
An Algorithmic Theory of Mobile Agents

Evangelos Kranakis1 and Danny Krizanc2

1 School of Computer Science, Carleton University, Ottawa, ON, Canada.
2 Department of Mathematics and Computer Science, Wesleyan University,

Middletown, Connecticut 06459, USA.

Abstract. Mobile agents are an extension of multiagent systems in
which the agents are provided with the ability to move from node to
node in a distributed system. While it has been shown that mobility can
be used to provide simple, efficient, fault-tolerant solutions to a number
of problems in distributed computing, mobile agents have yet to become
common in mainstream applications. One of the reasons for this may
be the lack of an algorithmic theory which would provide a framework
in which different approaches can be analyzed and the limits of mobile
agent computing explored. In this paper we attempt to provide such an
algorithmic theory.

1 Introduction

The concept of an agent working on behalf of another entity is a simple yet
powerful abstraction that has been found useful in many areas of computing.
In certain applications adding the capability of movement to an agent can lead
to further simplifications and efficiencies. Consider, for example, the following
scenarios:

– Network Maintenance. In a heterogeneous network it is necessary to regularly
provide nodes with software updates, check for security vulnerabilities, etc.
A simple approach to this would be to have an agent (or team of agents)
regularly visit the nodes to determine what maintenance is required and to
perform it.

– Electronic Commerce. In some situations the success of a given transaction
requires the near simultaneous success of multiple transactions. For example,
when preparing for a trip one may be purchasing airline tickets, making hotel
reservations and scheduling meetings. A mobile agent can move between
applications making sure that all transactions are ready before committing
to any.

– Intelligent Search. When searching for information across multiple sources
it is often the case that queries must be adapted depending on the answers
received. An agent with the ability to filter information locally and adapt
its behavior while moving between sources is potentially more efficient than
one that always has to return to the user for guidance.



– Robotic Exploration. In a potentially dangerous environment it makes sense
for robots to be the first to explore a region. A simple and potentially cheap
solution is to have a team of small communicating robots (agents) coopera-
tively explore rather than one expensive human-controlled robot.

In this paper we concentrate on modeling agents as developed in distributed
systems research (see Chapter 13 of [9]) though much of what we discuss could
be applied in other domains such as artificial intelligence (e.g., intelligent multia-
gent systems [20]), robotics (e.g., autonomous mobile robots [13]), computational
economics (e.g., agent-based economic modelling [17]) and networking (e.g., ac-
tive networks [16]). We first informally describe what we mean by a mobile agent
system and discuss the potential advantages and disadvantages of such systems.
We then develop a framework for an algorithmic theory of mobile agents. Finally,
we show how the theory can be applied to analyze the problem of achieving agent
rendezvous in a network.

1.1 What is a Mobile Agent?

We imagine a mobile agent to be a software entity endowed with the following
properties:

– Autonomy. As is the case for real world agents such as travel agents, software
agents should work with some degree of independence from their creator.
They should be able to make at least some decisions without the need to
consult a central authority.

– Mobility. In the case of mobile agents we insist that they have the ability to
move from node to node in a distributed system. When such an agent moves
it is assumed that it encapsulates some or all of its state to move with it.

Beyond the above, a number of researchers include the following attributes
in their definition of a mobile agent:

– Interactivity. Obviously a agent must be able to interact with its environ-
ment, to make queries of nodes it visits, to report its findings, etc. But in
many (possibly most) applications we imagine that more than one agent is
present and the agents themselves are able to interact. Again in most in-
stances this is likely to be cooperative behavior but competitive behavior is
also possible. The exact form of this interaction depends upon the system
but usually involves some sort of communication either by means of message
passing or shared memory.

– Intelligence. The usefulness of an agent increases significantly with its ability
to adapt to new situations, to learn from previous experience and to model
correctly the intentions of the user who created it as well as those of the
agents it encounters.

It is our goal to develop a flexible framework in which systems exhibiting any
subset of the above properties can be analyzed.



1.2 Why Mobile Agents?

The applications one has in mind for mobile agents can generally be solved
by traditional distributed computing approaches so why use them? While not
a panacea, it can be argued that they offer a number of advantages over the
standard solutions including:

– Efficiency. Assuming that the agents are sufficiently compact (program plus
state) they offer potential savings in both latency and network bandwidth.
In a situation where n sites must be visited in sequential order, where for
instance the output from one site is used as part of the input to the next, a
mobile agent can perform the task by moving along an n edge cycle incurring
the cost of n communication steps whereas the communication pattern of
a centrally located agent would be a star with 2n communication steps (to
and from each site) required. In a situation where parallel access to the sites
is possible then a team of mobile agents (in this case sometimes referred to
as clones) can visit all of the sites faster than a single stationary agent.

– Fault-tolerance. In situations where a user has limited or even intermittent
connectivity to the network (e.g., mobile devices) a mobile agent may over-
come this deficit by acting on behalf of the user during blackout periods and
returning useful information when connectivity returns. In situations where
nodes may go down on a regular basis with limited notice a mobile agent
can potentially move to another node and continue operating.

– Flexibility. It is generally easy to add features to agents that allow them to
adapt their behavior to new conditions. More sophisticated agents may be
designed to incorporate learning from past experience.

– Ease of Use. In many situations it is natural both from the perspective of
the user and the programmer to imagine that they are dealing with au-
tonomous agents. In some instances this improves the user’s experience of
the application. In other instances an agent-based paradigm makes the sys-
tem’s design and implementation easier to perform. While these benefits are
hard to quantify they can be as important as the above.

In order to evaluate (at least theoretically) the above claims, especially those
concerning efficiency and fault-tolerance, a model for analyzing the behavior of
mobile agent algorithms is needed.

1.3 Whither Mobile Agents?

While many have touted the advantages of mobile agents and numerous mobile
agent systems have been developed [3, 10, 12, 18, 19], they have yet to become a
ubiquitous element of distributed systems. The reasons cited for this are many.
They are said to lack a so-called “killer app” or to suffer from the “who goes
first” phenomenon. A common objection to introducing mobile agents is security.
There are many who believe that opening up your network to the “invasion” of
potentially harmful mobile agents is not worth the advantages they may provide.



On the other hand, much work has been done to insure that mobile agents can
be implemented in a secure fashion [15].

But perhaps the most common objection to mobile agent systems is that
anything that can be achieved by mobile agents can just as easily be achieved
using traditional means such as static agents. The counter argument to this is
that no one has ever claimed that mobile agents were required to solve any
particular problem only that they would provide a potentially more efficient and
fault-tolerant solution to many common problems. But still some object that
the resulting mobile agents will be too complex to realize the possible savings.
While there has been some experimental work that attempts to verify that such
savings exist [3–5], it is our contention that at least in part what is needed is an
algorithmic model in which one can prove that a mobile agent solution achieves
given complexity bounds and can thus provably provide the claimed efficiencies.

2 An Algorithmic Model for Mobile Agents

Work on the design and analysis of algorithms proceeds within the confines of
a given algorithmic model. For example a popular model in which sequential
algorithms are analyzed is the standard RAM model of computing. For parallel
algorithm analysis a number of models, such as the PRAM, are used. For each
paradigm an appropriate algorithmic model is developed. In general, a model
is an abstraction which attempts to capture the most important aspects of a
computational process. It consists of a description of allowable operations (or
transitions) that can be performed by the process. For example the RAM model
allows for read/write operations, arithmetic operations, etc. Once this is estab-
lished one generally defines a set of measurable resources of interest, e.g., time
(number of primitive operations), space (number of registers or potential states),
etc. At this point one is ready to analyze algorithms for well-defined problems
(often expressed as input-output conditions). Assuming the model captures the
computation sufficiently accurately it can be used to:

– analyze the complexity (the amount of a given resource used) of different
algorithms for a problem in order to determine which is most efficient, and

– determine lower bounds on the complexity of any algorithm for a given
problem or relate the complexities of different problems.

In order to model mobile agents we must model both the agents themselves
and the networks that host them. Rather than describe one model we present a
framework for a class of related models for both hosts and agents among which
one may choose a model to be used depending upon the application one has
mind.

2.1 Mobile agents

We are interested in modeling a set of software entities that act more or less
autonomously from their originator and have the ability to move from node to



node in a distributed network maintaining some sort of state with the nodes of
the network providing some amount of (possibly longterm) storage and compu-
tational support. Either explicitly or implicitly such a mobile (software) agent
is most often modeled using a finite automaton consisting of a set of states and
a transition function. The transition function takes as input the agent’s current
state as well as possibly the state of the node it resides in and outputs a new
agent state, possible modifications to the current node’s state and a possible
move to another node. In some instances we consider probabilistic automata
which have available a source of randomness that is used as part of their input.
Such agents are referred to as randomized agents.

An important property to consider is whether or not the agents are distin-
guishable, i.e., if they have distinct labels or identities. Agents without identities
are referred to as anonymous agents. Anonymous agents are limited to running
precisely the same program, i.e., they are identical finite automata. As the iden-
tity is assumed to be part of the starting state of the automaton, agents with
identities have the potential to run different programs.

The knowledge the agent has about the network it is on and about the other
agents can make a difference in the solvability and efficiency of many problems.
For example, knowledge of the size of the network or its topology or the number
of and identities of the other agents may be used as part of the agent’s program.
If available to the agents, this information is assumed to be part of its starting
state. (One could imagine situations where the information is made available by
the nodes of the network and not necessarily encoded in the agent.)

An important consideration for the case of teams of agents is how they in-
teract. For example, are agents able to detect the presence of other agents at
a given node? Assuming that the agents are designed to interact, the method
through which they communicate is an important aspect of any model. For ex-
ample one might consider a case where agents have the ability to read the state
of other agents residing at the same node. Or one might only allow communica-
tion via a shared memory space or via message passing. Other properties that
may be considered include whether or not the agents have the ability to “clone”
themselves, i.e., produce new copies of themselves with the same functionality
and whether or not they have the ability to “merge” upon meeting (sometimes
referred to as “sticky” agents).

2.2 Distributed networks

The model of a distributed network is essentially inherited directly from the
algorithmic theory of distributed computing (see for example [14]). We model
the network by a graph whose vertices comprise the computing nodes and edges
correspond to communication links.

The nodes of the network may or may not have distinct identities. In an
anonymous network the nodes have no identities. In particular this means that an
agent can not distinguish two nodes except perhaps by their degree. The outgoing
edges of a node are usually thought of as distinguishable but an important
distinction is made between a globally consistent edge-labeling versus a locally



independent edge-labeling. A simple example is the case of a ring where clockwise
and counterclockwise edges are marked consistently around the ring in one case,
and the edges are arbitrarily - say by an adversary - marked 1 and 2 in the
other case. If the labeling satisfies certain coding properties it is called a sense
of direction [7]. Sense of direction has turned out to greatly effect the solvability
and efficiency of solution of a number of problems in distributed computing and
has been shown to be important for the study of mobile agents as well.

Networks are also classified by how they deal with time. In a synchronous
network there exists a global clock available to all nodes. This global clock is
inherited by the agents. In particular it is usually assumed that in a single step
an agent arrives at a node, performs some calculation, and exits the node and
that all agents are performing these tasks “in sync”. In an asynchronous network
such a global clock is not available. The speed with which an agent computes or
moves between nodes, while guaranteed to be finite, is not a priori determined.

We have to consider the resources provided by the nodes to the agents. All
nodes are assumed to provide enough space to store the agent temporarily and
computing power for it to perform its tasks. (The case of malicious nodes refusing
agents or even worse destroying agents - so-called blackholes - is also sometimes
considered.) It is also assumed that the nodes will transport the agents to other
nodes upon request. Beyond these basic services one considers nodes that might
provide some form of long-term storage, i.e., state that is left behind when the
agent leaves. This long-term storage may or may not be shared among all agents
using the services of the node. So for example this memory might be best thought
of as a whiteboard on which an agent can leave messages for themselves or for
other agents. A further service the node may provide to the agents is mechanism
for sending and/or receiving messages via message passing.

Finally, when analyzing fault-tolerance one has to consider how a host net-
work component might fail. Again, here we inherit the standard network fault
models considered in distributed computing such as crash failures, omission fail-
ures, Byzantine failures, etc. One might also consider failures that do not effect
the working of the network but only the agent subsystem, e.g., loss of shared
data.

2.3 Resource measures

For a given choice of agent plus network model there are a number of resources
of interest for which one can define a complexity measure. Of paramount concern
are measures that reflect the time and bandwidth efficiency of a given algorithm.
In the synchronous setting it is clear that to measure time one should use the
assumed global clock. In an asynchronous setting things are not so clear though
in most instances authors choose to evaluate what the worst case time would be
assuming that time proceeded synchronously. The total bandwidth consumed by
the agent depends upon its size as well as the number of moves it makes during
an execution of its algorithm. Generally the size of an agent is identified with
the number of bits required to encode its states, i.e, it is proportional to the
log base two of the number of possible states. If the agent sends messages then



the size and number of these messages must also count towards any measure
of its bandwidth. Other complexity measurements of interest include the size
of shared memory required at each node assuming the agents communicate via
shared memory, the number of random bits used by a randomized agent and the
number of and kind of faults an algorithm can successfully deal with.

3 An Example: Randomized Rendezvous on the Ring

A natural problem to study for any multiagent mobile system is that of ren-
dezvous. Given a particular agent model and network model a set of agents
distributed arbitrarily over the nodes of the network are said to rendezvous if
after running their programs after some finite time they all occupy the same
node of the network at the same time. As is often the case, researchers are in-
terested in examining cases that expose the limits of the problem being studied.
For rendezvous the simplest interesting case is that of two agents attempting to
rendezvous on a ring network. Of special interest is the highly symmetric case of
anonymous agents on an anonymous network. In particular below we consider
the standard model for an anonymous synchronous oriented ring [2] where

1. the nodes have no identities, i.e., the agents can not distinguish between the
nodes,

2. the computation proceeds in synchronous steps,
3. the edges of each node are labeled left and right in a consistent fashion.

We model the agents as probabilistic finite automata A =< S, δ, s0 > where
S is the set of states of the automata including s0 the initial state and the
special state halt, and δ : S ×C × P → S ×M where C = {H,T} represents a
random coin flip, P = {present, notpresent} represents a predicate indicating
the presence of the other agent at a node, and M = {left, right} represents the
potential moves the agent may make. During each synchronous step, depending
upon its current state, the answer to a query for the presence of the other agent,
and the value of a independent random coin flip with probability of heads equal
to .5, the agent uses δ in order to change its state and either move across the
edge labeled left or right. We assume that the agent halts once it detects the
presence of the other agent at a node.

The first question one may ask concerning this instance of rendezvous is
whether or not it is solvable. It is fairly easy to see that if the two agents start
at an odd distance apart on an even size ring they can never rendezvous in the
above model as they are forced to move on each step and therefore will remain
an odd distance apart forever. There are number of ways to fix this, the easiest
perhaps being to add a third option to M of stay. For simplicity in the analysis
below we will instead assume that they are an even distance apart on an even
size ring.

For solvable instances of rendezvous one is interested in comparing the ef-
ficiency of different solutions. Much of the research focuses on the number of
moves required to rendezvous or the expected number in the case of randomized



agents (where the expectation is taken over the possible sequences of coin flips).
In the synchronous setting the number of moves is equivalent to the time and is
measured via the global clock. (In some situations, it makes a difference if the
agents begin their rendezvous procedure at the same time or there is possible
delay between start times. Here we will assume a synchronous start.) Also of
interest is the size of the program required by the agents to solve the problem.
This is referred to as the memory requirement of the agents and is considered to
be proportional to the base two logarithm of the number of states required by the
finite state machine encoding the agent. Ideally one would like to design an agent
whose size is constant independent of the size of the ring and which performs
rendezvous in expected linear time (as in the worst case the agents are linear
distance apart initially). As we shall see, achieving both goals simultaneously is
not possible in this case.

3.1 Random walk algorithm

Many authors have observed that rendezvous may be solved by anonymous
agents on an anonymous network by having the agents perform a random walk.
The expected time to rendezvous can be shown to be a (polynomial) function of
the (size of the) network and is related to the cover time of the network. (See [11]
for definitions relating to random walks. See [6] for an analysis of the meeting
time for random walks.)

For example consider the following algorithm for rendezvous on the ring:

1. Repeat until other agent present:
2. If heads move right else move left

If we let Ed be the expected time for two agents starting at an (even) distance
d on an a ring of (even) size n to rendezvous using the above algorithm it is easy
to see that E0 = 0, and En/2 = 1+(1/2)En/2+(1/2)En/2−2. The latter equation
gives rise to the recurrence

En/2 = 2 + En/2−2. (1)

More generally, in executing the algorithm one of the following three cases may
occur. The two mobile agents make a single step and either move in the same
direction with probability 1/2, or in opposite direction either towards each other
with probability 1/4 or away from each other with probability 1/4. From this
we derive the identity

Ed = 1 + (1/2)Ed + (1/4)Ed−2 + (1/4)Ed+2, (2)

for d = 2, 4, . . . , n/2− 2. (Note that the case d = n/2 is special in that they are
always at most distance n/2 apart.) Substituting d + 2 for d in Identity 2 and
solving the resulting equation in terms of Ed we derive that for d ≥ 4,

Ed = 2Ed−2 − Ed−4 − 4. (3)



The initial condition E0 = 0 and Identity 3 yield E4 = 2E2 − 4. More generally,
we can prove the following identity for 2d ≤ n/2,

E2d = dE2 − 2d(d− 1). (4)

We prove by induction that there are sequences ad, bd such that

E2d = adE2 − 4bd.

Indeed,

E2d = 2E2d−2 − E2d−4 − 4
= 2 (ad−1E2 − 4bd−1)− (ad−2E2 − 4bd−2)− 4
= (2ad−1 − ad−2)E2 − 4(2bd−1 − bd−2 + 1),

which gives rise to the recurrences ad = 2ad−1− ad−2 and bd = 2bd−1− bd−2 + 1
with initial conditions a0 = b0 = 0, a1 = 1, b1 = 0. Solving the recurrences we
obtain easily that ad = d and bd = − 1

2d+ 1
2d2, which proves Identity 4. To derive

a formula for E2d, it remains to compute E2. Identity 4 yields the values

En/2 =
n

4
E2 − 2

n

4

(n

4
− 1

)
En/2−2 =

(n

4
− 1

)
E2 − 2

(n

4
− 1

) (n

4
− 2

)
,

which when substituted into Identity 1 shows that E2 = n − 2. Finally, substi-
tuting this last value into Identity 4 we derive

E2d = d(n− 2d). (5)

Obviously the above algorithm translates into a finite automaton with a constant
number of states and thus we have demonstrated:

Theorem 1. Consider an n node ring. Two agents with O(1) memory, starting
at even distance d ≤ n/2 can rendezvous in expected d

2 (n− d) steps.

The agents in this algorithm are of optimal (to within a multiplicative con-
stant) size but in the worst case d = Θ(n) and the expected number of steps is
quadratic. One might ask if it is possible to achieve linear time.

3.2 Coin half tour algorithm

It is fairly easy to achieve a linear upper bound on the expected number of steps
using the following algorithm referred to as the “coin half tour” algorithm by
Alpern [1].

1. Repeat until other agent present:
2. If heads move right for n/2 steps else move left for n/2 steps



If we refer to each execution of step 2 as a phase and consider a phase to
be a success if the two agents choose to travel in opposite directions and a
failure otherwise then it is easy to see that (a) the expected number of failed
phases before obtaining a success is one (b) the number steps in a failed steps is
n/2 and (c) the expected number of steps in a successful phase is n

2 . Therefore
the expected number of steps until the agents rendezvous is n since they are
guaranteed to rendezvous on a successful phase. Note that this is independent
of their starting positions assuming d > 0. Further note that a finite automaton
implementing the above algorithm requires n/2 + O(1) states and thus we have
shown:

Theorem 2. Two agents with O(log n) memory, starting at even distance d > 0
on an even n node ring can rendezvous in expected n steps.

The above algorithm is optimal (to within a multiplicative constant) in its
running time but requires O(log n) bits of memory. Is it possible to achieve linear
running time with less memory?

3.3 Approximate counting algorithm

By replacing the exact n/2 steps taken in step 2 of the coin half tour algorithm
with an approximate expected O(n) steps one can reduce the memory require-
ments for rendezvous in this instance. Consider the following algorithm for an
agent with k bits of memory:

1. Repeat until other agent present :
2. (a) If heads set dir = right else set dir = left

(b) Repeat until 2k heads observed in a row: Move in direction dir

By defining a phase correctly and with some analysis it is possible to show
that the phases have expected length O(22k

) and have constant probability of
success and thus we can show (see [8]):

Theorem 3. Two agents with k bits of memory, starting at even distance d > 0

on an even n node ring can rendezvous in expected O

(⌈
n

22k

⌉2

· 22k

)
steps.

In particular, the above theorem implies that with log log n bits of memory
rendezvous can be achieved in linear time. It turns out that this is optimal as it
can be shown that [8]:

Theorem 4. Any algorithm that achieves two agent rendezvous in expected
Θ(n) steps on an n node ring (satisfying the constraints of the model above)
requires Ω(log log n) bits of memory.



4 Conclusions

Distributed applications have relied heavily on the “client/server” paradigm,
whereby a client is making requests from a user machine to a server which ser-
vices the requests across the network. Although this model works well for certain
applications it breaks down in highly distributed systems when network connec-
tions are poor, multiple clients and servers are involved, and the application
requires a predictable response time. By using mobile agents, nodes can have
the dual role of either client or server and the resulting networks scale better
since the flow of control moves across the whole system. An algorithmic theory
of mobile agents, as proposed in the present paper, helps not only to illuminate
these advantages but also understand better the limitations of mobile agents
by looking at, for example, memory/time trade-offs in randomized algorithms
for the rendezvous problem. We believe this theory has the potential to expose
both the effectiveness and the limits of using mobile agents for a host of other
problems.

Acknowledgments

Research of the first author was supported in part by NSERC (Natural Sciences
and Engineering Research Council of Canada) and MITACS (Mathematics of
Information Technology and Complex Systems) grants. The authors would like
to thank the participants of the Workshop on Mobile Computing held on Elba
Island, May 2004. The ideas presented here were developed in cooperation with
all those involved in the meeting.

References

1. S. Alpern, The Rendezvous Search Problem, SIAM Journal of Control and Opti-
mization, 33, pp. 673-683, 1995.

2. H. Attiya, M. Snir and M. Warmuth, Computing on an anonymous ring, Journal
of the ACM, 35, pp. 845-875, 1988.

3. J. Baumann, F. Hohl, K. Rothermel and M. Strasser, Mole: Concepts of a Mobile
Agent System, World Wide Web, 1 (1998), pp. 123-137.

4. A. Carzaniga, G. Picco, and G. Vigna, Designing Distributed Applications with
Mobile Code Paradigm, Proc. 19th Int. Conf. on Software Engineering, 1997, pp.
22-32.

5. T. Chia and S. Kannapan, Strategically Mobile Agents, Proc. of first Int. Workshop
on Mobile Agents, 1997, pp. 149-161.

6. D. Coppersmith, P. Tetali and P. Winkler, Collisions among ramdom walks on a
graph, SIAM Journal of Discrete Mathematics, 6 (1993), pp. 363-374.

7. P. Flocchini, B. Mans and N. Santoro, Sense of direction: definition, properties and
classes, Networks 32 (1998), 29-53.
653-664, 2006.

8. E. Kranakis, D. Krizanc and P. Morin. Randomized Rendezvous on the Ring, in
preparation.



9. D. Milojicic, F. Douglis and R. Wheeler (Editors), Mobility: Processes, Computers
and Agents, ACM Press, 1999.

10. D. Milojicic, D. Chauhan, and W. LaForge, Mobile Objects and Agents (MOA),
Proc. of 4th USENIX Conf. on Object-Oriented Technologies, 1998, pp. 1-14.

11. R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University
Press, New York, 1995.

12. H. Peine and T. Stolpmann, The Architecture of the Ara Platform for Mobile
Agents, Proc. of First Int. Workshop on Mobile Agents, 1997, pp. 50-61.

13. N. Roy and G. Dudek, Collaborative robot exploration and rendezvous: Algo-
rithms, performance bounds and observations, Autonomous Robots 11 (2001), 117-
136.

14. N. Santoro, Design and Analysis of Distributed Algorithms, John Wiley and Sons,
2007.

15. D. Singelee and B. Preneel, Secure E-commerce using Mobile Agents on Untrusted
Hosts, Computer Security and Industrial Cryptography (COSIC) Internal Report,
May 2004.

16. D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall and G. Minden, A Survey of
Active Network Research, IEEE Communications Magazine, 35 (1997), pp. 80-86.

17. L. Tesfatsion, Agent-Based Computational Economics: Growing Economies From
the Bottom Up, Artificial Life, 8 (2002), pp. 55-82.

18. T. Walsh, N. Paciorek, and D. Wong, Security and Reliability in Concordia, Proc.
of 31st Hawaii Int. Conf. on System Sciences, 1998, pp. 44-53.

19. J. E. White, Telescript Technology: Mobile Agents, in Software Agents, MIT Press,
1996.

20. M. Wooldridge, Intelligent Agents, in Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, G. Weiss, ed., pp. 27–77, MIT Press, 1999.


