Edinburgh Research Explorer

Normalization Theory for XML

Citation for published version:

Libkin, L 2007, Normalization Theory for XML. in Database and XMLTechnologies: 5th International XML
Database Symposium, XSym 2007, Vienna, Austria, September 23-24, 2007, Proceedings. vol. 4704,
Springer Berlin Heidelberg, pp. 1-13. https://doi.org/10.1007/978-3-540-75288-2_1

Digital Object Identifier (DOI):
10.1007/978-3-540-75288-2_1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Database and XMLTechnologies

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 26. Apr. 2024

https://doi.org/10.1007/978-3-540-75288-2_1
https://doi.org/10.1007/978-3-540-75288-2_1
https://www.research.ed.ac.uk/en/publications/02ef3aaa-c170-49a8-a929-9e52780944e8

Normalization Theory for XML

Leonid Libkin!

School of Informatics, University of Edinburgh
1ibkin@inf.ed.ac.uk

Abstract. Specifications of XML documents typically consist of typing
information (e.g., a DTD), and integrity constraints. Just like relational
schema specifications, not all are good — some are prone to redundancies
and update anomalies. In the relational world we have a well-developed
theory of data design (also known as normalization). A few definitions
of XML normal forms have been proposed, but the main question is why
a particular design is good. In the XML world, we still lack universally
accepted query languages such as relational algebra, or update languages
that let us reason about storage redundancies, lossless decompositions,
and update anomalies. A better approach, therefore, is to come up with
notions of good design based on the intrinsic properties of the model
itself. We present such an approach, based on Shannon’s information
theory, and show how it applies to relational normal forms as well as to
XML design, for both native and relational storage.

1 Introduction

Data organization is one of the most fundamental topics in the study of databases.
In fact, the concept of normalization was proposed by Codd [5] in 1971 — a mere
year after he introduced the relational model. By 1974, the standard 2nd, 3rd,
and Boyce-Codd [6] normal forms (2NF, 3NF, BCNF) had been developed. Bern-
stein’s work on 3NF in the mid 1970s [3] is often viewed as the birth of database
theory. It was understood very early by both database practitioners and the-
oreticians that having well-organized and well-designed databases is absolutely
crucial for storing, querying, and updating data. Already in the 1980s, the stan-
dard normal forms such as 3NF and BCNF were covered by the majority of
database texts.

After three decades of relational dominance, we have seen a new data format
that is extremely widely used and can seriously challenge relational databases.
Thanks to the proliferation of data on the web, much of it now appears in various
markup language formats, of which XML is the most common one. Given the
amount of data available in XML, it is natural to expect that some of XML
designs will exhibit problems similar to those of relational designs, and indeed
this is the case. As a simplest example, we can represent an arbitrary relational
schema Ry(Af,...,A}), ..., Ri(Af, ..., AF) in XML by means of the following
DTD D;:

db— Ry,..., Ry
R; — tuple;, i<k

that declares A%,... ,Afu to be the attributes of tuple;. This way, a bad rela-
tional design translates into a bad XML design, inheriting its problems such as
redundancies and update anomalies. But there are other ways to have designs
prone to update anomalies due to the hierarchical nature of XML. Consider,
for example, the following DTD D5 for storing information about conference
publications:
db — conf*
conf — paper*
paper — authorJr7 title, year

with author, title, and year elements each carrying an attribute with its value.
Now suppose we know — and this is a reasonable assumption — that all papers
in a conference have the same publication year. Then the year information is
redundant, as it is stored repeatedly for all papers in the conference. In addition
it is likely to lead to update problems: if a year needs to be changed, one cannot
do it just once; instead it needs to be changed for every paper in the conference.

To build foundations of good XML design, we need to answer the following
two questions:

1. How do we recognize poor XML designs, and how do we convert them to
good designs? In other words, we want to develop a theory of normalization
for XML.

2. What constitutes a good XML design? In other words, we want to formulate
criteria for good XML designs. In the relation case, one usually appeals to
the intuitive notions of redundancy and update anomaly. But this approach
is problematic in the case of XML for three reasons:

— First, due to the complicated hierarchical structure of XML documents,
it is harder to see when a schema contains redundancies.

— Second, the notion of an update is not nearly as clean as the notion of
relational updates, which makes it hard to say what constitutes an up-
date anomaly (especially in the absence of a universally accepted notion
of XML updates).

— Third, there is no query language with the same yardstick status as rela-
tional algebra has for relational databases. The process of normalization
needs to be lossless (meaning that the original data can be recovered from
a differently designed schema). Thus, the notion of losslessness depends
on a query language.

Thus, we need an approach based on “standards-free” XML concepts, that
is, concepts that will not change even if the W3C comes up with a new query
or update language for XML tomorrow.

Several XML normal forms have been proposed recently, see, e.g., [1,18,17,
19,8]. They differ in terms of schema and constraint description, but are based
on essentially the same set of transformations, first proposed in [1]. As for the
work on justification of XML normal forms, an approach was proposed in [2]
based on information theory. The idea of the approach is that we measure the
amount of redundancy in a design regardless of any query/update language for

a data model. This approach, when applied to relational design, confirms our
intuitive view of which designs are good [2,12], and then it can be applied in
the case of XML to reason about XML designs for both native [2] and relational
storage [13].

We give a brief survey of these developments. We start with a quick overview
of relational normalization. After that, we introduce the main idea of XML
normalization. We then present the intuition behind the information-theoretic
approach to normalization, and show how it justifies commonly used relational
normal forms. Finally, we analyze the implications of the information-theoretic
approach to XML design.

2 Relational normalization: a brief reminder

We give an overview of two normal forms based on functional dependencies
(FDs): the third normal form 3NF, and the Boyce-Codd normal form BCNF.

If integrity constraints are specified as FDs, the main cause for problems in
a design is a functional dependency X — Y in which the left-hand side X is not
a key. For example, if we have three attributes A, B,C and an FD A — B, then
a given value a of A can be associated with an arbitrary number of values of the
C-attribute, i.e. we can have tuples (a,b,c1),...,(a,b,¢,) in a relation, but the
value of the B-attribute must be the same in all of them, as it is determined by
a. Hence, we store b unnecessarily many times. Besides, an attempt to update b
leads to problems as it needs to be updated in all of the tuples — otherwise the
database would be inconsistent.

A standard solution in this case is to split a schema into two; in this case,
into AB with a key dependency A — B, and AC'. In general, if we have an FD
X — Y, and Z is the set of attributes that are not dependent on X, one splits
the schema XY Z as follows:

o]

XY TXZ

II
I.
!H
IH

Thus, a “bad” FD X — Y is translated into a key dependency X — Y in
the relation with XY attributes, and generates a foreign key from the relation
with X Z attributes.

If we have a relational schema given by a set of attributes U and a set of
functional dependencies F', we write F'™ for the set of all FDs logically implied
by F. We say that a schema is in BCNF if, for every nontrivial FD X — Y in
F (i.e. Y € X), it is the case that X is a key; in other words, X — U € F'*.

Intuitively, BCNF completely eliminates all the redundancies, as it eliminates
“bad” FDs, and replaces them by keys and foreign keys. It does suffer from one

problem, however. Consider a schema with three attributes A, B, C' and two FDs
AB — Cand C — A. This schema is not in BCNF, since C'is not a key. If we split
it into AC and BC, we lose the FD AB — C. In other words, the decomposition
is not dependency-preserving, and in fact no lossless decomposition of this schema
is. Hence, it is impossible to achieve complete elimination of redundancies and
dependency-preservation at the same time.

If dependency-preservation is important (and it usually is, since it is impor-
tant to maintain consistency of the data), one may have to settle for less than
BCNF. Recall that an attribute is called prime if it belongs to a candidate (min-
imal) key. Now assume that in a schema we allow two conditions for a nontrivial
FD X — Y: either X is a key (as in the case of BCNF), or every attribute
in Y — X is prime. This is the definition of the third normal form 3NF (actu-
ally, this is not the original definition but a reformulation by [20], which is most
commonly used these days).

A good property of 3NF is that every relational schema admits a lossless
dependency-preserving 3NF decomposition. However, such a decomposition is
not guaranteed to eliminate all the redundancies, but it restricts them to values
of prime attributes. 3NF is a very common database design used in practice [15].

3 Measuring the amount of redundancy

Our goal is to provide a way of reasoning about XML designs without appealing
to the notions of queries and updates for XML documents. Before introducing
such techniques for XML, we would like to test them in the well-understood
relational case, where we know what constitutes a good design.

The main idea of our approach, which was first proposed in [2], is as follows.
Given an instance R of a schema with attributes Aq,..., A, and FDs F, we
define a notion of relative information content of a position p in R with respect
to F. It will be denoted by Ricr(p|F'). Here a position is identified by a tuple
and an attribute. We define it in such a way that

0 < Ricg(p|F) < 1,

with RiCg(p|F) = 1 saying that position p carries no redundancy whatsoever.
In general, the less the value of RiCg(p|F) is, the more redundancy this position
p carries.

This notion is defined using the concept of entropy, more precisely, a certain
conditional entropy. The notion of entropy was used in the past to reason about
database constraints [7,14], but it is a bit of challenge to make it relative to
a set of constraints F. The general idea is as follows. We want to measure the
amount of information in p with respect to an arbitrary set P of positions in the
instance R. This way we account for all possible interactions between p and sets
of positions in R, and then we take the average such amount of information as
the value of RICR(p|F).

To measure the amount of information in p with respect to a set of positions
P, assume that we lose the value in position p, and that we have a set of k possible

values vy, ..., v to choose this value from. We shall assign a certain probability
m;(P) of picking the right value to each of the v;’s — this is the probability that
v; is a possible value for position p, given the information provided by positions
P. We then look at the entropy of this distribution:

Rick (p, P|F) Zm) log —— (P)

Note that this value is dependent on k, the number of possible values to put in
position p.

The entropy tells us how much information is provided by a certain random
event. For example, if there is only one way to replace the missing value by some
v;, then RIC%(p,P|F) = 0, meaning that the information content of position
p is 0, and that the value is redundant as it can be inferred from the rest.
The opposite case when all the values v;’s are possible with equal probabilities
mi(P) = % This is the the least redundant case, when we can infer nothing
about the value in position p. In this case, RIC’}%(p, P|F) = log k, the maximum
value of an entropy of a discrete distribution on k elements.

Now our measure (almost) is the average value of Rick(p, P|F) over all sets
P of positions:

1
Rick(p|F) = VT > Rick(p, P|F),
PC Positions(R)

where N is the total number of positions in R (i.e. the number of tuples in R
multiplied by the number of attributes in R).

To compute the m;(P)’s, we need the FDs in F. Now suppose that the value
if position p is v;, and we lose the values in positions P. We now look at the
ratio of the number of value assignments to position in P (from the same set
v1,...,v;) that make the resulting instance satisfy all the FDs in F'. These are,
essentially, the m;(P)’s (in addition one needs to normalize these values to ensure

We have almost defined our measure; the only problem is that Rick (p|F)
depends on k. Since the domain of values is assumed to be countably infinite,
as the measure RICg(p|F) we take the limit of the ratio of Ric/(p|F) and the
maximum entropy for a discrete distribution on k values, i.e.

. Rick(p|F

It was proved in [2] that this limit always exists (in fact it exists for far more
general classes of constraints than FDs), and thus can be taken to be the rel-
ative information content of a position in an instance with respect to a set of
constraints F'.

Some basic facts about the measure Ricr(p|F) from [2]:

— The value of Ricg(p|F) is independent of the syntactic representation of
the FDs in F. That is, if F' and G are two sets of FDs and F'™ = G, then
RiCcr(p|F) = RICr(p|G).

— 0 < RICgr(p|F) < 1.

— If F =0, then Ricg(p|F) = 1 (if there are no constraints, there is nothing
to tell us that the schema may not be well-designed).

4 Applying the measure: relational designs

We now use the information-theoretic measure to define well-designed schemas.

Definition 1. A relational schema given by a set of FDs F' is well-designed iff
RiCgr(p|F) =1 for every instance R of the schema and every position p in R.

In other words, the schema is well-designed if no position in any instance of
the schema admits any redundancy.

Theorem 1 (see [2]). A schema given by FDs is well-designed iff it is in
BCNF.

This confirms our intuition that BCNF completely eliminates redundancies.
This result was further extended in [2] to deal with other classes of constraints
such as multi-valued and join dependencies, and justify normal forms such as
4NF [9].

But what about the normal form most commonly used in practice, i.e. 3NF?
The first result looks rather discouraging: 3NF schemas may admit an arbitrar-
ily high amount of redundancy (demonstrated by arbitrarily low values of the
measure).

Proposition 1 (see [11]). For every 0 < ¢ < 1, one can find a SNF relational
schema given by a set of FDs F, an instance R of that schema and a position p
in R such that RiCr(p|F) < €.

However, the situation is not as bad as it might seem. First, the result requires
schemas with a large number of attributes. More importantly, it has been known
for a long time [20] that not all 3NF designs are equally good: for some schemas
already in 3NF, better 3NF designs can be obtained by applying the standard
3NF synthesis algorithm [3].

3NF designs guarantee the integrity of the database. One may ask whether
3NF is the best choice of a dependency-preserving normal form. That is, if we
look at all normal forms that guarantee dependency-preservation (hence exclud-
ing BCNF), is it 3NF that has the least amount of redundancy?

The answer to this is positive. Assume that AVF is some dependency-preserving
normal form: i.e., every schema admits a lossless dependency-preserving decom-
position into NF. We define the guaranteed information content provided by
NF as the largest number ¢ € [0, 1] such that every schema may be decomposed

into AV in such a way that in all instances R of the decomposed schema and
all positions p, the information content RICg(p|F) is at least c.

If RiCr(p|F) > ¢, then 1 — ¢ is the price of dependency preservation, denoted
by PRICE(NF): that is, the minimum amount of information content one must
lose due to dependency preservation. The following theorem shows that among
normal forms that guarantee dependency preservation, 3NF is the one with the
least amount of redundancy.

Theorem 2 (see [12]). PRICE(3NF) = 1/2. Furthermore, if NF is an arbitrary
dependency-preserving normal form, then PRICE(NF) > 1/2.

Furthermore, we can analyze “good” 3NF schemas produced by the standard
synthesis algorithm. We refer to them as 3NF' schemas (they can be syntac-
tically characterized [20], but for our purposes it suffices to think of them as
3NF schemas that cannot be further decomposed using the standard synthesis
algorithm of [3]).

To compare 3NF and 3NF* designs, we use a new concept of a gain of
normalization function. To define it, assume that we have a condition C on
schemas consisting of FDs. We first define the set of possible values of RICg(p|F)
for m-attribute instances R of schemas satisfying C:

POSSc(m) = {RICRr(p|F) | R satisfies F, F satisfies C,
R has m attributes}.

We are now interested in the lowest possible value in such a set, i.e. inf POSS¢(m)
(typically these sets are dense subsets of intervals (g,1], so the infimum — ¢ —
is well-defined). For two normal forms NF; and NFy, the gain of normalization
function GAINp7, /nF, * N — R is

inf POSS nz, (m)

GAINNE, /A, (M) = inf POSS n7, (M)

In other words, we measure the ratio of the least amount of information in
instances of NF;- and NF,-schemas, which tells us how much better NF; can
be compared to NFs.

Let ALL be the set of all (unnormalized) schemas.

Theorem 3 (see [12]). For every m > 2:

— GAINgNp /AL (M) = 2;
— GAINgenpysnp+ (M) = 25
— GAINgNp+ /A () = 2772

Stated informally, an arbitrary 3NF design is at least twice as good as not
doing any normalization at all. Furthermore, good 3NF' designs are much better
— in the worst case, they are within a constant factor of two of the best BCNF
designs in terms of the amount of redundancy, while guaranteeing dependency-
preservation.

5 Applying the measure: XML designs

The information theoretic measure is very robust. It lets us justify relational
normal forms and go beyond them — we saw how to use it for normal form com-
parison, for example. It was also shown in [2] how to reason about normalization
algorithms using the information-theoretic measure.

We now switch our attention to XML, and show that the same information-
theoretic techniques give us a notion of redundancy-eliminating normal form,
which is an analog of BCNF, as well as a notion of “second best” form, similar
to 3NF. Namely, we shall do the following.

1. We define functional dependencies for XML, for specifying constraints.

2. We then show that the information-theoretic measure applies to XML doc-
uments.

3. We present the notion of a redundancy-eliminating normal form, called XNF,
and sketch an algorithm for converting XML designs into XNF.

4. Finally, we analyze good XML designs assuming XML documents are shred-
ded into relations. Again, we show that XNF eliminates redundancies.

We start with the notion of functional dependency. An analog of a relational
attribute in the case of XML is a path through a DTD, i.e. a sequence of labels
consistent with the DTD of a document. For example, if we represent a relational
schema with attributes ABC' and FDs AB — C and C'— A by a DTD D:

r — tuple” (1)

with tuple having attributes @A, QB, QC, respectively, then the FDs will be
represented as follows:

{r.tuple.QA, r.tuple@QB} — r.tuple.QC 2)
r.lupleQC — r.tuple. QA

If we look at the DTD D’ for storing information about conferences and papers:

db — conf”
conf — paper*

(3)

where the element type paper comes with attributes Qauthor, Qtitle, Qyear, then
we have an FD
db.conf — db.conf.paper.Qyear (4)

For example, it is natural to expect that all the papers appearing in XSym 2007
will have 2007 as the year of their publication.

The notion of satisfaction of FDs should be intuitively clear from these ex-
amples; the interested reader is referred to [1] for a formal definition that relies
on a notion of tree tuples.

Now we have XML schemas which are given by DTDs D and sets of XML
FDs F. If we have a document 7" that conforms to D and satisfies constraints in

F', we can define a set of positions in that document as the set of all the places
where an attribute value occurs (more precisely, as sets of pairs (v, @Ql), where v
is a node identifier in a tree, and @I is an attribute associated with that node).
Once we have the notion of positions, we can define the measure

Ricr(p|F)

in exactly the same way as we defined RICg(p|F'), except that the we use the
set of positions in a document T" as opposed to the set of positions in relation
R. It satisfies all the same basic properties as RICg(p|F).

We then say that an XML specification (D, F) is well-designed if for every
document 7' that conforms to D and satisfies F', and every position p in T, we
have Ricr(p|F) = 1.

How do we characterize the notion of being well-designed? To see what a
reasonable normal form for XML might be, we analyze the examples shown
above. Given the DTD (1) and FDs (2), let us look at the FD r.tuple.QC' —
r.tuple.QA. The left-hand side implies r.tuple. @A, but since QC' is not a key, the
left-hand side does not imply r.tuple — indeed, @QC' does not determine the tuple
uniquely.

Looking at the DTD (3) and the FD (4), we see that the left-hand side of (4)
does not imply db.conf.paper (as this would mean that there was a single paper
published in the proceedings!).

So what is common to these examples? In both cases we have:

— redundancy built into the specification — in the first case it is essentially a
non-BCNF relational design, and in the second case the attribute Qyear is
stored multiple times;

— an FD of the form X — path.@Q[such that X — path is not implied by other
FDs.

This was the motivation for the following definition given in [1].

Definition 2. An XML specification (D, F) given by a DTD D and a set F of
FDs is in the XML Normal Form (XNF) iff for every FD X — path.Ql implied
by F', it is the case that X — path is also implied by F.

This turns out to be the definition suggested by the information-theoretic
approach.

Theorem 4 (see [2]). An XML specification (D, F) given by a DTD D and a
set F' of FDs is well-designed iff it is in XNF.

Two specifications seen earlier are not in XNF. A natural question is then
how to convert them into XNF. Looking at the first example, we have to apply
the usual relational decomposition; for example, a new DTD will look like

E3
r — tuple”, Tnew

l *
Trew — tuple,, .,

where tuple has attributes @A, QC, and tuple,,,,, has attributes @B, QC. We
put in the FD r.tuple. @QC' — r.tuple, since QC' is a key, if tuple contains only
@A and QC' as attributes.

In the second example, we do not make a relational split, but instead simply
make Qyear an attribute of conf, which eliminates the violation of XNF seen
above.

An algorithm for converting a specification into XNF is essentially this:

keep applying the “relational split” and the “hierarchical attribute move”
steps illustrated above.

Omne can prove [1] that such an application of two basic transformation rules
results in an XNF design.

So far we made an assumption that XML documents are represented as
tree-structures. Very often, however, documents are shredded into relations [16].
One of the most common techniques for storing XML in relational databases is
inlining [16]. The idea is that separate relations are created for element types
that appear under a Kleene star, and all other element types are inlined in the
relations corresponding to their parents. Each relation for an element type has
an id attribute that is a key for that relation, as well as a parent id attribute that
is a foreign key pointing for the parent of that element. All the attributes of a
given element type in the DTD become attributes in the relation corresponding
to that element type.

For example, the relational schema for storing XML documents conforming
to the DTD in (3) would be

con f(confID, name)
paper(paperID, confID, title, author, year),

assuming that the conf element type has attribute @name. Keys are underlined.

It is known [13] that XML functional dependencies F' are translated into more
general constraints over the inlined relational representation, more precisely,
into a set Xp of equality-generating dependencies. The inlining mapping also
associates a position §(p) of the relational representation with each position p in
the XML document.

Let (S, Xr) be an inlining translation (S, Xr) of (D, F'), where S is a rela-
tional schema, and X' is a set of equality-generating dependencies. We say that
(D, F) is well-designed for relational storage iff for every XML tree T' conforming
to D and satisfying F' and every position p in T, we have RiCg, (6(p)|XFr) = 1,
where Rr is the relational instance of S into which T is transformed.

The next result shows that XNF captures the notion of being well-designed
for relational representation of XML documents as well.

Theorem 5 (see [13]). An XML specification (D, F) is well-designed for rela-
tional storage iff it is in XNF.

Summing up, the following are equivalent for a specification consisting of a
DTD D and a set of XML FDs F:

1. (D, F) is well-designed;
2. (D, F) is well-designed for relational storage;
3. (D, F) is in XNF.

We conclude with a simple condition that guarantees “reasonable” designs
from the point of view of the information-theoretic measure. First, one can
show that for documents not in XNF, the values of both Ricy(p|F) and
RICR, (6(p)|XF) can be arbitrarily low [13].

One type of constraints often used for XML documents is relative: such con-
straints do not hold in the entire document, but only in a part of it restricted to
descendants of some element type [4,10]. In the case of XML FDs, we say that
an FD {q1,...,q.} — ¢ is relative if

— for some ¢ € [1,n], the path ¢; ends with an element type (rather than an
attribute);

— for all j # 4, the paths ¢; extend ¢; (in other words, g; is a prefix of ¢;); and

— for some path p which is a prefix of ¢; and ends on an element type 7, there
exists an element type 7/ and a rule 7/ — ¢ in the DTD such that 7 occurs
under the scope of a Kleene star in the regular expression e.

Theorem 6 (see [13]). Let (D, F) be a specification in which every FD wviolat-
ing the XNF condition is relative. Then for every tree T conforming to D and
satisfying F and every position p in T, we have
1
Ricr, (6(p)IZF) > 35,
where Ry is the relational instance into which T is transformed.

Thus, if we design an XML document that might violate XNF but the only
violating FDs are relative, then the redundancy of each position in the relational
storage of the XML document would not be worse than % In other words, this
would match the worst-case redundancy of 3NF.

6 Open problems

The information-theoretic approach has completely clarified the situation with
good relational designs, and best possible XML designs for both native and
relational storage. However, it is not yet entirely clear how to handle non-perfect
designs that do not eliminate all redundancies. We provided an example of a
sufficient condition that matches the bounds on the measure given by 3NF.
However, it is not known whether one can achieve effective normalization with
respect to that condition, nor is it known whether the condition guarantees
dependency-preservation.

The notion of dependency-preservation itself is much less understood for
XML. It was shown in [11] that one can produce XML designs capturing 3NF
relational designs that do not have dependency-preserving BCNF decomposi-
tions in a way that accounts for all the constraints. This needs to be explored

further, as it opens a possibility of storing relations in XML in a way that elimi-
nates redundancies and guarantees dependency-preservation, even if there is no
such relational representation.

Finally, it would be nice to extend the idea of using the information-theoretic
framework for reasoning about and comparing different shredding techniques for
XML documents.

Acknowledgments This invited talk presents results on the information-
theoretic approach to database design that have been obtained jointly with
Marcelo Arenas and Solmaz Kolahi. I am very greatful to Marcelo and Sol-
maz for collaborating with me, and for their comments on this short survey. I
gratefully acknowledge the support of the European Commission Marie Curie
Excellence grant MEXC-CT-2005-024502 and EPSRC grant E005039.

References

1. M. Arenas, L. Libkin. A normal form for XML documents. ACM TODS 29:
195-232 (2004). Extended abstract in PODS’02.

2. M. Arenas, L. Libkin. An information-theoretic approach to normal forms for
relational and XML data. J. ACM 52(2): 246-283 (2005). Extended abstract in
PODS’03.

3. P. A. Bernstein. Synthesizing third normal form relations from functional depen-
dencies. ACM TODS 1(4): 277-298 (1976).

4. P. Buneman, S. Davidson, W. Fan, C. Hara, W. C. Tan. Keys for XML. In WIWW
2001, pages 201-210.

5. E. F. Codd. Further normalization of the data base relational model. IBM Research
Report, 1971.

6. E. F. Codd. Recent Investigations in Relational Data Base Systems. IFIP Congress
1974, pages 1017-1021.

7. M. Dalkilic and E. Robertson. Information dependencies. In PODS’00, pages
245-253.

8. D. W. Embley and W. Y. Mok. Developing XML documents with guaranteed
“good” properties. In FR’01, pages 426-441.

9. R. Fagin. Multivalued dependencies and a new normal form for relational
databases. ACM TODS, 2(3):262-278, 1977.

10. W. Fan, L. Libkin. On XML integrity constraints in the presence of DTDs. J.
ACM 49(3): 368-406 (2002).

11. S. Kolahi. Dependency-preserving normalization of relational and XML data. J.
Comput. Syst. Sci. 73(4): 636-647 (2007).

12. S. Kolahi, L. Libkin. On redundancy vs dependency preservation in normalization:
an information-theoretic study of 3NF. PODS 2006, pages 114-123.

13. S. Kolahi, L. Libkin. XML design for relational storage. WWW 2007, pages 1083~
1092.

14. T. T. Lee. An information-theoretic analysis of relational databases - Part I:
Data dependencies and information metric. IEEE Trans. on Software Engineering,
13(10):1049-1061, 1987.

15. Oracle’s General Database Design FAQ. http://www.orafaq.com/faqdesgn.htm.

16. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational databases for querying XML documents: Limitations and
opportunities. In VLDB, pages 302-314, 1999.

17. M. Vincent, J. Liu. Multivalued dependencies and a 4NF for XML. In CAiSE
2003, pages 14-29

18. M. Vincent, J. Liu, C. Liu. Strong functional dependencies and their application
to normal forms in XML. ACM TODS 29(3): 445-462 (2004).

19. J. Wang, R.Topor. Removing XML data redundancies using functional and
equality-generating dependencies. In ADC 2005, pages 65—74.

20. C. Zaniolo. A new normal form for the design of relational database schemata.
ACM TODS 7 (1982), 489-499.

