; bcdg are 2 PNEs of GB (and in this case, GB has no other PNEs).
As we can see on Example 2, the converse is not always true: C ¼ f3g is stable, and the Boolean game GC ¼ ðC;VC ;pC ;UCÞ
has a PNE: fcg, but the game G has no PNE.

However, there exist simple cases for which the converse is true, and for which it will be easier to compute pure-strategy
Nash equilibrium by decomposing the initial Boolean game.

Proposition 8. Let G ¼ ðN;V ;p;UÞ be a Boolean game. Let B and C be two stable sets of players, and let GB and GC be the two
associated Boolean games.

Suppose than sB is a PNE for GB and sC is a PNE for GC such that 8i 2 B \ C, sB;i ¼ sC;i, where sB;i (resp. sC;i) represents the strategy
of player i for the game GB (resp. GC). Then, sB[C is a PNE for GB[C .

Example 5. Let G ¼ ðN;V ;p;UÞ be the Boolean game defined by V ¼ fa; b; cg, N ¼ f1;2;3g, p1 ¼ fag, p2 ¼ fbg, p3 ¼ fcg,
u1 ¼ a$ c, u2 ¼ b$ :c, and u3 ¼ c. We have: RP1 ¼ f1;3g, RP2 ¼ f2;3g, RP3 ¼ f3g. The dependency graph P of G is drawn
below. The sets of players B ¼ f1;3g and C ¼ f2;3g are stable. We have two new Boolean games.
� GB ¼ ðB;VB;pB;UBÞ, with B ¼ f1;3g, VB ¼ fa; cg, p1 ¼ a, p3 ¼ c, u1 ¼ a$ c and
u3 ¼ c. GB has one PNE: facg (denoted by sB ¼ ðsB;1; sB;3Þ).

� GC ¼ ðC;VC ;pC ;UCÞ, with C ¼ f2;3g, VC ¼ fb; cg, p2 ¼ b, p3 ¼ c, u2 ¼ b$ :c,
u3 ¼ c. GC has one PNE: fbcg (denoted by sC ¼ ðsC;2; sC;3Þ).
B \ C ¼ f3g and we have sB;3 ¼ sC;3 ¼ c, so GB[C has one PNE: fabcg.

We can easily generalize Proposition 8, with p stable sets covering the set of players:

Proposition 9. Let G ¼ ðN;V ;p;UÞ be a Boolean game, and let B1 � � �Bp be p stable sets of players, such that B1 [ � � � [ Bp ¼ N. Let
GB1 ; . . . ;GBp be the p Boolean games associated.

If 9sB1 � � � sBp PNEs of GB1 ; . . . ;GBp such that 8i; j 2 f1; . . . ; pg, 8k 2 Bi \ Bj, sBi ;k ¼ sBj ;k, then s ¼ ðsB1 ; . . . ; sBp Þ is a PNE of G.

As shown in Example 5, splitting a Boolean game makes the computation of Nash equilibria easier. If we try to compute
Nash equilibria in the original game, we have to check if either s � ui or s�i � :ui for each of the 8 strategy profiles s and for
each of the three players. So, we have to make 12 verifications for each player (8 for each strategy profile in order to verify
s � ui, and 4 for each s�i to verify s�i � :ui), then 36 for the game in the worst case. Meanwhile, the computation of PNEs
once the game is split is much easier: for GB, from Proposition 6, we have to make 6 verifications for player 1 (4 to compute
ðs1; s3Þ � u1, and 2 to compute s3 � :u1); and only 2 for player 3 (because R	ð3Þ n f3g ¼£). So, we only have to do 8
verifications in the worst case to find the PNEs of GB, and the same for GC , which has an equivalent configuration. As we have
to check if the instantiation of player 3’s variables are the same for PNEs of the 2 games, we have to make 17 verifications to
compute PNEs of the game G.
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5. Generalization to non-dichotomous preferences

The choice of dichotomous utilities (where agents can only express plain satisfaction or plain dissatisfaction, with no
intermediate levels) is an important loss of generality. Fortunately, this restriction can easily be relaxed: generalizing the
definition of a Boolean game so as to allow non-dichotomous preferences is easy, as it suffices to replace the preference com-
ponent of a Boolean game by an input expressed in a (propositional) language for compact preference representation (see
[5,4]). In the following, for the sake of the exposition, we focus on compact representation languages for ordinal preferences.

A preference relation � is a reflexive and transitive binary relation (not necessarily complete) on S. The strict preference �
associated with � is defined as usual by s � s0 if and only if s � s0 and not s0 � s, and the indifference relation associated with
� by s � s0 if and only if s � s0 and s0 � s.

Let L be a propositional language for compact representation for ordinal preferences, equipped with a function InduceL

that maps any input of L to a preference relation � on 2V . If U 2 L, then U is called a preference specification and
InduceLðUÞ, generally denoted �U, is the preference relation induced by U. If two preference specifications U and W of L in-
duce the same preference relation, i.e., InduceLðUÞ ¼ InduceLðWÞ, then U and W are said to be L-equivalent. The set of variables
VarðUÞ on which a preference specification U depends is a straightfoward generalization of the set of variables on which a
propositional formula u depends. We denote by VarðUÞ the set of propositional variables appearing in U.

Definition 10. An L-Boolean game is defined to be a 4-uple G ¼ ðN;V ;p;UÞ, where N ¼ f1; . . . ;ng, V and p are as before and
U ¼ hU1; . . . ;Uni, where for each i, Ui is a compact representation in L of the preference relation �i of agent i on S.
PrefG ¼ h�1; . . . ;�ni denotes the collection of preference specifications of all players.

Ui is the preference specification of i. The preference relation of a player i in G is thus InduceðUiÞ, and will often be denoted
�i.

Remark that if LP is the purely propositional preference representation language, where a (dichotomous) preference is
represented by a propositional formula, then LP-Boolean games are just standard Boolean games as defined in Section 2.
See [5,4] for several families of L-Boolean games.

For the sake of illustration we give an example in which preferences are represented with prioritized goals (see [5]); how-
ever, we insist that similar results would hold for other languages for compact preference representation, including CP-nets
and other graphical languages.

Definition 11. A prioritized goal base R is a collection hR1; . . .; Rpi of sets of propositional formulas. Rj represents the set of
goals of priority j, with the convention that the smaller j, the higher priority the formulas in Rj.

In this context, several criteria can be used in order to generate a preference relation � from R. We choose here to stick to
the leximin criterion (see [16–18]). In the following, if s is an interpretation of 2V then we let Satðs;RjÞ ¼ fu 2 Rj j s � ug.

Definition 12. Let R ¼ hR1; . . . ; Rpi, and let s and s0 be two interpretations of 2V . The leximin preference relation induced by
R is defined by: s�lex

R s0 if and only if 9k 2 f1; . . . ; pg such that: jSatðs;RkÞj > jSatðs0;RkÞj and 8j < k, jSatðs;RjÞj ¼ jSatðs0;RjÞj.
Finally, s�lex

R s0 if and only if not (s�lex
R s0).

Note that �lex
R is a complete preference relation. Here is now an example within this preference representation language:

Example 6. G ¼ ðN;V ;p;UÞ where N ¼ f1;2;3g, V ¼ fa; b; cg, p1 ¼ fag, p2 ¼ fbg, p3 ¼ fcg, R1 ¼ hfagi, R2 ¼ hfb _ :ag; fagi
and R3 ¼ hfc _ :ag; fagi.

We draw below the preference relations7Pref lex
G ¼ h�lex

R1
;�lex

R2
;�lex

R3
i.
7 Arrows are oriented from more preferred to less preferred strategy profiles (s1 is preferred to s2 is denoted by s1 ! s2). To make the figures clearer, we do
not draw edges that are obtained from others by transitivity. The dotted arrows indicate the links taken into account in order to compute Nash equilibria. For
example, player 2 prefers abc to abc because jSatðab;R1

2Þj ¼ 1, jSatðab;R2
2Þj ¼ 1 (both strata of R2 are satisfied), and jSatðab;R1

2Þj ¼ 1, jSatðab;R2
2Þj ¼ 0 (only the

first stratum of R2 is satisfied).
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We now have to generalize the dependency graph between players from Boolean games to L-Boolean games, for an arbi-
trary language L. We choose here to stick with complete preorders for the sake of simplicity (our notions and results would
extend to partially ordered preference relations, but this would require quite a lot of additional notations and definitions).
Recall that, in Section 3, a player i was dependent on a player j if her propositional goal ui was dependent of one of the vari-
ables that j controls. Therefore, what we have to start with is generalizing formula-variable dependency to a dependency
notion between a preference relation (or a syntactical input in a compact representation language from which this prefer-
ence relation can be induced) and a variable. We stick here to this very natural, syntactical definition of dependency between
a preference specification and a propositional variable (see [15] for semantical definitions).

Definition 13. Let U be a preference specification of a preference relation in some language L, and x 2 V . U is independent
from x if and only if there exists a preference specification W in L such that

(1) U and W are L-equivalent;
(2) x R VarðWÞ.

A preference specification U is irredundant if and only if for all x 2 VarðUÞ, U depends on x.8 W is a normalization of U if and
only if U and W are L-equivalent and W is irredundant.

Note that this definition depends on the language L chosen for representing preferences.
For instance, consider the prioritized goal base R ¼ hR1i, where R1 ¼ fp ^ q; p ^ :qg. R0 ¼ hfpgi induces exactly the same

preference relation, thus R and R0 are L-equivalent. Since q R VarðR0Þ, R0 does not depend on q, so R is independent from q.
Moreover, it is clearly not possible to find a R00 L-equivalent to R0 in which p does not occur, therefore R0 is irredundant, and
R0 is a normalization of R.

We are now in position of defining the notions used for building the dependency graph for a L-Boolean game:

Definition 14. Let G ¼ ðN;V ;p;UÞ a L-Boolean game. The set of relevant variables for a player i, denoted by RVi, is the set of all
variables v 2 V such that Ui is not independent from v. The set of relevant players for a player i, denoted by RPi, is the set of
agents j 2 N such that j controls at least one relevant variable of i: RPi ¼

S
v2RVi

p�1ðvÞ.

The dependency graph of a L-Boolean game is defined exactly as in Section 3. As we consider only complete preference
relations, the definition of pure Nash equilibria is also the same as previously.

These definitions work for all languages. However, for the sake of illustration, in the following we stick to the preference
representation language based on prioritized goals, from which the preference relation is induced by the leximin criterion.

Example 6 (continued). The dependency graph P of G is the following: RV1 ¼ fag, RV2 ¼ fa; bg, RV3 ¼ fa; cg, RP1 ¼ f1g,
RP2 ¼ f1;2g, RP3 ¼ f1;3g.

This game has one PNE: fabcg.

Definition 8 applies here, and allows us to introduce the notion of projection of a L-Boolean game G on a stable set B, de-
fined exactly as in Section 3:

Definition 15. Let G ¼ ðN;V ;p;UÞ be a L-Boolean game, and let B # N be a stable set for R. The projection of G on B is defined
by GB ¼ ðB;VB;pB;UBÞ, where VB ¼ [i2Bpi, pB : B! VB such that pBðiÞ ¼ fv jv 2 pig, and UB ¼ fWi j i 2 Bg, where for every
i 2 B, Wi is a normalization of Ui.

We can now generalize some properties previously established for non-dichotomous preferences. We start with the fol-
lowing, which is a generalization of Proposition 2.

Proposition 10. Let G ¼ ðN;V ;p;UÞ be a L-Boolean game, and B a stable set for G. Then GB is a L-Boolean game.

The first part of Proposition 6 can also be generalized in this framework.

Proposition 11. Let G be a L-Boolean game such that the players’ dependency graph P of G is acyclic. Then, G has at least one PNE.

We now give a generalization of Proposition 7.

Proposition 12. Let G ¼ ðN;V ;p;UÞ be a L-Boolean game, let B # N be a stable set for R, and let GB ¼ ðB;VB;pB;UBÞ be the
projection of G on B.

If s is a PNE for G, then sB is a PNE for GB.
8 Saying U depends on x is the same than saying U is not independent from x.
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The following is a generalization of Proposition 8.

Proposition 13. Let G ¼ ðN;V ;p;UÞ be a L-Boolean game. Let B and C be two stable sets of players, and let GB and GC be the two
associated L-Boolean games. Suppose than sB is a PNE for GB and sC is a PNE for GC such that 8i 2 B \ C, sB;i ¼ sC;i. Then, sB[C is a
PNE for GB[C .

We can then generalize Proposition 9 exactly in the same way than in Section 4.

Proposition 14. Let G ¼ ðN;V ;p;UÞ be a L-Boolean game, and let B1 � � �Bp be p stable sets of players, such that B1 [ � � � [ Bp ¼ N.
Let GB1 ; . . . ;GBp be the p associated L-Boolean games. If there exist sB1 . . . sBp PNEs of GB1 ; . . . ;GBp such that for all i; j 2 f1; . . . ; pg
and k 2 Bi \ Bj, sBi ;k ¼ sBj ;k, then s ¼ ðsB1 ; . . . ; sBp Þ is a PNE of G.

Example 6 (continued). The sets of players B ¼ f1;2g and C ¼ f1;3g are stable. We have two new Boolean games:
GB ¼ ðB;VB;pB;UBÞ, with B ¼ f1;2g, VB ¼ fa; bg, p1 ¼ a, p2 ¼ b, R1 ¼ hai,
and R2 ¼ hðb _ :aÞ; ai. The preference relations Pref lex

G ¼ h�lex
1 ;�lex

2 i
are drawn on the right.
9 In [20], QCGs are extended by allowing agents to have preferences over goals.
10 In multi-agent influence diagrams [9], a player’s utility is actually expressed in a more compact way as the s

smaller set of variables.
GB has one PNE: fabg (denoted by sB ¼ ðsB;1; sB;2Þ).
GC ¼ ðC;VC ;pC ;UCÞ, with C ¼ f1;3g, VC ¼ fa; cg, p1 ¼ a, p3 ¼ c, R1 ¼ hai
and R3 ¼ hðc _ :aÞ; ai. The preference relations Pref lex

G ¼ h�lex
1 ;�lex

3 i
are drawn on the right.
GC has one PNE: facg (denoted by sC ¼ ðsC;1; sC;3Þ).
B \ C ¼ f1g. But we have sB;1 ¼ sC;1 ¼ a, so Proposition 14 can be applied: GB[C has one PNE: fabcg.
6. Discussion

We have shown how the intuitive notion of dependency between players in a Boolean game can be exploited so as to
facilitate the computation of pure-strategy Nash equilibria. Moreover, our properties not only hold for the standard version
of Boolean game (with propositional goals and dichotomous preferences) but also for generalized Boolean games, where
players’ preferences are expressed in a compact representation language (prioritized goals bases, CP-nets, etc. cf. [5,4]).

Another class of games with dichotomous preferences shares a lot with Boolean games: Qualitative Coalitional Games
(QCG), introduced by [19]. In a QCG, each agent has a set of goals, and is satisfied if one of her goals is achieved, but is indif-
ferent on which goal is, and on the number of goals achieved.9 Thus agents have dichotomous preferences (as in the standard
version of Boolean games – cf. Sections 2–4). A characteristic function associates with each agent, or set of agents, the set of
goals they can achieve. See [4] for more details.

Boolean games take place in a larger stream of work, that we may gather under the generic name of compactly represented
games. All frameworks for compactly represented games make use of notions of dependencies between players and/or ac-
tions that have a lot in common with ours. Most of these frameworks, including [9,10,21], share the following mode of rep-
resentation of players’ utilities: the utility of a player i is described by a table specifying a numerical value for each
combination of values to each of the set of variables that are relevant to i.10 The representation of games with such utility
tables is called graphical normal form (GNF) in [11]. Dependencies between players and variables in such games naturally in-
duces a dependency relation between players, in the same way as we do (i depends on j if i’s utility table refers to a variable
that is controlled by j).

Boolean games are very similar to these graphical games, except that the form chosen for expressing compactly players’
preferences is logical. The logical form is sometimes exponentially more compact than the graphical form: consider for in-
stance the dichotomous preference relation corresponding to the goal u ¼ x1  � � �  xp, where  is exclusive or. While
the logical representation of uu is linear in p, its representation by utility tables would be exponential in p, since each of
the p variables is relevant to player’s utility. In the general case of non-dichotomous utility functions or preference relations,
um of local utilities, each corresponding to a
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the Boolean game framework, by allowing some flexibility on the choice of the language for preference representation, is
more general than the one of graphical games, where the format for expressing preferences is fixed. Moreover, solving games
in logical form may benefit from the huge literature on SAT and related algorithms for propositional logic (see Section 6.3 of
[4] for more details).

The notion of dependency between players and variables in graphical games is used for the very same purpose as our
dependency graph, namely, to split up a game into a set of interacting smaller games, which can be solved more or less inde-
pendently. In [11], specific restrictions on graphical games are studied, either by bounding the size of players’ neighbour-
hoods (the neighbourhood of a player i in a graphical game is the set of players who potentially influence the utility of i),
or by imposing that the dependency relation between players should be acyclic. Then [11] studies the impact of such restric-
tions on the complexity of checking the existence of a Nash equilibrium (or their computation). Clearly, similar structural
restrictions on Boolean games would probably allow for a complexity fall with respect to the complexity results for the gen-
eral case in [4]. This is left for further study.

The work reported here is still preliminary and can be pursued in many other directions.
First, apart of the structural restrictions mentioned just above, we may study the impact of syntactical restrictions on prop-

ositional goals on the computation of Nash equilibria and on the construction of the dependency graph. In [22], Sichman and
Conte introduced dependency graphs which can represent and/or dependencies11 on actions needed to achieve an agent’s
goal and on the agents who control these actions. In the first case, this is similar to our set of relevant variables, and in the sec-
ond case this corresponds to our set of relevant players. Sichman and Conte’s ideas can be used for introducing and/or depen-
dencies in our framework, but using the syntactical form of the goals. In [23], three notions of dependency are defined: the weak
one is the same than our (an agent i is dependent from a set of agents C if C can achieve i’s goal). The second one, called normal
dependency, adds to weak dependency the condition that i cannot achieve her goal by herself. Finally, the third one adds the fact
that agents in C are the only ones able to achieve i’s goal. Following Sichman and Conte [22], Boella et al. [23] use an and-graph
to represent weak/strong dependency: for every coalition C, there is an and-edge from agent i, i 2 C, to agent j 2 N if the agents
in C can achieve the goal desired by the agent j. This notion of dependency is the basis of their computation of admissible coa-
lition under the do-ut-des criterion (see [24]).

Second, while our Section 5 does not focus on particular language (prioritized goals are used in an example just for the
sake of illustration), we may want to study in further detail the computation of Nash equilibria (using the structural prop-
erties of the game) for some specific languages for preference representation (see [5,4] for the case of CP-nets and prioritized
goals). A particularly appealing language consists in specifying preferences by weighted goals, where a player’s utility func-
tion is represented using several propositional formulas, each being attached with a numerical value (see [25]). This is espe-
cially interesting because this language generalizes the representation by utility tables in graphical games.

So far, Boolean games allow only for expressing static games (with simultaneous moves by the players) and with complete
information. Enriching Boolean games with dynamicity and nature-driven uncertainty, as in multi-agent influence diagrams,
is not as simple as it looks at first glance, and is a challenging issue.

In this paper we focused only on pure-strategy Nash equilibria (as does more generally the literature on succinctly rep-
resented games), which is a strong limitation. Computing mixed strategy Nash equilibria in Boolean games is a challenging
issue. Finding a mixed equilibrium in a succinctly represented game would probably require to solve a linear program with
an exponential number of variables. However, our decomposition techniques could work as well, to a certain extent. This is a
very interesting (and difficult) topic for further research.

Finally, let us mention an informal relationship to social network analysis.12 A social network is a graph whose nodes are
individuals and edges represent some type of interdependency. Our dependency graph between players (and more generally,
similar dependency graph in graphical games such as in [10,9,11]), can therefore be viewed as a specific case of social network,
where the dependency relation between i and j expresses that the satisfaction of i may rely on the action taken by j. Technically,
of course, both lines of work significantly diverge: social network analysis studies the properties of large graphs found in the
real world (friendship or trading relations, co-authorship etc.). Our paper does not study the properties of such graphs but uses
their structure to make the computation of Nash equilibria easier. Some of the properties we use are relevant in social network
analysis. For instance, the decomposition techniques at work in Propositions 7 and 8 will be more efficient if the dependency
graph is composed of weakly interconnected (but possibly strongly intra-connected) clusters of agents, which may correspond
(to some extent) to the notion of small world well-known in social networks.
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A. Proofs

Proposition 1. Let C 
 2N. There exists a Boolean game G such that C is the set of stable sets for G if and only if C satisfies the
following four properties:

(1) £ 2 C;
(2) N 2 C;
(3) If B, B0 2 C then B [ B0 2 C;
(4) If B, B0 2 C then B \ B0 2 C.

Proof. Since every dependency graph corresponds to some Boolean game, it is sufficient to show that there exists a relation
R on N such that C is the set of stable sets for R if and only if C satisfies (1)–(4).

) £ and N are obviously stable for R.
If B and B0 are stable sets for R, then RðBÞ# B and RðB0Þ# B0. So, RðBÞ [ RðB0Þ# B [ B0. Now, RðBÞ ¼ fjj9i 2 B : j 2 RPig and
RðB0Þ ¼ fjj9i 2 B0 : j 2 RPig. Thus, RðBÞ [ RðB0Þ ¼ fjj9i 2 B [ B0 : j 2 RPig ¼ RðB [ B0Þ. Then, RðB [ B0Þ# B [ B0, and B [ B0 is a
stable set.
If B and B0 are stable, then RðBÞ# B and RðB0Þ# B0. So, RðBÞ \ RðB0Þ# B \ B0. We know than, RðBÞ ¼ fjj9i 2 B : j 2 RPig and
RðB0Þ ¼ fjj9i 2 B0 : j 2 RPig. Thus, RðBÞ \ RðB0Þ ¼ fjj9i 2 B \ B0 : j 2 RPig ¼ RðB \ B0Þ. Then, RðB \ B0Þ# B \ B0, and B \ B0 is a
stable set.

( Let C be a set of coalitions satisfying (1)–(4).
For every i 2 N, there exists a smallest set Xi in C containing i: Xi ¼

T
fB 2 Cji 2 Bg (since C is closed for \, we have

Xi 2 C). Now, we construct R such that for all i; j 2 N, ði; jÞ 2 R if and only if j 2 Xi.
For every B 2 C and every i 2 B, if ði; jÞ 2 R, then by construction of R, j 2 B, therefore B is stable for R.
It remains to be shown that every subset B stable for R is in C. Assume that RðBÞ# B. Then for every i 2 B, RðiÞ# B. Now,
by construction of R, RðBÞ ¼ Xi. Since i 2 Xi, we have B #[i2BXi. Now, for every i 2 B, RðiÞ# B by hypothesis, therefore
[i2BXi ¼ B. Now, every Xi is in C, therefore, using (3), we have B 2 C. h

Proposition 3. If B is a stable set, then GB ¼ ðB;VB;pB;UBÞ is a Boolean game.

Proof. Let GB ¼ ðB;VB;pB;UBÞ. We have to check that every goal ui for i 2 B is a formula of LVB , or can be rewritten equiva-
lently as a formula of LVB .

Suppose than 9i 2 B, 9v 2 VarðuiÞ such that v R VB. So, 8j 2 B, v R pj. Let k 2 N n B such that v 2 pk. We know that
v 2 VarðuiÞ, so either ui is independent from v, and then is logically equivalent to a formula in which v does not appear; or ui
is not independent from v, and in this case v 2 RVi and by definition k 2 RPi. So, k 2 RðiÞ, but k R B: this is in contradiction
with the fact that B is stable. h

Proposition 4. Let G be a Boolean game. If 8i 2 N, i R RPi then every s 2 S is a PNE.

Proof. Since 8i 2 N, i R RPi, i has no influence on her own goal: 8i 2 N, either s�i � ui or s�i � :ui. So, we have 8si 2 Si,
ðsi; s�iÞ � ui or s�i � :ui. s is thus always a PNE. h

Proposition 5. Let G be a Boolean game such that 8i 2 N, jRPij ¼ 1.
s is a PNE if and only if 8i 2 N such that RPi ¼ fig, s � ui.

Proof

) Let s be a PNE and let i such that RPi ¼ fig. Suppose that s � :ui (1). RPi ¼ fig implies DepVarðuiÞ#pi, therefore (1)
implies si � :ui (2). Now, s is a PNE, therefore by Proposition 3, either (a) s � ui or (b) s�i � :ui. (a) is excluded
because (2) holds, therefore we have s�i � :ui (3). Now, because :ui does not depend on the variables controlled
by players other than i, :ui must be a tautology, that is, ui �?, which is excluded by definition (all goals are satisfi-
able). Thus we have a contradiction.

( Suppose now that (1) s � ui holds for every i such that RPi ¼ fig. Let i 2 N. By Proposition 3, s is a PNE if and only if
either (a) s � ui or (b) s�i � :ui. If RPi ¼ fig then s � ui, and (a) is satisfied. If RPi ¼ fjg with j – i, then s � :ui if and
only if s�i � :ui, therefore either (a) or (b) is satisfied. We conclude that s is a PNE. h
Proposition 6. Let G be a Boolean game such that the irreflexive part of the dependency graph P of G is acyclic.
Then, G has at least one PNE. Moreover, s is a PNE of G if and only if for every i 2 N, either ðsi; sR	ðiÞnfigÞ � ui or sR	ðiÞnfig � :ui.
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Proof

� Assume without loss of generality that the players are numbered in such a way that for every i 2 N, if i depends on j then
j < i. Let s ¼ ðs1; . . . ; snÞ be defined inductively as follows: for i ¼ 1; . . . ;n, if ðuiÞs1 ;...;si�1

is satisfiable then take si such that
ðs1; . . . ; siÞ � ui. Such an si exists because i does not depend on k for all k > i. If ðuiÞs1 ;...;si�1

is unsatisfiable then take any si. It
is easily checked that s is a PNE.

� s is a PNE of G if and only if for every i 2 N, either ðsi; sR	ðiÞnfigÞ � ui or sR	ðiÞnfig � :ui.
) Assume that s is a PNE and that exists a player i 2 N such that ðsi; sR	ðiÞnfigÞ 2 ui and sR	ðiÞnfig 2 :ui.

Then, we have s � :ui, and, as 8k R R	ðiÞ, ðuiÞsk
¼ ui, s�i 2 :ui. Thus, s is not a PNE.

( Assume now that ðsi; sR	ðiÞnfigÞ � ui or sR	ðiÞnfig � :ui.
If i is a player such that ðsi; sR	ðiÞnfigÞ � ui, we obviously have s � ui.If sR	ðiÞnfig � :ui, then, as 8k R RPi; ðuiÞsk

¼ ui, we
have s�i � :ui. As 8i 2 N, either s � ui, or s�i � :ui, s is a PNE. h
Proposition 7. Let G ¼ ðN;V ;p;UÞ be a Boolean game, let B # N be a stable set for R, and let GB be the projection of G on B. If s is a
PNE for G, then sB is a PNE for GB.

Proof. Let s ¼ ðsB; s�BÞ be a PNE of G, which is equivalent to: for every i 2 N, either s � ui or s�i � :ui [4]. Let us show that sB

is a PNE of GB. Let i 2 B.
If s � ui, then because i 2 B and B is stable, s�B has no influence on ui and we have sB � ui.
If s�i � :ui then only players in B have an influence on ui. So, we have sðBnfigÞ � :ui, which corresponds to sB�i � :ui. h

Proposition 8. Let G ¼ ðN;V ;p;UÞ be a Boolean game. Let B and C be two stable sets of players, and let GB and GC be the two
associated Boolean games.

Suppose than sB is a PNE for GB and sC is a PNE for GC such that 8i 2 B \ C, sB;i ¼ sC;i, where sB;i (resp. sC;i) represents the strategy
of player i for the game GB (resp. GC).

Then, sB[C is a PNE for GB[C .

Proof. B and C are stable, so from Proposition 1, B [ C is a stable set, and from Proposition 2, GB[C is a Boolean game. We
know that sB ¼ ðsBnB\C ; sB\CÞ ¼ ðsBnC ; sB\CÞ and that sC ¼ ðsCnB; sB\CÞ. As 8i 2 B \ C, sB;i ¼ sC;i, we have sB\C ¼ ðsB; sCÞ ¼ ðsBnC ; sCnB;

sB\CÞ. Let i 2 B [ C.

� i 2 B n C (or i 2 C n B). As B is stable, we know that 8j 2 RðiÞ, j R C n B. Thus, sCnB has no influence on the satisfaction of ui,
and so this satisfaction is only determined by sB ¼ ðsBnC ; sB\CÞ. In this case, if sB � ui, then sB[C � ui, and if sB�i � :ui, then
sB[C�i � :ui.

� i 2 B \ C. As B and C are stable, we know that B \ C is stable, and then that 8j 2 RðiÞ, j 2 RðB \ CÞ# B \ C. Thus, the satisfac-
tion of ui is only determined by sB\C . As sB is a PNE for GB and sC is a PNE for GC , we have either sB\C � ui, or sB\C�i � :ui.
Then, we have either sB[C � ui, or sB[C�i � :ui.

So, we have 8i 2 N either sB[C � ui, or sB[C�i � :ui. sB[C is PNE of G. h

Proposition 9. Let G ¼ ðN;V ;p;UÞ be a Boolean game, and let B1 � � �Bp be p stable sets of players, such that B1 [ � � � [ Bp ¼ N. Let
GB1 ; . . . ;GBp be the p Boolean games associated.

If 9sB1 � � � sBp PNEs of GB1 ; . . . ;GBp such that 8i; j 2 f1; . . . ; pg, 8k 2 Bi \ Bj, sBi ;k ¼ sBj ;k, then s ¼ ðsB1 ; . . . ; sBp Þ is a PNE of G.

Proof. Let B1 and B2 two stable sets, and GB1 and GB2 the two Boolean games associated. We can apply Proposition 8, and
show that B1 [ B2 is a stable set, that GB1[B2 is a Boolean game and that sB1[B2 is a PNE of GB1[B2 .

We can do the same for B1 [ B2 and B3, and so on until the final result. h

Proposition 10. Let G ¼ ðN;V ;p;UÞ be a L-Boolean game, and B a stable set for G. Then GB is a L-Boolean game.

Proof. Let GB ¼ ðB;VB;pB;UBÞ. B is stable, therefore for every i 2 B, Ui depends only on variables controlled by players of B,
that is, depends only on VB. Therefore, if i 2 B and Wi is a normalization of Ui, then VarðWiÞ# VB. This entails that
GB ¼ ðB;VB;pB;UBÞ is a well-defined L-Boolean game. h

Proposition 11. Let G be a L-Boolean game such that the players’ dependency graph P of G is acyclic. Then, G has at least one PNE.

Proof. Suppose without loss of generality that players are numbered on the following way: for all i 2 N, if i depends on j,
then j < i. Let s ¼ ðs1; . . . ; snÞ defined inductively as follows: for i ¼ 1; . . . ;n, we take si such that for all s0i,
ðs1; . . . ; siÞ�iðs1; . . . ; s0iÞ. Such a si exists because i does not depend on k for all k > i. We have built a strategy profile s such
that for all i, for all s0i, ðsi; s�iÞ�iðs0i; s�iÞ. s is a PNE. h
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Proposition 12. Let G ¼ ðN;V ;p;UÞ be a L-Boolean game, let B # N be a stable set for R, and let GB ¼ ðB;VB;pB;UBÞ be the pro-
jection of G on B. If s is a PNE for G, then sB is a PNE for GB.

Proof. Let s be a PNE for G: 8i 2 N, 8s0i 2 Si, ðs0i; s�iÞ�iðsi; s�iÞ. Let s ¼ ðsB; s�BÞ. We want to check that sB is a PNE for GB.
Let i 2 B. Suppose that sB is not a PNE for GB, then there is a s0i 2 Si such that ðs0i; sB�iÞ�iðsi; sB�iÞ. As i 2 B and B is stable, we

know that the only players having an influence on i are in B. So, s�B has no influence on i’s preferences. Thus we have
ðs0i; sB�i; s�BÞ�is ¼ ðsi; sB�i; s�BÞ, that contradicts the fact than s is a PNE for G. h

Proposition 13. Let G ¼ ðN;V ;p;UÞ be a L-Boolean game. Let B and C be two stable sets of players, and let GB and GC be the two
associated L-Boolean games. Suppose than sB is a PNE for GB and sC is a PNE for GC such that 8i 2 B \ C, sB;i ¼ sC;i . Then, sB[C is a PNE
for GB[C .

Proof. B and C are stable, so from Proposition 1, B [ C is a stable set and from Proposition 10, GB[C is a Boolean game. Let
i 2 B [ C.

� i 2 B n C (or i 2 C n B). sB is PNE for GB, so 8s0i 2 Si; ðs0i; sB�iÞ�iðsi; sB�iÞ. As i R C, we can write 8s0i 2 Si, ðs0i; sB[C�iÞ�iðsi; sB[C�iÞ.
� i 2 B \ C. We have 8k 2 B \ C, sB;k ¼ sC;k. sB is PNE for GB, so 8s0i 2 Si; ðs0i; sB�iÞ�iðsi; sB�iÞ; sC is a PNE for GC , so
8s0i 2 Si; ðs0i; sC�iÞ�iðsi; sC�iÞ. As 8k 2 B \ C, sB;k ¼ sC;k, we have 8s0i 2 Si; ðs0i; sB�i; sC�iÞ�iðsi; sB�i; sC�iÞ, that is
8s0i 2 Si; ðs0i; sB[C�iÞ�iðsi; sB[C�iÞ. h

Proposition 14. Let G ¼ ðN;V ;p;UÞ be a L-Boolean game, and let B1 . . . Bp be p stable sets of players, such that B1 [ . . . [ Bp ¼ N.
Let GB1 ; . . . ;GBp be the p associated L-Boolean games. If there exist sB1 . . . sBp PNEs of GB1 ; . . . ;GBp such that for all i; j 2 f1; . . . ; pg and
k 2 Bi \ Bj, sBi ;k ¼ sBj ;k, then s ¼ ðsB1 ; . . . ; sBp Þ is a PNE of G.

Proof. Similar to the proof of Proposition 9. h
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