
A fuzzy approach for negotiating quality of services

Davide Bacciu, Alessio Botta, and Hernán Melgratti

IMT Lucca Institute for Advanced Studies, Italy.
{davide.bacciu, alessio.botta, hernan.melgratti}@imtlucca.it

Abstract. A central point when integrating services concerns to the description,
agreement and enforcement of the quality aspect of service interaction, usually
known as Service Level Agreement (SLA). This paper presents a framework for
SLA negotiation based on fuzzy sets. We propose (i) a request language for clients
to describe quality preferences, (ii) a publication language for providers to define
the qualities of their offered services, and (iii) a decision procedure for granting
any client request with a SLA contract fitting the requestor requirements. We start
with a restricted framework in which the different qualities of a service are han-
dled independently (as being orthogonal) and then we propose an extension that
allows clients and providers to express dependencies among different qualities.

1 Introduction

Service Level Agreement (SLA) concerns the description, negotiation and enforcement
of non-functional aspects of service behaviors. Typical examples are the bounds on ser-
vice response time and availability, the number of accepted requests by unit of time,
and the availability of resources such as storage and bandwidth. In this context, service
providers advertise their functionalities by associating different service levels or guar-
anties about the qualities of their offered services. For instance, a storage service may be
published with, e.g., three different service levels, namely, Basic, Gold, and Platinum,
associating to any of them an increasing amount of communication bandwidth. In this
kind of scenario, a client (or service consumer) C is able to use (or interact with) a par-
ticular service provider P only after C and P have agreed on a particular service level.
Therefore, any interaction of C with P should be preceded by a negotiation or agree-
ment creation phase. The negotiation phase is started when the client makes a specific
request to the provider containing its quality expectations. After a negotiation, if they
reach an agreement, a particular contract binding the provider and the client with a par-
ticular service level is signed by both parties. After that, a second phase is started: the
utilization phase. During the utilization phase, the client makes requests to the provider
under a particular agreement or signed contract. It is assumed that the service provider
will perform a service accordingly to the agreed conditions. Hence, the runtime infras-
tructure should provide ways for monitoring and checking whether the execution meets
contract obligations, and to take corrective actions when the execution deviates from
the agreed conditions.

The web services realm have gave birth to some proposals for standards, like Web
Service Level Agreement (WSLA) [6] and Web Service Agreement Specification (WS-
Agreement) [13], that specify the way in which services describe their quality levels (or

SLA parameters), the protocols to be used for reaching agreements, how contracts are
written, and how systems are monitored. As usual for these kind of specifications, they
are long documents exposing the XML syntax of definitions and informally defining
the semantics of the different constructs. This paper is aimed at proposing a formal
approach for negotiating SLA based on fuzzy set theory.

Fuzzy set theory and fuzzy logic were introduced by Zadeh [14] to provide math-
ematical tools that could deal with the vagueness and the uncertainty that are typical
of the human perception and reasoning process. The basic idea of the fuzzy approach
is to allow an element s to belong to a set ϕ with degrees of membership ranging in
the continuous real interval [0,1], rather than in {0,1}. The use of fuzzy descriptions
intuitively corresponds to the vagueness that can be always found in service level re-
quests. For instance, suppose that C is looking for a FTP service with a bandwidth of
“about 5 Mbps”: what happens if the offered bandwidth is just 4.9 Mbps? If the con-
straint is expressed in a standard crisp way such as Bandwidth≥ 5 Mbps (i.e. traditional
non-fuzzy approach), this almost acceptable solution would be immediately discarded,
while it could turn out that actually this is the best solution from a cost-similarity trade-
off viewpoint. Placing a lower threshold on the minimum required bandwidth (e.g. 4.5
Mbps) does not solve the problem, since an almost acceptable solution could always
be found (trivially, 4.4 Mbps) and since this constraint does not discriminate very good
solutions like 5 Mbps from just acceptable solutions like 4.6 Mbps.

In this paper we focus on the contract creation phase, in which

1. service providers should be able to publish a description of the quality levels they
may provide,

2. clients should be able to precisely describe their quality requirements,
3. a decision procedure allows clients and providers to reach agreements.

In particular, we propose a SLA framework based on fuzzy sets for supporting those
activities. The proposed framework is presented by describing the following four ele-
ments:

– The negotiation language, called the SLA-calculus, that models the negotiation
phase of the SLA and accounts for the creation and revocation of contracts. SLA-
calculus is parametric with respect to the languages used for publishing services and
making requests, and to the decision procedure used for reaching an agreement. Its
main scope is to identify the key concepts involved in the negotiation phase.

– The publication language for specifying the offered service levels.
– The request language for specifying the quality levels desired by the user.
– The agreement procedure that allows a client C and service provider P to reach an

agreement.

We remark that the negotiation language is orthogonal to the remaining elements. In
particular, we provide two different instantiations of the framework. Fistly, we propose
two basic languages for publications and requests in which all SLA parameters are han-
dled independently. Then, we extend those languages (and consequently the agreement
procedure) by allowing the definition of dependencies among different SLA parameters
(for instance to say that the storage service never provide a low bandwidth and a large
disk space).

Related works. Several approaches in the literature [7,11,5] have used the theory of
fuzzy sets for studying the problem of finding suitable compositions of services (i.e.,
discovering appropriate services) that meet certain user-defined QoS requirements. We
remark that our approach has a different aim, since it provides a mechanism that allows
two specific services (i.e., the client and the provide) to negotiate a particular QoS
level — a phase that takes place after the candidate provider has been identified. The
work in [10] presents a process calculus accounting for QoS. The main idea is that any
interaction is enriched with a constraint that describes its associated QoS. We envisage
this approach as an appropriate model for the utilization phase, i.e., once the agreement
has been reached. A calculus for dealing with negotiations, called cc-pi, is introduced
in [2]. Differently from our approach, a client request and the offered service levels
are described in cc-pi as constraints. There is an agreement when both constraints are
consistent.

Paper Organization Section 2 presents an overview of fuzzy set theory. Section 3 in-
troduces the negotiation language, while Sections 4 and 5 describe two different in-
stantiations for the publication and request languages and the corresponding decision
procedure.

2 Background

This Section summarizes the basics of the fuzzy set theory. A fuzzy set is defined as

Definition 2.1 (Fuzzy set [14]). Given a space of objects S ranged over by s, a fuzzy
set ϕ in S is characterized by a membership function µϕ(s) : S→ [0,1]⊂R. µϕ(s) is the
fuzzy degree of membership to which a generic element s belongs to ϕ.

Given the fuzzy sets ϕ, φ, and ω defined on the same universe S, the usual concepts
of set theory can be generalized by the following definitions.

Definition 2.2 (Empty fuzzy set). ϕ = ∅⇔∀s ∈ S,µϕ(s) = 0.

Definition 2.3 (Equality). ϕ = φ⇔∀s ∈ S,µϕ(s) = µφ(s).

Definition 2.4 (Intersection). Let ω = ϕ∩φ, µω(s) = min{µϕ(s),µφ(s)}.

Definition 2.5 (Union). Let ω = ϕ∪φ, µω(x) = max{µϕ(s),µφ(s)}.

The similarity operator Sim(·, ·) measures the degree to which two fuzzy sets are
equal. This operator is more powerful than the binary equality in Def. 2.3, and it will be
used in the following sections to compare fuzzy sets. Intuitively, the operator Sim(·, ·) is
defined such that Sim(ϕ,φ) = 0⇔ ϕ∩φ = ∅ and Sim(ϕ,φ) = 1⇔ ϕ = φ. Intermediate
values in [0,1] should be associated to gradually overlapping fuzzy sets. We choose the
following definition for Sim(·, ·):

Sim(ϕ,φ) =
∑
s∈S

µϕ∩φ(s)

∑
s∈S

µϕ∪φ(s)
. (1)

Note that many similarity operators are available in the literature [12]. Likewise,
there is no unique definition for intersection and union in fuzzy set theory: for the sake
of simplicity, we select the most popular and simple implementation, but actually any
t-norm ⊗ could be used as intersection and any t-conorm ⊕ could be used as union [3].

An important property of fuzzy sets is the possibility of extending traditional crisp
functions to work on fuzzy sets, via the extension principle [3].

Definition 2.6 (Extension principle). Let f (s) : S → T be a crisp function and ϕ a
fuzzy set in S. Then, ψ = f (ϕ) is a fuzzy set in T such that ∀t ∈T,µψ(t)= sups|t= f (s) µϕ(s).

Conversely, sometimes we may want to “defuzzify” fuzzy sets and to extract a crisp
value that could serve as a prototype of the whole fuzzy set in crisp applications. To
this aim, we need one of the many defuzzification methods that can be found it the
literature. We will use the well known center of gravity method (defined as in [1]),
which is particularly suitable for managing sets of numerical elements

cog(ϕ) =
∑
s∈S

s ·µϕ(s)

∑
s∈S

µϕ(s)
. (2)

In the rest of the paper we will use the following notion of linguistic variable.

Definition 2.7 (Linguistic variable). A linguistic variable is a variable whose values
are linguistic terms. A linguistic variable V is a quintuple (x,T,S,G,M), where:

1. x is the name of the variable (e.g., Age);
2. T is the set of linguistic terms of variable x (e.g., {young, old});
3. S is the universe of discourse of the base variable;
4. G is a syntactic rule for generating composed terms of x (e.g., “very old”);
5. M : F(S)→ T is a semantic rule mapping a fuzzy set ϕ defined over the universe

of discourse S of the base variable with each element t ∈ T.

Even thought we will not use the syntactic rule G in the following, we included it in
Def. 2.7 for the sake of completeness. Note that this definition of linguistic variable is
slightly different from the ones that can be found in the literature [15], which actually
defines M : T→ F(S). In fact, as it will be clear in Section 5.1, in some special cases
we may want to associate a linguistic term with more than one fuzzy set. This anyway
does not change the essence of M , which is to capture the semantic mapping between
linguistic terms and fuzzy sets.

3 SLA-calculus

In this Section we provide an operational model for the agreement phase, which is
parametric with respect to the languages used for describing services and for making
quality requests. Its main scope is to expose the ingredients of the model, by showing

how contracts are created, used and then revoked. A main assumption of this model is
that the quality levels offered by a provider do not depend on the provider’s internal state
or, in other words, on the contracts it has already signed. For instance, the bandwidth
offered by the storage server do not decrease as new contracts are signed. Moreover, we
assume that providers do not revoke contracts. The following are the main entities of
the model:

– Service descriptions, any of them declares the SLA parameters offered by a par-
ticular provider. Any service description may be thought as an entry on a UDDI
registry. We rely on an infinite set S of service names ranged over by s,s0,
Moreover, we assume SLA parameters to be described by a provider descriptor
DP , which is a valid document of the publication language.

– Service states, we associate any service with a state. In our basic version, a service
state collects the information of all active contracts signed by the provider. We
assume Q to be the infinite set of contract names ranged over by c,c0,

– Clients describe the behavior of applications attempting to sign and revoke con-
tracts with providers. As explained before, a client initiates a negotiation with a
provider by sending a request descriptor DC specifying the desired qualities of the
service. The request descriptor is any valid document of the request language. If
the requested SLA parameters can be assured by the provider, then the client will
obtain a signed contract. Otherwise, the negotiation phase will fail.

Syntax The following grammar defines the terms of the SLA-calculus:

(NET) N ::= s[DP] | s{c0, . . . ,cn} |C | N|N | (νc)N

(CLIENT) C ::= 0 | c := s〈DC ,A〉?C : C | † c.C |C|C

A net (system) is either a service description s[DP], where: (i) s is the service name
and DP is a description of the SLA parameters (the definition of provider descriptors are
in the following Sections); (ii) a service state s{c0, . . . ,cn}, denoting that the provider
s has signed the active contracts c0, . . . ,cn; (iii) a client C, (iv) the parallel composition
of nets, and (iv) the declaration (νc)N of a fresh contract c to be used in N.

A client is either (i) the inert process 0; (ii) a process c := s〈DC ,A〉?C1 : C2 that
attempts to create a new contract c by negotiating with s for the qualities described by
DC and accepting under conditions A, if the negotiation succeeds then C1 is executed
(otherwise C2 is activated); (iii) a process †c.C that revokes a signed contract c and then
behaves like C; and (iv) the parallel composition C1|C2.

The only bound names are the occurrences of c in either c := s〈D,A〉?C1 : C2 or
in (νc)N. All other occurrences are considered free. We will refer to terms up-to α-
equivalence (denoted by ≡α), i.e., up-to the renaming of bound names.

Operational Semantics The reduction semantics of SLA-calculus is given up-to struc-
tural equivalence given by the the rules defining ‘|’ as an associative and commutative
operator with 0 as identity and the following ones.

s{c} | s{c1, . . . ,cn} ≡ s{c,c1, . . . ,cn} N1 ≡ N2 if N1 ≡α N2
(νc1)(νc2)N ≡ (νc2)(νc1)N N1|(νc)N2 ≡ (νc)(N1|N2) if c 6∈ f n(N1)

The reduction semantics is inductively defined by the following rules.

(AGREEMENT)

DP ≈A DC

s[DP] | c := s〈DC ,A〉?C1 : C2 → s[DP] | (νc)(C1 | s{c})

(PAR)

N1 → N′
1

N1 | N2 → N′
1 | N2

(DISAGREEMENT)

DP 6≈A DC

s[DP] | c := s〈DC ,A〉?C1 : C2 → s[DP] |C2

(RESTRICTION)

N1 → N′
1

(νc)N1 → (νc)N′
1

(REVOKE) (νc)(†c.C | s{c}) → C

Rule AGREEMENT stands for the creation of a contract. In this case there is a client
c := s〈DC ,A〉?C1 : C2 starting a negotiation with the provider s by requiring the ser-
vice level DC and accepting the negotiation under conditions A. Since the levels DP
offered by the provider satisfy the user requirement (premise DP ≈A DC), a new con-
tract c (known only by the provider and the client) is created. Note this rule abstracts
away from the actual agreed conditions, they are represented just by a contract name.
Moreover, the service description s[DP] is persistent. Rule DISAGREEMENT handles
the cases in which the provided qualities DP do not match the client requirements DC
and A. In this cases the exceptional flow C2 is activated. Rule REVOKE handles the
termination of a contract by decision of a client. Rules PAR and RESTRICTION are the
standard ones.

Note the rules are parametric with respect to the relation DP ≈A DC , which stands
for the decision procedure. Examples of such relation are in the following Sections.

4 The Fuzzy Agreement Process (FAP)

This Section instantiates the SLA-calculus presented in the previous Section by propos-
ing specific publication and requirement languages and a decision procedure. We called
this particular instance the FAP. The aim of the FAP is to mimic the complex SLA
interactions performed by humans, by means of a process in which (i) tolerance and
vagueness are admitted both in request and offer specifications, and (ii) the matching of
request and offers is evaluated with respect to the trade-offs between similarity metrics
and cost considerations.

The following example illustrates the main ingredients of FAP. Let us assume a
provider P offering a FTP service, which is described by a set of K qualities or re-
sources. Any quality xi is associated with ki different service levels. Each service level
has an associated cost, which is determined by a secret policy of the provider.

Example 4.1. The provider P offers a FTP service, characterized by the resources x1 =
Storage and x2 = Bandwidth, any of them offered with three different service lev-
els, namely {Basic,Gold,Platinum} for Storage (k1 = 3) and {Slow,Medium,Fast} for
Bandwidth (k2 = 3).

Fig. 1. Linguistic variables and fuzzy sets for the FTP service example.

A service configuration associates a service level to any resource of the service. For
the FTP example, PlatinumStorage∧FastBandwidth is a valid service configuration for
our FTP service. In our approach, each resource is modeled by a linguistic variable,
while service levels and expected qualities are expressed by using fuzzy sets defined on
the universes of discourse of those linguistic variables.

Example 4.2. Fig. 1 shows the fuzzy sets describing the service levels offered by P
(solid lines) and those corresponding to the requirements of a client C (dotted lines).
All fuzzy sets are defined on the universes of discourse of the corresponding linguistic
variables Storage and Bandwidth.

The following definitions formalize the publication language (i.e., the provider de-
scriptors), the request language (i.e., the client descriptors) and the decision procedure
(i.e., the relation ≈A) for the FAP instantiation.

Definition 4.1 (Provider descriptor). A provider descriptor DP is a pair (V,C). V is
a set of K linguistic variables V1, ...,VK . C is a set of K cost functions ⇓1, ...,⇓K , such
that ⇓i: Si →U, where Si is the universe of discourse of the i-th linguistic variable Vi
and U is the target cost universe.

As aforementioned, linguistic variables describe resources. The name xi of the lin-
guistic variable Vi gives the name of the resource. We write Σ = {xi, ...,xK} for the set of
names of all linguistic variables. The service levels associated to the resource xi are the
linguistic terms Ti of Vi, which are associated by Mi to the fuzzy sets ϕ1

i , ...,ϕ
ki
i defined

on the corresponding universe of discourse Si (as stated in Def. 2.7).

Example 4.3. In our FTP service, we define service levels T1 = {Basic,Gold,Platinum}
and T2 = {Slow,Medium,Fast}. Some examples of set-label associations are M1(ϕ3

1) =
Platinum and M2(ϕ1

2) = Slow.

Cost functions ⇓1, ...,⇓K are used to map each resource into a common reference
universe U , and they will be used during the decision procedure to compute a global cost
of a service configuration. Cost can be expressed in terms of money, time, availability or
any other business-related meaningful measure. Different shapes of cost functions can
represent different cost models: for instance, an important resource may have a steeper
cost function than a less critical resource.

Definition 4.2 (Client descriptor). A client descriptor DC is a pair (F,A). F is a set of
K pairs {(x1| f1), ...,(xK | fK)}, where fi is a fuzzy set defined on the universe of discourse
Vi of the linguistic variable named xi ∈ Σ. A is an acceptance function U × [0,1] →
{0,1}.

F describes the configuration desired by the client. Indeed, a pair (xi| fi) states that
the client expects the service level described by fuzzy set fi for the resource xi. In this
way a client C may formulate a vague request such as “I want a bandwidth of about
5 Mbps”. Note that, since fuzzy set theory extends classic set theory, it is still possible
to express precise and mandatory constraints such as “I want a bandwidth of at least 2
Mbps” or “I want a bandwidth of exactly 4 Mbps”.

The acceptance function A is used as a classifier to discriminate acceptable from
unacceptable service configurations offered by P . In other words, A measures the trade-
off between the cost and the similarity of the proposed configuration with respect to the
original service request and decides if that solution is acceptable or not.

We remark that a client only needs the following information to be able to build a
request descriptor:

1. the resource names Σ = {x1, ...,xK};
2. the universes of linguistic variable {S1, ...,SK};
3. the cost reference universe U .

In a real implementation, this information should be exposed by P in its service de-
scription, e.g., in its corresponding WSDL description. We remark that a client C needs
no information about available service levels nor cost policies used by the provider.
Hence, they can be kept private by the provider.

Finally, we define the decision procedure of FAP. Roughly, we say DC ≈A DP if and
only if there exists (at least) a service configuration on which the client and the provider
agree.

Definition 4.3 (Evaluation of ≈A). Given DC = (F,A) and DP = (V,C):

Step 0. For each resource xi (i = 1...K), and for each service level ϕ
j
i of xi (j = 1...ki),

let φ
j
i =⇓i (fi ∩ϕ

j
i) be the projection on U of the overlapping between the offered

level ϕ
j
i and the requested level fi. Furthermore, let s j

i = Sim(fi,ϕ
j
i) be the simi-

larity measure of the same couple of fuzzy sets.
Step 1. Let Π = {π|π = (φ j1

1 , ...,φ
jK
K),∀i = 1...K,∀ ji = 1...ki∧ s ji

i 6= 0} be the set of all
K-tuples representing eligible service configurations offered by P that have non-
empty intersection with the request descriptor. Then, ∀π∈Π, let σ(π)= cog(

SK
i=1 φ

ji
i)

and Simπ(π) = ∏
K
i=1 s ji

i be respectively the crisp global cost and the global simi-
larity measure of π.

Step 2. Let Π′ = {π ∈Π|A(σ(π),Simπ(π)) = 1} be the set of eligible service configu-
rations accepted by C .

Step 3.a. If Π′ 6= ∅ then DC ≈A DP and let π∗ = choose(Π′) be the service configura-
tion selected by P ś choice function.

Step 3.b. If Π′ = ∅ then ¬(DC ≈A DP).

Fig. 2. The cost function of resource Storage and a sample application.

Note that we can pass from the fuzzy sets to the linguistic description of each π at
any time by simply applying

VK
i=1 Mi(ϕ

ji
i).

Example 4.4. We compute ≈A for the descriptors in Fig. 1. As stated in Section 2, we
use the min function as t-norm ⊗ and the max function as t-cornorm ⊕ in the imple-
mentation of ∩ and ∪, respectively (see Defs. 2.4 and 2.5).

Step 0. Fig. 2 shows the application of Step 0 to resource Storage. First, fuzzy sets
resulting from f1 ∩ϕ1

1, f1 ∩ϕ2
1 and f1 ∩ϕ3

1 are obtained in the original universe
of discourse of Storage and their similarity measure is computed. Note that, as
we could expect by observing Fig. 1, f1 ∩ϕ1

1 = ∅ and thus s(f1,ϕ
1
1) = 0, while

s(f1,ϕ
3
1) � s(f1,ϕ

2
1) > 0. Then, we use the cost function ⇓1 and the extension

principle of Def. 2.6 to project the intersections from the universe S1 to U and thus
to obtain φ2

1 and φ3
1 (since ϕ1

1 is empty, φ1
1 is also empty). The same procedure is

repeated for Bandwidth using a very steep linear cost function ⇓2 (i.e., Bandwidth is
a very costly resource), obtaining s(f2,ϕ

1
2) = 0.34, s(f2,ϕ

2
2) = 0.22 and s(f2,ϕ

3
2) =

0.
Step 1. Since s(f1,ϕ

1
1) = s(f2,ϕ

3
2) = 0, we have four eligible service configurations to

include in Π: πa = (ϕ2
1,ϕ

1
2),πb = (ϕ2

1,ϕ
2
2),πc = (ϕ3

1,ϕ
1
2) and πd = (ϕ3

1,ϕ
2
2), which

correspond to the linguistic descriptions GoldStorage ∧ SlowBandwidth, GoldStor-
age ∧ MediumBandwidth, PlatinumStorage ∧ SlowBandwidth and PlatinumStor-
age ∧ MediumBandwidth, respectively. We compute σ(πa) = cog(ϕ2

1 ∪ϕ1
2) = 9.6

and Simπ(πa) = s2
1 · s1

2 = 0.06 ·0.34 = 0.0204, and similarly for the remaining con-
figurations of Π.

Step 2. As shown in Fig. 3, we apply the acceptance function A(σ(π),Simπ(π)) pro-
vided by C to discriminate acceptable from unacceptable service configurations,
thus obtaining Π′ = {πb,πd}. In the figure, we can see that, for instance, πa is dis-
carded because its similarity with respect to the request descriptor is poor, even

Fig. 3. Eligible configurations and the acceptance function A .

though it has the lowest cost. Differently, πb falls in the acceptance region, thanks
to the good trade-off between cost and similarity.

Step 3.a. Since Π′ 6= ∅, DC ≈A DP is true. The final step is performed by P using its
internal policies coded in the choose(Π′) function to select a particular configura-
tion π∗. For instance, P could alternatively select the most similar configuration
(πb), or the most costly one (πd), or the first one in Π′ (again πb). Assuming P
selects π∗ = πb, the FTP service will give to C the following service guaranties
GoldStorage ∧ SlowBandwidth.

Additionally, once a configuration is selected, the provider P may want to fix a crisp
value for each resource rather than determining only the service level, e.g., it may want
to assign a SlowBandwidth of exactly 2 Mbps. This additional step can be performed in
several ways depending on the internal policies of P . For instance, P could defuzzify
each fi∩ϕ

j
i of π∗, or select a prototype point for each service level, or choose the crisp

value with the highest membership degree in each fi ∩ϕ
j
i of π∗. This is a minor issue

and, for the sake of simplicity, we will not enter in further details.

5 Contract Descriptors as Finite State Automata and Transducers

The FAP model cannot express complex policies such as

Client C requests either a large amount of disk space with an high access
throughput or a small amount of disk space with no particular limitation on the
access throughput.

In order to describe the non-deterministic choice (either ... or ...) of quality con-
figurations and the dependencies among the service levels of different resources, we
extend the previous FAP model. In particular, we use weighted automata [9] to define
client descriptors and weighted transducers [9] to define complex provider descriptors.
We start by recalling the definition of semirings taken from [8], which will be used as
weights in client automata and provider transducers.

Definition 5.1. A system (K,⊕,⊗,0,1) is a semiring if

1. (K,⊕,0) is a commutative monoid with identity element 0;
2. (K,⊗,1) is a monoid with identity element 1;
3. ⊗ distributes over ⊕;
4. 0 is an annihilator for ⊗ : ∀e ∈K, e⊗0 = 0⊗ e = 0.

We will write K as a shorthand for (K,⊕,⊗,0,1) when the operators are clear from
the context. In our framework we use the elements of fuzzy-set semirings to represent
service levels. In particular, we choose the semiring whose elements are fuzzy sets and
whose operators are the fuzzy intersection ∩ and union ∪. The identity and annihilator
elements are chosen accordingly to the properties of the semirings. For instance, if we
consider the semiring (K,∪,∩,0,1), then 0 is the empty fuzzy set of Def. 2.2, while 1
is the fuzzy set with membership value 1 ∀x ∈ R, where R is the support of the fuzzy
sets.

5.1 Request descriptor

This Section introduces the notion of weighted automata and their utilization as client
descriptors.

Definition 5.2. A client automaton is a 6-tuple AC = (Σ,Q, I,F,T,K) where

1. Σ is the finite input alphabet;
2. Q is a finite set of states;
3. I ⊆ Q is the set of the initial states;
4. F ⊆ Q is the set of the final states;
5. T ⊆ Q×Σ×K×Q is a finite set of weighted transitions;
6. K is a semiring over which transitions weights are defined.

Given a transition ti ∈ T , p(ti) denotes the origin of ti and n(ti) the destination. For
instance, let ti be defined as follows

ti = (qi,xi, f l
i ,q

′
i) with qi,q′i ∈ Q,xi ∈ Σ, f l

i ∈K (3)

then p(ti) = qi and n(ti) = q′i. A path π = t1 . . . tK ∈ T ∗ is defined as the composition
of transitions ti ∈ T such that n(ti−1) = p(ti) with i = 2, . . . ,K. We extend the definitions
of p(·) and n(·) to paths such that p(π) = p(t1) and n(π) = n(tK). In addition, we
define a labeling function λ : T → Σ×K over a transition ti = (qi,xi, f l

i ,q
′
i) such that

λ(ti) = (xi| f l
i). The labeling function can be extended to paths by defining λ(π) = λ(t1)◦

. . .◦λ(tK), where ◦ is the concatenation operator.
Consider the automaton in Fig. 4, where Σ = {x1,x2,x3,x4,x5}, Q = {q0, . . . ,q5},

I = {q0}, F = {q5}, f l
j ∈K, and T = {(q0,x1, f 1

1 ,q2),(q0,x2, f 2
1 ,q2), . . . ,(q4,x5, f 5

2 ,q5)}.
The labeling function applied on π = t1t3t5 produces λ(π) = (x1| f 1

1)(x3| f 1
3)(x5| f 1

5).
Similarly to [4], we define the acceptance set Acp for the client automaton AC as

the set of weighted strings generated by the labeling function λ on all paths π leading
from an initial state q0 ∈ I to a final state q f ∈ F , that is

Acp(AC) = {λ(π)| π is a path in AC , p(π) ∈ I, n(π) ∈ F}. (4)

Fig. 4. A client automaton.

In our interpretation, each automaton AC represents a service request from a client
C . The input alphabet of AC contains the names of service qualities or resources, while
K is the set of fuzzy sets that are used to define the service levels requested by the
client. In this interpretation, the set Acp(AC) defines all the possible compositions of
qualities that are acceptable for the client C together with a soft measure of the service
level requested for each service.

Now, we refine the Def. 4.2 of the client descriptors as

Definition 5.3 (Client descriptor). A client descriptor DC is a couple (F,A). F is the
acceptance set Acp(AC) of the acyclic weighted automaton AC = {Σ,Q, I,F,T,K}, hav-
ing transitions ti ∈ T of the form (qi,xi, f l

i ,q
′
i), where each f l

i ∈K is a fuzzy set defined
on the universe of discourse Si of the linguistic variable named xi ∈ Σ. A is an accep-
tance function U × [0,1]→{0,1}.

Consequently, clients may define more expressive contract descriptors in which the
set F of alternative desired configurations is defined by a weighted automaton.

Example 5.1. Consider the automaton in Fig. 5 defining a request descriptor for the
FTP service. The choice between a BasicStorage service and a LargeStorage service
is expressed by the two transitions that start from the initial state q0. Moreover, this
automaton expresses that the requested level for the bandwidth depends on level offered
for the storage. In particular, the client is satisfied by a large-storage service only if
it is delivered together with a fast bandwidth access (path q0 → q1 → q3 in Fig. 5),
whereas it can accept a slow bandwidth service if it is offered in conjunction with a
basic-storage service (path q0 → q2 → q4). Note that the client requires different levels
for the same resource depending on the path followed in the automaton. For instance,
the two transitions in Fig. 5 ending in q3 associate two different fuzzy sets (Fast1 and
Fast2) to the same resource Bandwidth.
5.2 The Provider Descriptor

In what follows we recall the definition of weighted finite state transducer (FST) of [9],
which will be used for formalizing the notion of provider descriptors.

Definition 5.4. A weighted finite state transducer is a 7-tuple

FSTP = (ΣP ,CP ,QP , IP ,FP ,TP ,K),

where

Fig. 5. Client automaton for the FTP service example.

Fig. 6. A server transducer.

1. ΣP is the finite input alphabet;
2. CP is the finite output alphabet;
3. QP is a finite set of states;
4. IP ⊆ QP is the set of the initial states;
5. FP ⊆ QP is the set of the final states;
6. TP ⊆ QP ×ΣP ×CP ×K×QP is a finite set of weighted transductions from the

input alphabet ΣP to the output alphabet CP ;
7. K is a semiring over which transductions weights are defined.

A weighted transducer is shown in Fig. 6, where the input alphabet is ΣP = {x1,x2,
x3,x4,x5}, the states are QP = {q0, . . . ,q8}, the initial states are IP = {q0}, the final
states are FP = {q8} and the semiring weights are φ

i j
l ∈ K, where i denotes the i-th

element of the input alphabet, l is the index of the l-th output symbol for a given input
symbol and j (optional) is used to differentiate semiring weights for the same combi-
nation of input-output pairs.

Given a weighted FST, a path π is the composition of transitions (or transductions)
tdi ∈ TP . We also use the operators n(·) and p(·) to refer to the origin and destination
of transductions and transduction paths. The labeling function λ(·) is defined such that

λ(tdi) = xi for a transition tdi = (qi,cl
i ,xi,ϕ

l
i ,q

′
i) ∈ Ts, and λ(π) = λ(t1)◦ . . .◦λ(tK) for

a path π = t1 . . . tK . In addition, the set of the paths from q to q′ is

P(q,q′) = {π|p(π) = q,n(π) = q′}, (5)

while the set of paths from q to q′ for the label x ∈ Σ∗ is

P(q,x,q′) = {π|p(π) = q,n(π) = q′, λ(π) = x}. (6)

Then, the provider descriptor is expressed in terms of a weighted transducer by
refining the Definition 4.1.

Definition 5.5 (Provider descriptor). A provider descriptor DP is a couple (FSTP ,C)
where FSTP = (ΣP ,CP ,QP , IP ,FP ,TP ,K) is a weighted transducer, and where

1. ΣP is the set containing the names xi of the linguistic variables (or resources);
2. CP is the set of linguistic terms cl

i corresponding to service levels;
3. K is the semiring whose elements are fuzzy sets;
4. C is the set of cost projection functions ⇓i.

As for FAP, we have that ∀i = 1, . . . ,K∧∀l = 1, . . . ,ki∧∀ j = 1, . . . ,k′l : ϕ
l j
i ∈K is a

fuzzy set defined on the universe of discourse Si of the linguistic variable named xi ∈ ΣP
and related to the linguistic term cl

i ∈CP representing a class of service.

5.3 The decision procedure

In this new setting, we use the FSTP of a provider descriptor to translate the request
made by a client C to the service levels offered by the provider P . Note that any
weighted string x in the request descriptor denotes a possible quality configuration de-
sired by the client. In particular, each (xi| fi) ∈ x requires the resource xi with quality
level f l

i . Conversely, a transduction ti = (qi,cl
i ,xi,ϕ

j
i ,q

′
i) describes an offer of the re-

source xi with the service level cl
i defined by the fuzzy set ϕ

j
i . More formally, cl

i is
a linguistic term associated to the linguistic variable xi, on the universe Si, such that
Mi(ϕl

i) = cl
i . The provider FST translates the client requests, expressed in terms of the

input alphabet Σs = Σ, to an output alphabet CP whose elements represent the concrete
service levels offered by the provider P . Moreover, the agreement procedure calculates
the degree of compliance of requested levels with the offered levels.

The translation from the input alphabet ΣP to the output alphabet CP is formalised
by the following transduction relation τ : Σ×TP −→CP such that

τ(xi, tdi) =
{

cl
i if tdi = (qi,cl

i ,xi,ϕ
l
i ,q

′
i)

ε otherwise
(7)

where ε denotes the empty element of the output alphabet. The transduction relation
(Equation 7) is extended to strings x = x1 . . .xK ∈ Σ∗ and legal paths π ∈ P(q0,x,q f) as
follows

τ(x,π) =©K
i=1τ(xi, tdi) (8)

where © denotes the concatenation operator and tdi are the transductions in π. Note
that τ(x,π) translates a service request x to the service classes offered by the provider.

Similarly, we define a weighting function over strings x = (x1| f 1
i) . . .(xK | f l

k) and
legal paths π ∈ P(q0,x,q f) as

σ(x,π) = δ

(
KM

i=1

⇓i (f l
i ⊗ϕ

j
i)

)
(9)

where f l
i ∈K is the service level requested by the client for the resource xi, ϕ

j
i ∈K is the

weight assigning by the transduction tdi = (qi,cl
i ,xi,ϕ

j
i ,q

′
i),

L
and ⊗ are the operators

on the semiring K, ⇓i are the cost functions, while δ is the output function defined as
the defuzzyfication operator cog : K→U .

Finally, the following similarity function calculates the similarity of the requested
configuration x with the offered path π as a combination of the similarities between f l

i
and ϕ

j
i (i.e., the requested and offered levels) for each resource xi. (Sim is in Equation 1)

Simπ(x,π) =
K

∏
i=1

Sim(f l
i ,ϕ

j
i) (10)

The transduction relation in Equation 8 does not take into consideration the trans-
duction weights. We extend its definition to weighted strings x = (x1| f 1

i) . . .(xK | f l
k) and

paths π ∈ P(q0,x,q f) by using the weighting and similarity function defined so far, i.e.

τw(x,π) =
{
〈τ(x,π),σ(x,π),Simπ(x,π)〉 if Simπ(x,π) 6= 0

〈·〉 otherwise (11)

where 〈·〉 is the empty triplet.
Equation 11 is limited to the transduction of a single string x on a single path π. The

full model takes into consideration all the requests modeled by the client automaton AC ,
translating them over all eligible paths defined by the provider FST, i.e.

RFST (Acp(AC)) = ∪x∈Acp(AC)∪π∈P(IP ,x,FP) τw(x,π), (12)

where P(IP ,x,FP) is the set of paths starting from an initial state q ∈ IP , ending in a
final state q′ ∈ FP and labeled by x ∈ Σ∗, that is

P(IP ,x,FP) = ∪q∈IP , q′∈FP P(q,x,q′). (13)

Finally, the agreement procedure is formalized as follows.

Definition 5.6 (Evaluation of ≈A). Given DC = (Acp(AC),A) and DP = (FST,C):

Step 1. Let Π = RFST (Acp(AC)) be the set of all triplets 〈τ,σ,Sim〉 representing avail-
able service configurations τ having compliance between request and offer ex-
pressed by σ and Sim.

Step 2. Let Π′ = {〈τ,σ,Sim〉 ∈ Π|A(σ,Sim) = 1} be the set of available service con-
figurations accepted by the client.

Fig. 7. Provider transducer for the FTP service example.

Step 3.a. If Π′ 6= ∅ then DC ≈A DP and let π∗ = choose(Π′) be the service configura-
tion selected by the provider choice function.

Step 3.b. If Π′ = ∅ then (DC 6≈A DP).

Example 5.2. Consider the provider descriptor defined in terms of the weighted FST
in Fig. 7. The provider can now express complex service allocation policies such as
providing a FastBandwidth service only to clients requesting either a GoldStorage or
PlatinumStorage service. Moreover, the provider may want to allocate GoldStorage
clients preferentially to the FastBandwidth service: this can be expressed by placing
a more restrictive condition on the qP

2 → qP
4 edge than on the qP

2 → qP
5 edge, that is

reducing the support of ϕ
s2
2 with respect to ϕ

f1
2 .

Consider the client automaton described in Fig. 5, whose acceptance set is

Acp(AC) =
{
(St| flarge)(Bw| f f ast1),(St| fbasic)(Bw| fslow),(St| fbasic)(Bw| f f ast2)

}
where we substitute St to Storage and Bw to Bandwidth to ease the notation. The client
descriptor is DC = (Acp(AC),A), where A is a suitable acceptance function.

The provider FST is defined on the signature ΣP = {St,Bw} and on the output al-
phabet CP = {Basic,Gold,Platinum}∪{Slow,Fast}, where the former set refers to the
Storage universe and the latter to the Bandwidth universe. Moreover, the FST has states
QP = {qP

0 ,qP
1 ,qP

2 ,qP
3 ,qP

4 ,qP
5 }, with IP = {qP

0 } and FP = {qP
4 ,qP

5 } as initial and final
states, respectively. Hence, sparing the details of the transductions set TP , we obtain
the provider-side contract descriptor DP = (FST,{⇓St ,⇓Bw}), where ⇓St ,⇓Bw are two
suitable cost-projection functions on the Storage and Bandwidth universes.

By performing Step 1 of definition 5.6, we generate the set Π of triplets containing,
e.g.,

τw(x,π) = 〈Basic◦Slow,cog
(
⇓St (ϕb

1⊗ flarge)⊕ ⇓Bw (ϕs1
2 ⊗ f 1

f ast)
)

,

Sim(ϕb
1, flarge) ·Sim(ϕs1

2 , f 1
f ast)〉

which is obtained by considering x = (St| flarge)(Bw| f 1
f ast) and π = qP

0 qP
1 qP

4 . The oper-
ators on the fuzzy set (⊕, ⊗), the cost-projection ⇓i and the defuzzyfication functions
behave as described in Section 4. Therefore, after the application of Step 1 we ob-
tain a set of triplets whose elements are a service configuration (e.g. BasicStorage∧
SlowBandwidth) and two reals describing the similarity between the client request and
the provider offer. These triplets are filtered by the acceptance function A as detailed
in Step 2 and, eventually, the provider selects a solution amongst the elements of the
acceptable set Π′ by means of the choice function in Step 3 of Definition 5.6.

6 Conclusion and Future Works

This paper presents a general framework for handling SLA negotiation in which agree-
ments rely on the fuzzy approach: required and offered quality levels are described
by fuzzy sets. The described framework is at an initial phase in which many aspects
deserve further investigation. In particular, we envisage the following lines:

– Adjustment of provided service levels: Currently, published service levels do not
depend on the state of the provider. Hence, it would be interesting to resort to fuzzy
theory tools for allowing the dynamic modification of the shape and position of the
fuzzy sets. For instance, linguistic hedges could be used for dynamically adapting
a provider descriptor when new contracts are signed, removing such adjustments
when contracts are revoked by applying the corresponding inverse linguistic hedge.

– Contract enforcement: The SLA-calculus accounts only for SLA negotiation. We
plan to extend the framework for dealing with contract enforcement, i.e., to for-
mally explain how clients interact with providers under already signed contracts
and how agreed service levels are enforced.

– Cost models: We plan to derive a set of off-the-shelf cost models that can help the
providers in defining cost functions for their resources. For instance, cost models
could be derived from usage or availability of resources. Since cost functions in-
fluence the way fuzzy sets are projected in the reference universe, each cost model
should be associated with a proper aggregation and defuzzification operator.

– Automata and transducers properties: Our definition of weighted automata and
transducers differ from the ones that can be found in the literature [9]. We plan
to determine suitable composition operators, similar to those described in [9] for
standard automata and FST, that can be used to define a modular approach for con-
structing complex client and provider descriptors by composing simpler service
requests and offers.

– Implementation: We plan to investigate how the proposed framework can be em-
bedded into current web service infrastructure. In particular, whether the different
elements can be mapped to the de facto standards WSDL, SOAP and UDDI.

References

1. R. Babuska. Fuzzy systems, modeling and identification. Technical report, Delft University
of Technology, 2001.

2. M. Buscemi and U. Montanari. CC-Pi: A constraint-based language for specifying service
level agreements. Manuscript, 2006.

3. D. Dubois and H. Prade. Fuzzy Sets and Systems - Theory and Applications. Academic
Press, New York, 1980.

4. D. Gorla, M. Hennessy, and V. Sassone. Security policies as membranes in systems for
global computing. Logical Methods in Computer Science, 1(3), 2005.

5. C.-L. Huang, K.-M. Chao, and C.-C. Lo. A moderated fuzzy matchmaking for web ser-
vices. In CIT 2005: Proceedings fo the Fifth International Conference on Computer and
Information Technology, pages 1116 – 1122. IEEE Computer Society, Sep 2005.

6. A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service level
agreements for web services. Journal of Network and Systems Management, 11(1), 2003.

7. M. Lin, J. Xie, H. Guo, and H. Wang. Solving qos-driven web service dynamic composi-
tion as fuzzy constraint satisfaction. In EEE ’05: Proceedings of the 2005 IEEE Interna-
tional Conference on e-Technology, e-Commerce and e-Service (EEE’05) on e-Technology,
e-Commerce and e-Service, pages 9–14, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

8. M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of
Automata Languages and Combinatorics, 7(3):321–350, 2002.

9. M. Mohri. Weighted finite-state transducer algorithms: An overview. In C. Martn-Vide,
V. Mitrana, and G. Paun, editors, Formal Languages and Applications, volume 148 of Lecture
Notes in Computer Science. Springer, Berlin, 2004.

10. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A formal basis for
reasoning on programmable qos. In N. Dershowitz, editor, Verification: Theory and Practice,
Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday, volume 2772 of
Lecture Notes in Computer Science, pages 436–479. Springer, 2003.

11. M. Di Penta and L. Troiano. Using fuzzy logic to relax constraints in GA-based service com-
position. In GECCO ’05: Proceedings of the 2005 Genetic and Evolutionary Computation
Conference, 2005.

12. M. Setnes, R. Babuska, U. Kaymak, and H. R. van Nauta Lemke. Similarity measures in
fuzzy rule base simplification. IEEE Transactions on Systems, Man, and Cybernetics, Part
B, 28(3):376–386, 1998.

13. Web services agreement specification (ws-agreement). version 2005/09, 2005.
14. L.A. Zadeh. Fuzzy Sets. Information and Control, 3(8):338–353, 1965.
15. H.-J. Zimmermann. Fuzzy set theory and its applications (3rd ed.). Kluwer Academic

Publishers, Norwell, MA, USA, 1996.

