
!!!!!!!!!!!
This is an author-generated version.!!
The final publication is available at link.springer.org!!
DOI: 10.1007/978-3-540-75381-0_3!
Link: http://link.springer.com/chapter/10.1007%2F978-3-540-75381-0_3!!
Bibliographic information:!!
Martín Soto, Jürgen Münch. Maintaining a Large Process Model Aligned with a Process Standard:
An Industrial Example. In Software Process Improvement, volume 4764 of Lecture Notes in
Computer Science, pages 19-30, Springer Berlin Heidelberg, 2007.

Maintaining a Large Process Model Aligned with

a Process Standard: an Industrial Example

Martín Soto, Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{soto, muench}@iese.fraunhofer.de

Abstract. An essential characteristic of mature software and system develop-
ment organizations is the definition and use of explicit process models. For a
number of reasons, it can be valuable to produce new process models by tailor-
ing existing process standards (such as the V-Modell XT). Both process models
and standards evolve over time in order to integrate improvements or adapt the
process models to context changes. An important challenge for a process engin-
eering team is to keep tailored process models aligned over time with the stand-
ards originally used to produce them. This article presents an approach that sup-
ports the alignment of process standards evolving in parallel to derived process
models, using an actual industrial example to illustrate the problems and poten-
tial solutions. We present and discuss the results of a quantitative analysis done
to determine whether a strongly tailored model can still be aligned with its par-
ent standard and to assess the potential cost of such an alignment. We close the
paper with conclusions and outlook.

Keywords: process modeling, process model change, process model evolution,
model comparison, process standard alignment

1 Introduction

Documenting its software development processes is a step that every software organ-
ization striving to achieve a high level of process maturity must take sooner or later.
One problem that many organizations face when first attempting to perform this cru-
cial task is the lack of appropriate expertise: Documenting a complete set of organiza-
tion-wide development processes is potentially a very large undertaking, and doing it
successfully requires highly specialized knowledge that organizations often lack. For
these reasons, customizing an existing standard process model can be an excellent op-
tion for many organizations, as opposed to documenting their processes “from
scratch”. A standard process model (e.g., the German V-Modell XT [1]) offers them a
solid framework, which can greatly help to guarantee that the resulting process docu-
mentation is complete and detailed enough, and that it is structured in such a way that
it is useful to process engineers and process performers alike.

Since tailoring is central to process standard adoption, standard models should
ideally offer a mechanism for making adaptations in a systematic way, and for keep-
ing those adaptations separated from, but properly linked to, the original standard.
Unfortunately, most existing models have not yet reached the point where they can

support this type of advanced tailoring out-of-the-box. Therefore, most customization
is performed in practice by directly modifying a copy of the original model until it re-
flects the practices of a given organization. This way, organizations can quickly get up
to speed with their own process definition, requiring only access to a standard process
model and its corresponding editing tools (which are often distributed together with
the model, or are freely available.)

Although very useful in practice, this type of ad hoc process model tailoring also
introduces some problems, the largest of which is probably long-term maintenance.
As soon as tailoring starts, the organization-specific model and the standard model
take different paths, and after some time, they will probably diverge significantly. At
some point, every organization relying on a customized process model will be con-
fronted with the problem of deciding if it should try to keep it aligned with the stand-
ard, or if it should rather maintain it as a completely separate entity.

This decision is not easy at all. On the one hand, maintaining the customized model
separately implies that, potentially, many corrections and improvements done at the
standard level will not be adopted, and also involves the risk that the practices docu-
mented for the organization deviate unnecessarily from mainstream accepted prac-
tices. On the other hand, keeping the model aligned with the standard implies integrat-
ing changes from the standard into the local documentation at regular intervals, a task
that, to our knowledge, is not well supported by existing tools and that can be very ex-
pensive and unreliable if performed manually.

We believe that this and other similar problems related to process model mainten-
ance can be greatly mitigated by properly managing the evolution of process models.
We have devised our DeltaProcess [2, 3] approach for process model difference ana-
lysis with this goal in mind. The approach makes it possible to efficiently and reliably
identify changes in newer versions of a process model with respect to its older ver-
sions. It also makes it possible to perform analyses that classify changes in a model
(e.g., a process standard) according to their relevance to another model (e.g, a custom-
ized model). We expect that by making use of this information, process engineers will
be able to save significant effort and produce much more reliable results when trying
to align complex process models.

We are currently conducting a study intended to investigate the above hypothesis.
In the study, we are trying to help a company to align a process model, customized
over a period of about one and a half years, with its corresponding process standard.
The rest of this paper uses this case study as an example to illustrate the problems in-
volved in keeping complex process models aligned. The paper is organized as fol-
lows: Section 2 describes the process alignment problem and the challenges it
presents to process engineers. Section 3 presents a brief description of our DeltaPro­
cess approach. Section 4 describes an analysis we performed as part of our ongoing
case study to determine the viability of aligning two large process models. Section 5
closes the paper with conclusions and future work.

2 Aligning a Customized Process Model With a Standard

In this section, we provide a more detailed description of the problem that occupies us
in our case study, namely, aligning a large industrial-grade, customized process model
with the standard from which it was originally derived. In order to provide the reader

with a complete view of the problem, we describe the process model standard (the
German V-Modell XT), the company performing the customization, and the extent
and characteristics of their customized model. The section concludes with a discus-
sion of related work, and of why existing approaches are not completely adequate to
solve the problem we are dealing with.

2.1 The German V-Modell XT

The V-Modell XT [1] is a prescriptive process model intended originally for use in
German public institutions, but finding increasing acceptance in the German private
sector. Its predecessor, the so-called V-Modell 97, was developed in the 1990s and re-
leased originally only in the form of a text document. The V-Modell XT is the result
of a recent effort by a publicly-financed consortium of private companies, and gov-
ernment and research institutions to “modernize” the original V-Modell. This effort
included converting the original document-based process description into an actual
process model with formalized entities and relationships, creating a set of tools to
manage instances of the model in this new representation, and improving and extend-
ing the actual model contents.

As of this writing, three major versions of the V-Modell XT have been released,
namely 1.0 (finished in January 2005 with a minor update in March 2005), 1.1 (fin-
ished in July 2005) and 1.2 (finished in January 2006 but released in May 2006.) Fur-
ther active development by a team of experts from the development consortium is still
ongoing. All V-Modell XT releases are freely available and can be downloaded at no
cost from the Internet (see [1].)

For editing purposes, instances of the V-Modell are stored as XML files that can be
processed using a set of specialized tools (also freely available as an Internet down-
load). The model is structured as a hierarchy of process entities, each having a num-
ber of attributes. Entities can be connected to other entities through a variety of rela-
tions. Version 1.2 of the V-Modell XT is comprised of about 2100 process entities
with over 5000 attributes, and connected by some 4100 entity relations. The paper
documentation generated automatically from this model is 620 pages long. Also, the
current model schema contains 38 classes and 43 different types of relations. Most of
these numbers are only approximate, but should be able to give the reader a general
idea of the size and complexity involved.

2.2 A Customized Version of the V-Modell XT

We are performing our case study in the context of a medium-sized (about 1200 em-
ployees), privately-held company that is an early adopter of the V-Modell XT. Al-
though information technology is not its main business, this company has a software
development division with about 70 employees, which is mainly dedicated to the de-
velopment and maintenance of the company's own information systems. The idea of
introducing the V-Modell XT arose in 2005 as part of a software process improvement
effort. Since it was judged that the V-Modell XT in its standard form was not adequate
for internal use, the company's software process group started a customization effort
at the end of 2005, whose first results were seen a year later with the introduction of
the model as official guidance for new development projects. The tailored model is

based on version 1.1 of the V-Modell, which was the current version at the time the
customization effort was started.

The tailored model differs significantly from the standard V-Modell XT. During
customization, more than half of the original entities were erased because they were
considered irrelevant for the company. The resulting trimmed model was afterwards
extended with a number of new entities. Many of the entities preserved from the ori-
ginal model were also adapted, by changing names and descriptions as necessary to fit
the local processes and terminology. Despite the extensive changes, the final model
still uses the original V-Modell XT metamodel without modification.

As mentioned above, Version 1.2 of the V-Modell XT was released in May 2006,
when the company's process customization effort was already quite advanced. As of
this writing (March 2007), no attempt has been made to integrate any of the additions
and corrections present in version 1.2 into the company's customized model, although
members of the software process group have expressed their interest in doing this at
least to some extent. This is currently not a high priority because the customization
process was finished only recently, but it is acknowledged that there may be correc-
tions and additions in the new V-Modell XT version that could benefit the tailored
model.

Due to the size and complexity of the models involved, it is very difficult to manu-
ally determine the actual extension of the changes performed on each one of them,
and this, in turn, makes it difficult to estimate the effort involved in aligning the
tailored model with the standard. As discussed in the following section, determining
the extent of the changes and analyzing them to find those that are suitable for incor-
poration into the tailored model and those that may lead to conflicts has been, until re-
cently, a mainly manual, and thus potentially expensive and unreliable, process.

2.3 Difference Identification in the V-Modell

Comparing source code versions and analyzing the resulting differences is a task soft-
ware developers perform on a daily basis for a variety of purposes, including sharing
of changes, review and analysis of changes done by others, and space-efficient stor-
age of multiple versions of a program. Such comparisons can be performed using
widely available software, such as the well-known diff utility present in most UNIX-
like operating systems, and other similar programs. Diff relies on interpreting files as
being composed of text lines (sequences of characters separated by the newline char-
acter) and then finding longest common subsequences (LCS) of lines by using an effi-
cient algorithm (see [4] for an example). Lines not belonging to a common sub-
sequence are considered to be differences among the compared files.

In most practical cases, entities in a process model are connected in an arbitrary
graph structure (the V-Modell XT is a good example of this). Since LCS algorithms
can only operate on sequential structures, it is thus impossible to apply them directly
to most process models. Nonetheless, the idea of using diff or a similar LCS-based
program on process models is still appealing. The reason is that many useful tools, in-
cluding most source code versioning systems, rely on an LCS algorithm implementa-
tion as their only comparison mechanism, and it would be valuable if these tools
would work on process models, as opposed to working only on program source code.

For the the team working on the V-Modell XT, for example, it was necessary to in-
troduce a code versioning system to support collaborative work, since members of the

team work separately and in parallel on different aspects of the model's contents. In
order to do that, each team member changes a separate copy of the model, and later
uses the versioning system to merge the changes into the main development branch.
The merge operation, however, is based on finding a minimal set of changes using
diff, and, thus, requires diff to produce somewhat usable results when applied to the
V-Modell XML representation. The V-Modell solution to this problem is to format
XML files in a special way, carefully controlling the order of elements in the file, and
ingenuously introducing line breaks and comment lines into the XML representation.
When working with XML files formatted this way, diff is able to recognize simple
changes, like added or deleted entities or changed attributes, as separated groups of
inserted, deleted, or changed lines.

Although this approach has effectively enabled the use of collaborative versioning
tools for the model's development and maintenance, it is not free of problems. First of
all, change integration works mostly correctly when integrating non­conflicting sets
of changes, i.e., sets of changes that affect completely separate areas of the model. If,
on the other hand, the change sets happen to touch the same area of the model (e.g.,
by altering the same attribute in different ways), a conflict is detected and marked.
Solving the conflict requires a human being to look into the XML file where the
changes have been merged and correct the conflicting lines manually using a text edit-
or. This is a cumbersome process that requires detailed knowledge of the XML repres-
entation.

3 The DeltaProcess Approach

Considering the problems discussed in the previous section, we developed the
DeltaProcess approach with the following goals in mind:

– Operate on models based on a variety of schemata. New schemata can be suppor-
ted with relatively little effort.

– Be flexible about the changes that are recognized and how they are displayed.

– Allow for easily specifying change types that are specific to a particular schema or
even to a particular application.

– Be tolerant to schema evolution by allowing the comparison of model instances
that correspond to different versions of a schema (this sort of comparison requires
additional effort, though.)

We claim that our approach is suitable for difference analysis as opposed to just
difference identification (i.e., simple comparison). First of all, instead of defining a set
of interesting change types in advance, we make it possible for the user to specify the
types of changes that interest him in a schema-specific way. Additionally, since we
use queries to find changes, it is possible for a user to restrict results to relevant areas
of a model, according to a variety of criteria. Finally, postprocessing allows for apply-
ing specialized comparison and visualization algorithms to the resulting data, making
it possible to display changes at a level of abstraction that is adequate for a specific
task.

In this section, we provide a brief description of the DeltaProcess approach and its
implementation Evolyzer. Readers interested in the inner workings of the approach are
invited to read [2] and [3].

3.1 Description of the Approach

In order to compare models, the DeltaProcess approach goes through the following
steps:

1. Convert the compared models to a normalized triple-based notation.
2. Perform an identity-based comparison of the resulting models, to produce a so-

called comparison model.
3. Find relevant changes by using queries to search for patterns in the comparison

model.

4. Postprocess the resulting change data, in order to refine the results or produce task-
specific visualizations.

We explain these steps in some more detail in the following paragraphs.
The first step normalizes the compared models by expressing them as sets of so-

called statements. Statements make simple assertions about the model entities (e.g.,
e1 has type Activity or e1 has name “Design”), or define relations among entities
(e.g., e1 produces product p1). Although we could have defined our own notation for
the statements, we decided to use the standard RDF notation [5] for this purpose. Be-
side the standardization benefits, RDF has the formal properties required by our ap-
proach.

In general, using a normalized triple notation has a number of advantages with re-
spect to other generic notations like XML:

– It is generally inexpensive and straightforward to convert models to the notation.
Since the set of possible assertions is not limited and can be defined separately for
every model, models in arbitrary notations can be converted to RDF without losing
information.

– Models do not lose their “personality” when moved to the notation. Once conver-
ted, model elements are often still easy for human beings to recognize.

– The results of a basic, unique-identifier based comparison can be expressed in the
same notation. That is, comparisons are models, too. Additionally, elements remain
easy for human beings to identify even inside the comparison.

– Thanks to normalization, a single, simple pattern notation can be used to describe a
large number of interesting changes.

In step 2, two or more normalized models (in our case study, we perform many
analyses using a three-way comparison) are put together into a single so-called com­
parison model. In this new model, statements are marked to indicate which of the ori-
ginal models they come from. One central aspect of the comparison model is that it is
also a valid RDF model. The theoretical device that makes this possible is called RDF
reification, and is defined formally in the RDF specification [5]. The main purpose of
RDF reification is to allow for statements to speak about other statements. This way,
it is possible to add assertions about the model statements, telling which one of the
original models they belong to.

Changes appear in the comparison model as combinations of related statements
that fulfill certain restrictions. For example, the change a1's name was changed from
“Design” to “System Design” appears in the comparison model as the statement a1
has name “Design” marked as belonging only to the older version of the model, and
the statement a1 has name “System Design” marked as belonging only to the newer
version of the model. Since the number of statements in a comparison model is at

least as large as the number of statements in the smallest of the compared models (the
three-way comparison model used for the case study contains almost 18,000 state-
ments), automated support is necessary to identify such change patterns reliably. For
this reason, in step 3, a pattern-based query language is used to formally express inter-
esting change types as queries. By executing the queries, corresponding changes are
identified in the comparison model. There is already a standardized notation (SPAR-
QL, see [6]) to express patterns in RDF models. With minimal adaptations, this nota-
tion makes it possible to specify interesting types of changes in a generic way. Our
Evolyzer system (see Section 3.2) provides an efficient implementation of SPARQL
that is adequate for this purpose.

The final step involves postprocessing of the change data obtained in step 3 in or-
der to prepare the results for final display. One important purpose of this step is to al-
low for applying specialized comparison algorithms to particular model elements. For
example, changed text descriptions in the V-Modell can be compared using a word-
level, LCS-based algorithm to determine which words were changed. We also use this
step to generate a variety of textual and graphical representations of change data.

One important limitation of the DeltaProcess approach is the fact that it requires
that entities have unique identifiers that are consistent in all of the compared model
instances. Otherwise, it would be impossible to reliably compare the resulting state-
ments. Although this limitation may appear at first sight to be very onerous, our ex-
perience shows that, in practice, most modeling notations actually contain the identifi-
ers, and most modeling tools do a good job of keeping them among versions. The V-
Modell is not an exception, since its entities are always given a universal, unique,
aleatory identifier at creation time.

3.2 Implementation

Our current implementation, Evolyzer, (see Fig. 1) was especially designed to work on
large software process models, such as the V-Modell and its variants. Nevertheless,
since the comparison kernel implements a significant portion of the RDF and SPAR-
QL specifications (with the remaining parts also planned), support for other types of
models can be added with relatively small effort.

The current implementation is written completely in the Python programming lan-
guage, and uses the MySQL database management system to store models. Until now,
we have mainly tested it with various process models, including many versions of the
V-Modell (both standard releases and customized versions.) Converted to RDF, the
latest released version of the V-Modell (1.2) contains over 13.000 statements, which
describe over 2000 different entities. A large majority of the interesting comparison
queries on models of this size (e.g., those used for producing the results presented in
Section 4) run in less than 5 seconds on a modern PC.

3.3 Related Approaches

A number of other approaches are concerned with identifying differences in models of
some type. [7] and [8] deal with the comparison of UML models representing diverse

aspects of software systems. These works are generally oriented towards supporting
software development in the context of the Model Driven Architecture. Although the
basic comparison algorithms they present could also be applied to this case, the ap-
proaches do not seem to support the level of difference analysis we require.

Fig. 1. The Evolyzer tool working on the V-Modell XT

[9] presents an extensive survey of approaches for software merging, many of
which involve a comparison of program versions. Some of the algorithms used for ad-
vanced software merging may be applied to the problem of guaranteeing consistent
results after a model merge operation, but this is a problem we are not yet trying to
solve.

[10] provides an ontology and a set of basic formal definitions related to the com-
parison of RDF graphs. [11] and [12] describe two systems currently under develop-
ment that allow for efficiently storing a potentially large number of variants of an
RDF model by using a compact representation of the differences between them. These
works concentrate on space-efficient storage and transmission of difference sets, but
do not go into depth regarding how to use them to support higher-level comparison
tasks.

Finally, an extensive base of theoretical work is available from generic graph com-
parison research (see [13]), an area that is basically concerned with finding isomorph-
isms (or correspondences that approach isomorphisms according to some metric)
between arbitrary graphs whose nodes and edges cannot be directly matched by name.
This problem is analogous in many ways to the problem that interests us, but applies

to a separate range of practical situations. In our case, we analyze the differences
(and, of course, the similarities) between graphs whose nodes can be reliably matched
in a computationally inexpensive way (i.e., unique identifiers.)

4 An Alignment Viability Analysis

As part of our ongoing case study, we performed an analysis aimed at determining the
viability of aligning the company's customized process model with the V-Modell, by
incorporating a subset of the changes that occurred in the V-Modell between versions
1.1 and 1.2. In order to perform this assessment, we decided to count the number of
entities, entity attribute values, and relations affected by certain types of changes. The
purpose of these measurements was to obtain a general impression of the number of
separate changes that need to be considered by the process engineers while doing the
alignment work.

In order to obtain the values, we defined a change pattern query for every change
type, and used the Evolyzer tool to execute it and count the results. Although we are
only presenting consolidated numbers, the individual changes are available from the
tool and could be used by a process engineer as input for the actual alignment task.
Regarding effort invested into the analysis, it was performed by one engineer in a
single day, with the models having been imported previously into the tool's database.

The table below summarizes our results. The first column numbers the rows for
reference, and the second column contains a description of the analyzed change type.
The columns labeled “Entities”, “Attributes”, and “Relations” contain the respective
counts of affected model elements. When a change type does not affect a particular
type of model element, the corresponding cell remains empty.

Change Type Entities Attributes Relations

1 Total entities in the V-Modell (1.2) 2107

2 Total entities in the tailored model 1231

3 Entities present in both models (common entities) 789

4 Changed entities in the V-Modell 536 670

5 Common entities changed only by the V-Modell 96 99

6 Common entities containing conflicting attributes 180 210

7 New entities in the V-Modell 286

8 New entities in the V-Modell that are contained in
preexisting entities

150

9 New entities in the V-Modell that are contained in entities
still present in the tailored model

109

10 Entities deleted from the V-Modell that are still present in
the tailored model

0

11 New entities in the V-Modell that reference preexisting
entities

170 393

12 New entities in the V-Modell that reference entities that
are still present in the tailored model.

100 189

Change Type Entities Attributes Relations

13 Preexisting entities in the V-Modell that reference new
entities

81 109

14 Entities still present in the tailored model that reference
new entities in the V-Modell.

26 41

15 New relations between preexisting entities in the V-
Modell

67

16 New relations in the V-Modell between entities that are
also present in the tailored model

7

17 Deleted relations (between preexisting entities) in the
V-Modell

127

18 Relations deleted in the V-Modell between entities still
present in the tailored model

1

19 Entities in the V-Modell moved to another position in the
structure.

86

20 Entities still present in both the V-Modell and the tailored
model, which were moved by the V-Modell but not by the
tailored model

14

21 Entities moved to conflicting positions in the structure by
the V-Modell and the tailored model

0

Rows 1 to 3 present the total entity counts involved. It is clear that the tailoring
process deleted a significant portion of the original. Another important observation is
that 64% or about two thirds of the entities in the tailored model are still shared with
the V-Modell. This portion seems large enough to justify attempting an alignment.

Rows 4 to 6 count the number of changed entities (defined as entities with changed
attributes). Lines 5 and 6, in particular, count entities changed by the V-Modell that
are still present in the tailored model. The count in 5 (96) corresponds to entities
without conflicts, whereas the count in 6 (180) corresponds to entities with conflicts.
The sum (276) is the total number of changed entities to consider. Notice that this
number is about one half of the total of entities changed by the V-Modell (536). The
difference (260) is the number of changed entities that do not have to be considered
because they were deleted from the tailored model.

Rows 7-18 try to quantify the size of totally new additions present in the V-Modell.
7 and 8, respectively, count all new entities (286) and new entities contained in preex-
isting entities. The latter is probably the most relevant count, because the remaining
entities are subentities of other new entities, and will probably be considered together
with their parents. The subsequent rows try to determine whether it is possible to filter
some of these new entities by analyzing their relations to preexisting entities. The res-
ulting values suggest that this is possible, and that a significant number (40 to 50%)
can probably be discarded because they have no connections to any of the entities in
the tailored model. Line 10, in particular, contains good news: no entity deleted by the
V-Modell is still being maintained by the tailored model.

The last three rows (19-21) are an attempt to measure a particular type of structural
change, namely, movement of entities in the containment hierarchy. From 86 total
changes in the V-Modell, only 14 affect the tailored model, and there are no conflict-
ing changes.

Without historical effort data, it is difficult to produce an exact estimation of the ef-
fort involved in performing a model alignment. However, a few conclusions can be

extracted from this data. First, integrating the changes done to existing entities (lines
1-3) is probably possible with relatively little effort. Informal observation of the ver-
sioning changelogs tells us that many of the changes are small grammar and spelling
corrections, but to confirm this, we would need to exactly measure the extent of the
changes done to text attributes.

Second, although integrating the new V-Modell elements is likely to take more
work, it is also probably viable in a few days time, because the number of entities to
consider is relatively small (around 100). Finally, the analysis shows that in this case,
the total number of model elements to consider for alignment can be reduced to about
half by filtering those elements that were already deleted from the tailored model or
that are not connected to elements in the tailored model. This fact alone represents a
significant effort saving, which is not achievable with any other method we are aware
of.

5 Conclusions and Future Work

Organizations trying to document their software processes for the first time may
greatly benefit from adopting an existing process standard and customizing it.
However, since both process standards and the models derived from them evolve over
time, sooner or later they diverge to a point where their lack of alignment becomes
problematic. Realigning large process models, however, is a complex problem. Manu-
al alignment is tedious and unreliable, and automated tool support for this task has
been insufficient.

Our DeltaProcess approach and its Evolyzer implementation are a first step to rem-
edy this situation. They provide a framework for identifying changes in process mod-
els and for analyzing these changes in order to support particular tasks. The imple-
mentation works efficiently on models of the size of the German V-Modell XT.

As the analysis presented in Section 4 shows, our approach can be used effectively
to identify relevant changes and filter irrelevant changes when trying to align large
process models that were changed independently from each other for an extended
period of time. We have not yet started doing the actual alignment as part of our cur-
rent case study, but expect to be able to attempt it in the following months. A com-
plete experience report will be produced from that effort.

We are also working on extending our tools, which currently concentrate on
change analysis, to also support altering the analyzed models. This way, we expect to
make it easier for process engineers to work on complex model alignment tasks, by
being able to move seamlessly from the change data to the actual model contents.

Acknowledgments. This work was supported in part by the German Federal Ministry
of Education and Research (V-Bench Project, No.01| SE 11 A).

6 References

1. V-Modell XT. Available from http://www.v-modell.iabg.de/ (last checked 2006-03-31).

2. Soto, M., Münch, J.: Process Model Difference Analysis for Supporting Process Evolution.
In: Proceedings of the 13th European Conference in Software Process Improvement,
EuroSPI 2006. Springer LNCS 4257 (2006)

3. Soto, M., Münch, J.: The DeltaProcess Approach for Analyzing Process Differences and
Evolution. Internal report No. 164.06/E, Fraunhofer Institute for Experimental Software En-
gineering (IESE) Kaiserslautern, Germany (2006)

4. Algorithms and Theory of Computation Handbook, CRC Press LLC: Longest Common
Subsequence. From Dictionary of Algorithms and Data Structures, Paul E. Black, ed., NIST
(1999)

5. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation, available from
http://www.w3.org/TR/rdf-primer/ (2004) (last checked 2006-03-22)

6. Prud'hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Working
Draft, available from http://www.w3.org/TR/rdf-sparql-query/ (2006) (last checked 2006-
10-22)

7. Alanen, M., Porres, I.: Difference and Union of Models. In: Proceedings of the UML Con-
ference, LNCS 2863Produktlinien. Springer-Verlag (2003) 2-17

8. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation Testing
and Version Control in Model Driven Software Development. In: OOPSLA Workshop on
Best Practices for Model-Driven Software Development, Vancouver (2004)

9. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering, Vol. 28, No. 5, (2002)

10. Berners-Lee, T., Connolly D.: Delta: An Ontology for the Distribution of Differences
Between RDF Graphs. MIT Computer Science and Artificial Intelligence Laboratory
(CSAIL). Online publication http://www.w3.org/DesignIssues/Diff (last checked 2006-03-
30)

11. Völkel, M., Enguix, C. F., Ryszard-Kruk, S., Zhdanova, A. V., Stevens, R., Sure, Y.: Sem-
Version - Versioning RDF and Ontologies. Technical Report, University of Karlsruhe.
(2005)

12. Kiryakov, A., Ognyanov, D.: Tracking Changes in RDF(S) Repositories. In: Proceedings of
the Workshop on Knowledge Transformation for the Semantic Web, KTSW 2002. (2002)
Lyon, France.

13. Kobler, J., Schöning, U., Toran, J.: The Graph Isomorphism Problem: Its Structural Com-
plexity. Birkhäuser (1993)

