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Abstract. Several web applications (such as processing RSS feeds or
web service messages) rely on XPath-based data manipulation tools.
Web developers need to use XPath queries effectively on increasingly
larger web collections containing hundreds of thousands of XML docu-
ments. Even when tasks only need to deal with a single document at
a time, developers benefit from understanding the behaviour of XPath
expressions across multiple documents (e.g., what will a query return
when run over the thousands of hourly feeds collected during the last
few months?). Dealing with the (highly variable) structure of such web
collections poses additional challenges.

This paper introduces DescribeX, a powerful framework that is capable
of describing arbitrarily complex XML summaries of web collections, en-
abling the efficient evaluation of XPath workloads (supporting all the
axes and language constructs in XPath). Experiments validate that De-
scribeX enables existing document-at-a-time XPath tools to scale up to
multi-gigabyte XML collections.

1 Introduction

Web applications rely heavily on XML tools to manipulate data encoded in
XML. Data can be exchanged, as in web feeds (blogs, news feeds, podcasts) or
via web service messages. Data can also be stored, as in hypertext collections like
Wikipedia. Several XML manipulation tasks (and the tools used to implement
them) process one document at a time, whether the document is an individual
RSS file, a single SOAP message, or a Wikipedia article in XHTML. The vast
majority of software tools utilized in this context rely on XPath as the core di-
alect for XML querying. Hence, web developers make extensive use of embedded
XPath queries for processing XML collections.

A developer working with this type of collection faces several challenges. She
must learn enough about the (semi)structure present in the XML collection to be
able to write meaningful XPath queries. She must also develop an understanding
of how the XPath expressions behave across different documents in the collection.

Understanding the actual structure of a web collection can be a significant
barrier. Some collections (like Wikipedia or personal blogs) do not really have
a schema, or the schema allows most elements to occur almost anywhere. Even



when XML documents are validated against a proper schema, their actual struc-
ture can vary significantly across the collection. This can happen because the
schema is large and only small (possibly disjoint) subsets are actually used (as
happens with industry standard schemas, like IXRetail'), or because schemas
can be arbitrarily composed using open content models (e.g. RSS extensions like
Yahoo Media, podcasts, etc.). In these scenarios, schemas alone are not that
helpful for understanding (nor for optimizing) XPath evaluation.

This paper argues that DescribeX, a tool supporting powerful structural
summaries, can help with understanding the (semi)structure of large collections
of XML documents. In fact, DescribeX summaries contribute to significantly
speed up (and scale up) XPath evaluation with existing file at a time tools,
enabling fast exploration of the results of XPath workloads on large collections.

XML structural summaries are graphs representing relationships between sets
in a partition of XML elements. DescribeX summaries have a unique capability:
they are the first ones to describe precisely the structural commonality that
determine each individual set in the partition. DescribeX introduces a language
of azxis path regqular expressions (AzPREs, for short) to describe the sets.

Most of the existing summary proposals define all sets in the partition using
the same criteria, hence creating homogeneous summaries. These summaries are
based on common element paths (in some cases limited to length k), whether
incoming paths [7,11, 17], both incoming and outgoing paths [12, 21], or sequence
of outgoing paths (common subtrees) [3]. The few examples of heterogeneous
(adaptive) summaries [5,23] have no capability for describing the partitions,
which are defined according to very simple criteria (e.g., just the incoming paths).

In contrast, DescribeX supports constructing heterogenous summaries where
each set in the partition can be created according to explicit criteria obtained
from an expression in the complete XPath language (all the axes, document
order, use of parenthesis, etc.). Given an arbitrary XPath query, DescribeX can
create a partition defined by an AxPRE that captures exactly the structural
commonality expressed by the query.

This paper presents experimental results that demonstrate that using a sum-
mary created from a given workload can produce query evaluation times orders
of magnitude better than using existing summaries. The experiments also val-
idate that DescribeX summaries allow file at a time XPath processors to be a
competitive alternative (in terms of performance) to DB-like XML query engines
— even on gigabyte sized collections.

Overview and Contributions. The next section walks through a concrete
example to illustrate how DescribeX summaries can help developers understand
the behaviour of XPath queries across large XML collections. The following two
sections present the main technical contributions of the paper. Section 3 pro-
vides an overview of the rich framework for describing summaries underlying
the DescribeX tool (based on the novel technique of applying bisimilarity to ele-
ment neighborhoods described by an AxPRE). Section 4 gives a translation from
XPath expressions into AxPREs, hence supporting the creation of summaries
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with nodes that answer complex XPath expressions. The system contributions
are presented in Section 5, where the implementation of the DescribeX tool is
outlined, and in Section 6, where experimental results on gigabyte collections
provide evidence of the benefits and scalability of DescribeX. The highlights
are the up to three orders of magnitude speed-ups obtained against variations
of incoming and outgoing path summaries (capturing existing proposals like 1-
index [17], APEX [5], A(k)-index [13], D(k)-index [23], and F+B-Index [12]). We
emphasize that query evaluation times on collections the size of Wikipedia are
rarely reported in the literature. In fact, XML query evaluation systems (and
not just research prototypes) become challenged when working with collections
at this scale. Related work is discussed in Section 7.

2 DMotivating Example

Consider a developer who has to implement a web application that retrieves RSS
feeds from several content providers to produce an aggregated meta feed. The
feed may span several days or weeks, and there might be more than one item
per day. Figure 1 shows the instances of two sample RSS feeds represented as
axis graphs.
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Fig. 1. Axis graphs of RSS feed samples

An axis graph can display selected binary relations between elements in an
XML document tree, like ¢, fs, and fe shown in the figure (shorthands for XPath
axes child and following-sibling, and for the derived axis firstchild, respec-
tively). The semantics of these axes is straightforward: the edge from element
6 to 7 labeled fc means that 7 is the first child of 6 in document order, and
the edge from element 18 to 24 labeled fs means that 24 is a following sibling
of 18 in document order. Being binary relations, axes have inverses, e.g., the
inverse of ¢ is p (shorthand for parent) and the inverse of fs is ps (shorthand for
preceding-sibling). These inverses are not shown in the figure.



Using DescribeX, the developer can create a summary descriptor (SD for
short) like the one shown on Figure 2 (a). This label SD, created from the two
feeds in Figure 1, partitions the elements in the feeds by element name. For
example, SD node sg represents all the item elements in the two documents,
{6,18,24} (this set is called the extent of sg).

S

[RSS] (a) (b) [RSS]

{113} o AT g

S21 ‘ S22
[channel].c.c [channel].c.c
{ {14}

S4
[link]
{4,16}

S

S S7 . Sg S5 s S S S
[title] [description] [enclosure] [pubDate] [titlse] [descri7ption] [encli)sure] [pubISDate]
87,15, (5817} {9.21,27} {20.26} (37,15 (5817} (9,21.27} {20,26)
19,25} fci \ 19,25 fci \

Sg S10 S S
url type U tvo

(102228} {1123,29} (10";2’28} a 13”2':3’29)

Fig. 2. (a) Label SD, and (b) heterogeneous SD of the RSS feed samples

An SD edge is labeled by the axis relation it represents. For instance, edge
(s6,s5) is labeled by ¢, which means that there is a ¢ axis relation between
elements in the extent of sg and s5. Figure 2 (a) shows three kinds of edges,
depending on properties of the sets that participate in the axis relation: dashed,
regular, and bold. Dashed edges, like (sg, s5) labeled ¢, mean that some element
in the extent of sg has a child in the extent of s5. Regular edges, like (sg, s3)
labeled fc, mean that every element in the extent of sg has a first child in the
extent of s3. Finally, bold edges, like (sg, ss) labeled ¢, mean that every element
in the extent of sg is a child of some element in the extent of sg and that every
element in the extent of sg have some child in the extent of sg.

From the label SD the developer learns that items in the collection always
include title and enclosure elements, but they may contain any combination
of description and pubDate elements. However, the label SD does not provide
information on exactly which combinations actually appear. Since the developer
knows that some items have a pubDate, she can write a query to retrieve those
channels that contain such items

Q1 = /rss/channel[item[pubDate]]

The developer can decide to either run Q1 using the current SD or make
DescribeX adapt the current SD to Q1. If she picks the second option, DescribeX
changes the SD by partitioning the channel node s, in Figure 2 (a), which



represents all channels in the collection, into two channel nodes: one that contains
items with a pubDate and another one that contains items without it (sg2 and
s91 in Figure 2 (b), respectively).

Summaries in DescribeX are defined and manipulated via AxPREs. AxPREs
describe the neighbourhood of the elements in a given extent. A neighbourhood
of an element v for an AXPRE « is the subgraph local to v that matches «. For
instance, the p* AXPRE describes the neighbourhood of v containing all label
paths from v to the root, ¢* all label paths from v to the leaves, and fc.ns* the
sequence of v’s child labels. AxPREs can also be derived from a query in order to
adapt an SD to it. For example, the [channel].c.c AXPRE of node s9; in Figure
2 (b) was derived from Q1 and describes the neighbourhood of channel elements
with common outgoing label paths of length 2 (more on this in Section 3).

The developer is also interested in items containing both title and enclosure
elements, but she does not know whether such items exist in the collection and,
if they do, how common they are. In addition, she wants those items to be part
of a series (i.e., to belong to channels that contain more than one item element,
as done in feeds for podcasts published daily). Therefore, the developer writes
another query

Q2 = /rss/channel[item/following-sibling: :item]
[not (pubDate=../item[1] /pubDate)]/item[title] [enclosure]

Q2 contains structural (in black) and non-structural (in grey) XPath con-
structs. The expression that results from removing all non-structural constraints
is called the structural subquery of Q2. A structural subquery provides insight
into the behaviour of the entire query and can be used by DescribeX to change
the SD. It is important to note that “structural” here is used in a broad sense
since some predicates on values can also be considered structural by the user
(see Example 1 in Section 3).

As with Q1, the developer can decide to either evaluate Q2 on the current SD
(the label SD with the refined channel node) or to add Q2 to the workload and
make DescribeX adapt the current SD. Assuming she chooses the second, the
system partitions the item node sg from Figure 2(a) into the nodes sg; and sgo
in Figure 2(b) that describe the structure of the collection w.r.t. the workload
including Q2 and Q1. Note that the extent of node sgs is exactly the answer to
the structural subquery of Q2, and thus a superset of the answer of Q2. The
elements in this extent are called candidate elements. Hence, by adapting the
SD to the structural subquery, DescribeX has considerably reduced the search
space for computing the entire query.

In a document-at-a-time approach to query evaluation, adapting the SD to a
workload can reduce the number of documents on which queries in the workload
need to be evaluated, potentially yielding a significant speedup (see Section 6).
That is, after adapting the SD to a given query @, DescribeX can evaluate @
only on those documents (called candidate documents) that are guaranteed to
provide a non-empty answer for the structural subquery of Q. Those candidate
documents that do contain an answer for the entire query are called answer
documents.



3 The DescribeX Framework

This section introduces the DescribeX framework that provides a powerful lan-
guage based on azxis path regular expressions (AxPREs) for describing the par-
titions in an SD. For representing an XML instance, DescribeX uses a labeled
graph model called azis graph.

Definition 1 (Axis Graph). An azis graph A = (Inst, Azes, Label, \) is
a structure where Inst is a set of nodes, Axes is a set of binary relations
{B{A, ... EY in Inst x Inst and their inverses, Label is a finite set of node
names, and X\ is a function that assigns labels in Label to nodes in Inst. FEdges
are labeled by axis names and nodes are labeled by element or attribute names
(including namespaces), or by new labels defined using XPath.

An axis graph is an abstract representation of the XPath data model ? ex-
tended with edges that represent XPath axis binary relations. Axis graphs can
also include additional axes, such as id-idrefs or firstchild and nextsibling (ab-
breviated ns), that can be expressed in XPath (e.g., fe := child :: %[1] and
ns 1= following-sibling :: [1]).

Ezample 1. A new node label [mpeg] can be defined in an axis graph by the
XPath expression enclosure [type="audio/mpeg"], representing enclosure elements
with different types of media as separate nodes.

We introduce next the formal notion of AxPRE that will be used to describe
each set in the partition of elements (i.e. extents) that define an SD.

Definition 2 (Axis Path Regular Expressions). An axis path regular ex-
pression is an expression gemerated by the grammar

E — axis | azis[B()] | (E | E) | (E)* | E.E | €
where axis € Axes and € is the symbol representing the empty expression.

Definition 2 describes the syntax of path regular expressions on the binary
relations (labeled edges) of the axis graph including node label tests (B(l) is
a boolean function on a label [ € Label that supports more elaborate tests
on labels, beyond just matching). AxPREs can be written using XPath syntax
as well, but the semantics of the constructs are interpreted differently (as in
Definition 3). We refer the reader to [6] for an updated semantics of XPath and
to [15] for conditional XPath.

Having defined the AxPRE language, we introduce next the notion of AzPRE
neighbourhood, which provides a description of the subgraph local to a node in the
axis graph. This AxPRE neighbourhood of a node is computed by intersecting
the automaton of the AxXPRE and the axis graph starting from the node (i.e. the
node must intersect the initial state of the automaton). The intersection between
an automaton and a graph is a construction described in [16] (note that in our
case we do not require the expensive simple path semantics).

2 http://wuw.w3.org/TR/xpath20



Definition 3 (AxPRE Neighbourhood of v). Let A be an azis graph, v a
node in A, a an AxPRE, and NF A(«) the non-deterministic finite automaton of
a accepting all prefizes. The AxPRE neighbourhood of v for «, denoted N, (v),
is the subgraph of A product of the intersection between A and NFA(a) such
that v intersects with the initial state of NFA(«).

This approach for defining summaries is based on the intuition that nodes
that have similar neighbourhoods should be grouped together in an extent. The
notion of similarity we use is the familiar notion of labeled bisimulation.

Definition 4 (Labeled Bisimulation). Let G; and Gy be two subgraphs of
an azis graph A, such that Azesg, C Azxes and Azesg, C Azes. A labeled
bisimulation between G1 and Gs is a symmetric relation = such that for allv € Gy,
w € Ga, E9' € Axesg,, and EY? € Azesg,: if v ~ w, then \(v) = Aw); if v ~ w,
and (v,v') € EJ*, then (w,w') € EY? and v' ~w'.

Ezample 2. Consider neighbourhoods Ntem.cip.c.f5(18) and Nijem].clp.c.fs(24)
in Figure 1, which is computed by the N F A([item].c|p.c.fs) accepting all prefixes
(Definition 3). Both neighbourhoods consist of the subgraph given by the ¢
edges from 14, ¢ edges from 18 and 24, and the fs edge between 18 and 24.
They differ only in one edge: while NVjjtem).c|p.c.fs(18) contains a p edge from
18, Nitem].clp.c.fs(24) contains a p edge from 24 (p edges are not shown in the
figure). However, according to Definition 4, they are bisimilar and thus nodes 18
and 24 belong to the same extent (that of node sg2 in Figure 2 (b)). In contrast,
neighbourhood Nitem.c|p.c.fs(6) does not contain an fs edge and thus it is not
bisimilar to either Nem).cjp.c. £s(18) NOT Nijtem].clp.c.£s(24). Consequently, node
6 is assigned to a different extent (that of node sg; in Figure 2 (b)).

A bisimulation provides a way of computing a double homomorphism be-
tween graphs. The widespread use of bisimulation in summaries is motivated by
its relatively low computational complexity properties. The bisimulation reduc-
tion of a labelled graph can be done in time O(mlogm) (where m is the number
of edges in a labelled graph) as shown in [19], or even linearly for acyclic graphs,
as shown in [10]. Using bisimulation also allows us to capture all the existing
bisimulation-based proposals in the literature [8].

Definition 5 (AxPRE Partition). Let A be an azis graph, N C Inst, and «
an AzPRE. An AxPRE partition of N for «, denoted Po(N) = {P;|U, P; =
N and (; P, = 0}, is a partition of the nodes in N defined as follows: two
nodes v,w € N belong to the same class P; € Py (N) iff there exists a labeled
bisimulation ~ between N, (v) and Ny (w) such that v ~ w.

Definition 6 (Summary Descriptor (SD)). Let A be an azis graph. A sum-
mary descriptor (SD for short) of A is an structure D = (P, G) that consists of
a set of AxPRE partitions P = {Pa,(N),...,Pa,(N)}, and a labeled graph G,
called SD graph, representing azis relationships between elements in the equiv-
alence classes of the AtPRE partitions. Each node s in the SD graph has as-
sociated one set in the partition called the extent of s (denoted extent(s)). In



addition, each SD node is labeled by the AxPRE «; that defines its extent. Like
in the axis graph, SD graph edges are labeled by the axis relation they represent.

When the extents of all nodes in a SD D are defined with the same AxPRE «
we have an homogeneous SD. In this case we say that D is an « SD. In contrast,
if at least two different nodes are defined with different AxXPREs we have an
heterogeneous SD.

4 From XPath to AxPREs

We mentioned in Section 2 that DescribeX can adapt an SD node to an XPath
query @. This section formalizes how an AXPRE is obtained from @ by using
two derivation functions L and P given in Figure 3.

P(Op(er,...,em)) =€ (1)

P(azxis::lle1] ... [em]/rlocpath) = Ax(azis).(P(e1)|...|P(em)|P(rlocpath)) (2)
P((locpath)[e1] ... [em]/rlocpath) := P(locpath).(P(e1)|...|P(em)|P(rlocpath)) (3)
P(locpathi|. . |Jlocpath.,) := (P(locpathi)|. . .|P(locpath.y,)) (4)
L(rlocpath/axis::1[e1] ... [em]) := Az(axis™").L(rlocpath)|P(e1)|...|P(em)  (5)
L(rlocpath/(locpath)le1] . .. [em]) := L(locpath).L(rlocpath)|P(e1)|...|P(em)  (6)
L(locpath]|. . .[locpathy,) := (L(locpathi)|. . .|L(locpathm,)) (7)

Fig. 3. AxPRE derivation functions L and P

Ezample 3. Consider the following query
Q3 = (rss | RDF)/channel[item[pubDate] [not (pubDate=../item[1]/pubDate)]]

Q3 returns all channels that have RDF or rss parents and item children with
a pubDate different from the pubDate of the first item in the channel. Note that
the structural subquery appears in black (the last predicate in grey is not part
of the structural subquery) and that @3 is in abbreviated syntax (channel and
item for instance, mean child :: channel and child :: item, respectively).

The first rule of Figure 3 that applies is (5), resulting in

Az(child™Y).L((rss|RDF))|P(e1)

where e; = item[pubDate|[not(pubDate = ../item[l]/pubDate)] and Az is a
function that translates the XPath axis into its AXPRE axis counterpart. In
particular, Az(axis~!) returns the actual AxPRE inverse (e.g., child~! is con-
verted into p) and recursive axes are translated to an equivalent Kleene closure
of non-recursive axes (e.g., descendant translates into c¢*).



For expanding P(e;), the first rule invoked is (2) with axis = child, | =
item, an empty rlocpath, and two predicates [pubDate] and [not(pubDate =
../item[1]/pubDate)]. Since the second predicate is a function, it matches rule
(1) and the result of P(not(pubDate = ../item[l]/pubDate)) is ¢ (Remember
that this predicate is not part of the structural subquery). The application of
rule (2) to the only remaining predicate [pubDate] results in P(e;) = c¢.(c). Since
c.(c) = c.c, then P(ey) = c.c.

For expanding L((rss|RDF)), the rule that applies is (6) with no predicates
and an empty rlocpath, which simply results in L(rss|RDF). The expansion
continues by invoking rule (7) with locpath; = rss and locpathe = RDF. At
this point, the partial expansion of ()3 is

p.(L(rss)|L(RDF))|c.c

Both L(rss) and L(RDF') match rule (5) with axis = child, no predicates and an
empty rlocpath. Therefore, L(rss) = L(RDF) = p, being the resulting AxPRE
p.(p|p)|c.c. Since (p|p) = p, we obtain the simplified AxXPRE p.p|c.c. Finally,
the node test of the step corresponding to the answer (channel in this case) is
prefixed as a label predicate to the AxXPRE. Therefore, the resulting AxPRE of
query Q3 is

a = [channel].p.plc.c

Once the query AxPRE « of a given XPath query @ is computed, the next
step in adapting the SD to @ is finding the SD node whose AxPRE o' contains
«. (The problem of AxPRE containment is related to that of regular expression
containment [14].) After finding the node, DescribeX proceeds to change o to a,
which in fact modifies the description of the node and thus the neighbourhood it
summarizes. This entails performing a refinement of the extent of the node. For
instance, in order to adapt the SD of Figure 2 (a) to query Q2 from Section 2,
the extent of sg was refined into two sets (Figure 2 (b)). An in-depth discussion
of refinements is beyond the scope of this paper and can be found in [8].

5 Document-at-a-time Evaluation Using SDs

In the previous section we have shown how to translate any XPath expression
into an equivalent AxPRE. In this section we will discuss how this AxPRE can
be used to find the SD nodes that contain candidate documents.

DescribeX is implemented in Java using Berkeley DB Java Edition to store
and manage indexed collections (tables). The DescribeX tool can invoke an ar-
bitrary XPath processor for the evaluation of XPath expressions. Saxon 2 was
used for the experiments reported here.

The DescribeX architecture is tailored to process XML collections one file at
a time, the prevalent data processing model for the Web. Each file is parsed and

processed independently of the other files in the collection. The extent relation is

3 http://saxon.sourceforge.net/



stored in an indexed table named elemDB that has schema elemDB(SID, docID,
endPos, startPos), where the underlined attributes are the key (also used for
indexing). The elemDB table contains a tuple for each XML element in the collec-
tion. Each SD node is identified by a unique id called SID. Each element belongs
to the extent of a unique SD node, whose SID is stored in the SID attribute.
The attribute docID holds the identifier of the document in which the element
appears. The startPos and endPos are the positions, in the document, where
the element starts and ends, respectively.

Once DescribeX has computed the query AxPRE « of a given XPath query @
as described in the previous section, it needs to find the SD node whose AxPRE
contains « in order to get the candidate documents for evaluating Q. If there
is an SD node s with AXPRE «, then all docIDs from the ElemDB table that
correspond to s are in fact candidate documents. In contrast, if s has an AxPRE
o' containing «, DescribeX has two alternatives. One, it can adapt the SD by
refining s from o’ to v and then get the candidate documents as in the previous
case. Two, it can get all docIDs from the ElemDB table that correspond to s
and run the structural subquery of @@ on them in order to get the candidates.
Once the candidate documents are found, finding the answer documents entails
running @ on all candidates.

6 Experimental Results

In this section we provide performance results for obtaining candidate and answer
documents for several XPath queries using a variety of SDs. The experiments
demonstrate that DescribeX easily scales up to gigabyte sized XML collections
with response times that are (for the most part) in the order of seconds.

Our experiments were conducted over three collections of documents. The
first two collections (Wiki5 and Wiki45) were created from the Wikipedia XML
Corpus provided in INEX 2006 [9] (using one tenth of the corpus and the entire
corpus, respectively). The third collection (RSS2) was obtained by collecting
RSS feeds from thousands of different sites. The size, number of documents, and
p* SD load (creation) times of our test collections are summarized in Table 1.

Table 1. Test Collections

[Collection| MB| #docs[p” Load (sec)]

RSS2 210 9600 215
Wikib 545 30000 567
Wiki4b 4500| 659388 9700

For measuring document selection times, five separate runs for each query
were conducted starting with a cold Java Virtual Machine (JVM). The best
and worst times were ignored and the reported runtime is the average of the
remaining three times. The experiments were carried out on a Windows XP



Virtual Machine running on a 2.4GHz dual Opteron server, and the JVM was
allocated 1 GB of RAM.

Table 2 shows the six queries in our benchmark (the structural subqueries
appear in black). These queries were selected to show the use of different SDs and
how the system scales w.r.t. the number of documents selected. Our benchmark
queries focus on the navigational features of XPath, following the approach of
the MemBeR XQuery Micro-Benchmark [2] (which provide some form of stan-
dardization for studying different aspects of XML data management systems).

Table 2. RSS and Wikipedia Queries

lQuery‘XPath Expression ‘

R1 |/rss/channellitem[position()>1]]/item[title] [enclosure]

[not (pubDate=../item[1] /pubDate)]

R2 |/rss/channel/image[width] [height] [title] [description] [1ink] [url]
[width/following-sibling: :height] [width < height]

R3 |/rss/channel/item[comments] [title] [category] [description] [guid]
[pubDate] [1ink] [source] [category/following-sibling: :category]
[category="EuroAmerica"]

W1 |/article/body/template/template[figure/caption] [figure/image]
[figure] [collectionlink] [contains(.,’billion’)]

W2 |/article/body/figure[image] [caption] [caption/collectionlink]
[caption/outsidelink] [caption/unknownlink]
[image/following-sibling: :caption] [contains(.,’February 25’)]
W3 |/article/body/section/section/section/section[title] [p]
[title/following-sibling: :figure/following-sibling: :p]
[p/collectionlink] [p/unknownlink] [contains(.,’Mac 0S’)]

Table 3 shows the times for obtaining the candidate and answer documents
for RRS2 (queries Rx) and Wiki45 (queries Wx). The SD AxPRE column
contains the AXPRE of the SD node used to obtain the candidate documents.
The ED# column reports the number of extent documents for each SD node.
Columns CD# and AD# contain the number of candidate and answer docu-
ments respectively. The last row of each query corresponds to the most refined
SD node for the query, which contains only candidate documents. For instance,
for R1 two different refinements of the same SD node are used, the first one
contains 6509 extent documents, and the second one 178. This last refinement
contains only candidate documents. The times reported under column CD(s)
correspond to selecting the candidate documents from the extent documents.
This entails opening every extent document and evaluating the structural sub-
query. However, running the structural subquery is not necessary for the last row
of each query (all extent documents are candidates), thus the reported times are
just for retrieving the pointers to the documents. For instance, obtaining the
candidate documents from query R1 took 45.3 s. using the p* SD, and just 0.3
s. using a p*|c refinement. Finally, the times reported under the AD(s) column



correspond to selecting the answer documents by evaluating the query on the
candidate documents. For instance, selecting the 170 answer documents for R1
from the 178 candidate documents took 3.4 s. It is easy to see from these results
that the more precise (or refined) the SD node for a query, the smaller the extent
document set and thus the faster DescribeX computes the candidates.

Table 3. Query Results and Times (RSS2 and Wiki45)

[Query[SD AxPRE[ ED#|CD#|AD#]|CD(s)[AD(s)|

p* 6509 45.3

R1 |p*lc 178 178| 170 0.3 3.4
p* 3297 34.9

R2 |p*|c* 386| 352 8| 47 41
p*lc*|e.fs 352 0.2
p* 6509 45.3

R3 |[p*|c”* 9 3 1 0.8 0.3
p*lct|e.fs 3 0.1
p* 82112 1332.0

W1 |p*le 423 423] 132| 29.6 4.7
p*lc* 423 0.3
p* 115575 1673.0

W2 |p*|c* 18 18 2 2.2 0.3
p*|c*|e.fs 18 0.2
p* 736 23.2

W3 |p*le 27 1 1 2.8 0.2
p*|c*|e.fs* 1 0.2

Comparison with summary proposals. The results in Table 3 also pro-
vide a comparison with the summary literature. Proposals like like 1-index [17],
APEX [5], A(k)-index [13], and D(k)-index [23] can provide, at best, a descrip-
tion equivalent to the p* SD and thus a similar performance to that reported on
the first row of each query. The p*|c* rows give an indication of the performance
provided by the F+B-Index [12]. DescribeX can create SDs tailored to a work-
load that yield query evaluation times one to three orders of magnitude faster
than these proposals (last row of each query). Using a precise SD can have a
significant impact on both candidate and answer documents selection, and thus
on overall query evaluation. Note that no summary in the literature (even recent
proposals that cluster together nodes with the same subtree structure [3]) can
capture AxPREs like p*|c*|c.fs*.

Comparison with XPath evaluators. Table 4 reports the times for select-
ing answer documents using DescribeX, DB2 v9 4, X-Hive/DB 5, XQuest DB ¢,
and Saxon (stand-alone, without summaries) on the RSS2 and Wiki5 collections.

4 http://www-306.ibm.com/software/data/db2/9/
® http://www.x-hive.com/products/db/
S http://www.axyana.com/xquest/



Comparative times for Wiki45 are not reported because neither XHive/DB nor
XQuest DB could load the entire collection. DB2 v9 does not support following-
sibling or preceding-sibling XPath axes, so queries R2, R3, W2 and W3 could not
be run on DB2. XQuest DB returned an incorrect answer for some of the queries,
which are marked with an asterisk. DescribeX times span selecting the answer
documents and evaluating the entire query using the most refined SD. These
times are obtained by adding up the times for getting the candidate documents
and the times for evaluating the entire query on them (using Saxon).

Table 4. Query Evaluation Comparative Times (RSS2 and Wiki5)

lQuery‘DescribeX‘DB2 v9‘X—Hive‘XQuest‘Saxon‘

R1 37 581 87 & 95
R2 4.3 n/a 7.2 2.9 97
R3 04 n/al 80 0.9 92
W1 0.2 9.2 27.1]  1.2(%) 345
W2 0.1 n/a 34.8 15.7 362
W3 0.1 n/a 37.4| 2.5(%) 370

The comparative analysis uses two commercial systems, DB2 and X-Hive/DB,
and an open source system, XQuest DB. X-Hive/DB and XQuest DB were se-
lected because of their good performance in published XQuery benchmarks [1].
In addition, a comparison against Saxon stand-alone evaluation (without sum-
maries) is provided. While DescribeX can invoke any XPath processing tool,
Saxon was selected for being a popular processor that can also evaluate XQuery
and XSLT in a file-at-a-time fashion. Keep in mind that the selected DB-like
XML processors may have additional functionality (such as transaction process-
ing capabilities). The comparison aims to show that the DescribeX architecture
with the default implementation (combining summaries with Saxon) can achieve
results competitive with that of XML indexing engines, even with gigabyte sized
collections. In addition, comparing against Saxon provides a performance base
line for a file-at-a-time evaluation when the collection is stored as XML text files
in the file system and no summary structures are available. The results confirm
that, without summaries, Saxon loses by several orders of magnitude.

7 Related Work

The large number of summaries that have been proposed in recent years clearly
establishes the value and usefulness of these structures for describing semistruc-
tured data, assisting with query evaluation, helping to index XML data, and
providing statistics useful in XML query optimization. A more exhaustive com-
parison with related work can be found in [8], including the specific AxPREs
that can be used in DescribeX to express previously proposed summaries.
Most summary proposals in the literature define synopses of predefined sub-
sets of paths in the data. Examples of such summaries are region inclusion graphs



(RIGs) [7], representative objects (ROs)[18], dataguides [11], 1-index, 2-index
and T-index [17], ToXin [24], A(k)-index [13], F+B-Index and F&B-Index [12].

A few adaptive summaries, like APEX [5] and D(k)-index [23], use dynamic
query workloads to determine the subset of incoming paths to be summarized.
APEX uses an ad-hoc construction mechanism to summarize paths that appear
frequently in a query workload. The workload APEX considers are expressions
containing a number of child axis composition that may be preceded by a descen-
dant axis, without any predicate. However, APEX is tailored to incoming paths
(i.e. SDs defined by the p* AxPRE) and does not provide an explicit description
of the extents, whereas DescribeX supports arbitrary AxXPRE’s. Regarding sum-
maries that capture document order, the only proposals we are aware of are the
earlier region order graphs (ROGs) [7] and the Skeleton summary [4,3]. Even
though Skeleton uses an entirely different construction approach, its essence can
be captured by the (fe.ns*)* AxPRE.

Other summaries are augmented with statistical information of the instance
for selectivity estimation, including path/branching distribution (XSketch [21]),
value distributions [20], and additional statistical information for approximate
query processing [22].

8 Conclusion and Future Work

The paper introduces DescribeX, a novel framework for describing structural
summaries of XML collections. Summary partitions are defined by AxPRE’s
created from arbitrary XPath queries, supporting fast evaluation of complex
XPath workloads over large web document collections.

Experimental results demonstrate that DescribeX’s powerful mechanism for
adapting summaries to a workload can provide speedups of one to three orders
of magnitude compared to other proposals. The experiments also show that
DescribeX’s file-at-a-time XPath evaluation architecture can be a competitive
alternative (in terms of query response times) to DB-like XML query engines,
even on gigabyte sized collections.

Since this XPath-to-AxPRE syntactic translation can be applied to any
XPath query, it can also be used to translate XPlainer queries [6] to AxPREs.
XPlainer expressions have the same syntax as XPath but a different semantics
which provide an explanation in the form of the intermediate nodes, a kind of
data provenance of the answer. Future work includes creating AxPREs for the
XPlainer expressions of a query, so that DescribeX can adapt SDs to accelerate
the retrieval of intermediate nodes. In addition, we plan to study the impact
of adjusting the workload (e.g, by finding frequent patterns), and also how to
optimize SD selection given budget constraints.
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