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Summary. Self-localization is an important task for humans and autonomous
robots as it is the basis for orientation and navigation in a spatial environment
and for performing mapping tasks. In robotics, self-localization on the basis of
monomodal perceptual information has been investigated intensively. The present
chapter looks at self-localization in a more general setting where the reference infor-
mation may be provided by different types of sensors or by descriptions of locations
under a variety of conditions. We introduce some of these conditions and discuss
general approaches to identifying locations in perceived environments. Taking into
account cognitive considerations, we propose an approach to identify locations on
a high, abstract level of representation. The approach combines qualitative and
quantitative information to recognize locations described as configurations of shape
features. We evaluate this approach in comparison to other approaches in a self-
localization task and a generalized localization task based on a schematic map.

1 Introduction

Humans and autonomous robots need to know where they are located to
successfully orientate themselves, to navigate in a spatial environment, and
to perform mapping tasks. The notion of “self-localization” (SL) refers to an
agent’s procedure of determining where it is located. SL procedures require
spatial reference systems, for example a coordinate system or a map.

In autonomous robotics, approaches to SL have been developed that deter-
mine a robot’s position and orientation (jointly referred to as “pose”) based
on sensor readings. To accomplish this, the robots relate the sensor infor-
mation about their environments with their internal knowledge about these
environments. Detected correspondences between the two knowledge sources
are used to infer the presumed location of the robot.

The approach to SL outlined above even enables wheeled robots to identify
locations not visited before. Henceforth, it also enables robots to incremen-
tally build up spatial knowledge about initially unknown environments by
determining their location and registering new observations in relation to this
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location. Coping with a-priori unknown environments is an important ingre-
dient to intelligent autonomous navigation and consequently has been studied
intensively.

However, in many situations, agents (humans, robots, software agents)
have extensive a priori knowledge about the spatial environment, for example
in the form of maps, sketches, natural language descriptions, or (precise or
vague) memories of previous observations or descriptions. In such cases it may
be desirable to make use of this knowledge to enable robots to localize them-
selves more efficiently or in ways that are similar to human self-localization.

For certain tasks the utilization of a priori knowledge is not only desirable
but indispensable, for example when a robot is expected to visit places which
are described by reference to this a priori knowledge; this may frequently be
the case in natural instructions by a human instructor. Furthermore, it may
be necessary that a robot specifies its position not in terms of its internal
reference system but in terms of a reference system that is available to its
human instructor and can be understood by him or by her.

From a technical point of view, this is a different task than conventional
SL, as the knowledge employed exhibits different structures and characteristics
than conventional sensor readings. In particular, this knowledge may not have
an immediate geometric interpretation and it may lack details. Different types
of reference systems will require different ways of self-localization; this does
not imply, however, that localization will be less precise.

From a more abstract point of view, both tasks — sensor-based and
knowledge-based self-localization — can be viewed as belonging to the same
class of tasks, as both answer the question of the robot’s pose with respect
to a given spatial reference system. Therefore we will call this class of tasks
“generalized self-localization” (GSL).

In the present chapter we explore several variations of the SL problem
and investigate how we can extend existing SL approaches in such a way
that they can solve the GSL problem. To this end we propose to employ more
abstract forms of knowledge in order to integrate the dissimilitude of potential
information sources for common treatment. We illustrate this approach using a
specific robot task: spatial orientation by means of schematic maps. Schematic
maps (e.g. public transportation maps or emergency evacuation maps) are
successfully employed by humans due to their fast and efficient use. We will
show how GSL can be used for human-robot communication on the basis of
schematic maps.

2 The Generalized Localization Task

In robotics, the notion of self-localization has been used in a rather restricted
sense: in its most elementary form it is used to denote the task of identifying
the robots’ locations on the basis of the same type of sensor information
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that has been retrieved from the location previously. More specifically, self-
localization in so-called view-based robot navigation (see for example [12]) is
performed with the same sensors and the same spatial resolution by an agent
with more or less the same perspective as before. Thus, the robot can use
characteristic features to identify a specific place in a finite set of places.

However, we may have situations in which a robot has to localize itself from
perspectives it never has encountered before under comparable conditions,
possibly not even with the same sensors, or even never encountered before at
all. A human, another robot, or a data base may have provided information
about the environment; this information is now to be used by the robot for
its self-localization task. To cope with such situations, we will adopt a more
general notion of self-localization.

2.1 Generalizing the Self-Localization Task

Starting with the aforementioned case of SL, an agent recognizes a location
from an observation obtained with the same sensors, with the same spatial
resolution, and from the same perspective — a simple task provided the agent
receives the same percept as obtained in a reference cognition event. In realistic
situations, however, the sameness of all these parameters is never given — let
alone guaranteed; therefore it is not a trivial task to solve this self-localization
problem. Successful approaches must deal with the unavoidable deviations
of parameter values. However, this problem can be solved with little effort
purely on the level of sensor data. We refer to this type of SL (not varying
any parameters) as the elementary case of SL. It is utilized in view-based
robot navigation (for an example, see [12]).

Which abilities does an agent need to recognize places under even less
favorable conditions: from different locations with different spatial orienta-
tion, with different sensors, at different sensor resolution, or under different
environmental conditions? In the following, we will consider incremental abil-
ities required with respect to the restricted case of self-localization. We will
consider three strands of generalizing the SL problem: (1) different perspec-
tive; (2) different spatial resolution; and (3) different kinds of sensors. Fig.
1 presents an overview of these generalization strands and indicates specific
classes of SL tasks.

Different perspective

Variations of view poses can be considered a first step of generalizing SL.
Robots identify their location using sensor readings taken at different view
poses. Perceiving objects from varying locations, their appearance or visibility
can change — for example, due to occlusion; such changes are reflected in
the generalization axis ‘perspective’. Spatial reasoning allows inferring how a
physical phenomenon observed from one perspective appears when observed
from another perspective.
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Fig. 1. Generalization in self-localization: The elementary case in SL (sameness in all
apsects) is the localization problem faced in view-based robot navigation (bottom).
Three strands of generalizing the elementary situation are depicted: perspective
(left); sensors (center); and resolution (right). SL using an absolute spatial represen-
tation can cope with varying perspectives and handles SL based on a robot’s internal
map. The approach presented in this article uses a schematic map as reference; it
is depicted at the generalization strand from map-based localization to GSL (upper
left).

The elementary case of SL permits place recognition in an agent-centered
reference system. To recognize locations independently of the agent’s per-
spective we must transform sensory information into a location-independent,
absolute reference system, e.g. a geographic map. Transformation from agent-
centered observations to an absolute map is an abstraction process that ab-
stracts from individual sensor readings and mediates between differences in
multiple observations of the same physical phenomenon. This step is particu-
larly easy for sensor data obtained from range sensors. It is still an unsolved
problem if relying on camera images, though.

Using elementary spatial reasoning on an absolute spatial representation
allows us to partially infer the expected view caused by a different pose. Most
approaches to robot navigation or robot mapping utilize some kind of absolute
representation, typically a coordinate-based map (see, e.g. [29, 40]). In this
representation, perspective generalization can easily be handled.
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Different kinds of sensors and knowledge sources

To describe different kinds of sensors and knowledge sources with a single
label, we employ the notion of abstract sensor readings. For example, a map
can provide abstract sensor readings by retrieving sensor information available
at a given pose. An agent that has to recognize a place through perception with
a different kind of sensor than initially will not be able to successfully match
the corresponding percepts, in general; rather it will require a representation
that relates different perceptions in terms of common traits.

For example, the boundary of a physical object may be perceived visually
in terms of a transition between different brightness or hue values, through
tactile perception in terms of a transition of physical resistance values, and
through distance sensors in terms of an abrupt transition between distance
values, while the object surface appearance may exhibit differentiated readings
on some sensors and stable readings on others. Therefore, object boundaries
are suitable concepts of a spatial scene that support multimodal recognition
while object surfaces may be less suitable. Especially object boundaries which
are boundaries to passable space are of importance to navigation as they
constrain possible movements. We find these boundaries registered in maps,
including schematic maps; boundaries are easily accessible to a robot utilizing
range sensors.

To enable multimodal recognition on the basis of different abstract sensor
readings, we may develop a representation that features the notion of an
object boundary while it abstracts from object surfaces, for example. Such a
representation also can be used to relate sensory information to conceptual
knowledge that has been conveyed through object descriptions in terms of
natural language or by graphical means. In other words, to make cross-modal
use of a variety of knowledge sources we can abstract from the specifics of
individual modalities and identify modality-independent features or concepts.
We then must provide mappings between the modality-specific percepts and
those concepts.

Different spatial sensor resolution

Even if we stay within the same modality, we will get problems with matching
abstract sensor readings from a given place if the sensors provide spatial data
at different levels of spatial resolution, as they will identify different sets of
sensory features. A suitable abstraction from low-level perceptual features also
will be helpful in this case: a resolution-adaptive representation will enable
the comparison of sensor data obtained at different levels of spatial resolution.

We point out that a change of resolution (granularity) does not necessar-
ily happen uniformly, as in the case of smoothening filter application. Rather,
coarsening can occur selectively like in schematization processes (see [3]). Here
information characteristic for a spatial configuration or relevant to a consid-
ered task may remain on a high level of detail whereas irrelevant information



6 Diedrich Wolter and Christian Freksa and Longin Jan Latecki

may be discarded completely. To interrelate different levels of granularity it is
advantageous to define a notion of saliency for features; only salient features
remain represented when the resolution is reduced. Moreover, it is essential
to estimate whether a feature at hand will be represented on a specific level
of granularity or not.

2.2 High-Level Knowledge for GSL

In the elementary case of SL, sensory information obtained by independently
sensing the same physical phenomenon can be correlated in a rather straight-
forward manner. Moving along one of the three strands of generalization,
adequately abstracted information and abstraction processes are required to
enable correlation of sensor readings, i.e. matching, by focusing on essential
features. When the perspective of observation changes, sensory information is
abstracted to yield view independent images by employing an absolute repre-
sentation, e.g. a map. To mediate between different abstract sensor readings,
information can be abstracted to cross-modal concepts. Features present on
different levels of resolution can be related using an abstraction process to
reduce spatial resolution or handling information in a granularity-adaptive or
granularity-insensitive manner. Qualitative spatial representations provide an
anchor to handle varying levels of granularity as only the most relevant rela-
tions — which are not subject to change of resolution — are made explicit.
We point out that in all strands of generalization abstraction is the key to
master generalized localization tasks.

SL is primarily a problem of spatial information processing and we are
especially interested in understanding spatial abstraction. Reconsidering the
generalization strands in SL from the point of spatial abstraction, it can be
organized as the pyramid presented in Fig. 2. On the finest level of granularity,
fine-grained metric information is available; sensor and perspective variations
cover a wide range. On a coarser level of granularity the multitude of possible
variations decreases as the expressiveness in spatial information is reduced.

Coarse spatial information is available through language or through rough
or schematic overview maps; it is typically qualitative information that classi-
fies spatial information into distinct categories [22]. Notably, qualitative repre-
sentations are not restricted to representations of coarse knowledge. Qualita-
tive information can also be retrieved from fine-grained representations and,
for example, can be exploited in reasoning process. We conclude that it is
advantageous to explicitly address abstract qualitative information when in-
terrelating spatial information on significantly varying levels of granularity or
to bridge cross-modal variations.

2.3 Localization Using Schematic Maps

In this paper, we use the term “map” to denote a representation that relates
landmarks and features to spatial locations. This subsumes internal spatial
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Fig. 2. The pyramid of generalized localization problems from the perspective of
spatial information processing. Possible variations due to change of perspective or
change of source for (abstract) sensor readings decrease when the level of spatial
resolution is decreased. A reduction of granularity abstracts from metric details and
gives rise to the importance of characteristic qualitative information.

representations of a robot and external maps, e.g. floor plans. A map typically
preserves spatial information metrically (on a certain level of spatial granular-
ity). If it abstracts from metric properties and represents qualitative aspects
of spatial information (specifically topological and ordering information), we
refer to it as “schematic map”. Schematic maps as characterized by Klippel et
al. [22] abstract from information irrelevant to a specific task considered. For
example, a schematic floor plan giving directions to visitors typically abstracts
from furniture, doors, etc. One may even abstract from the shape of a room.
Indeed, a schematic floor plan represents salient boundaries to free space, for
example the outline of rooms, corridors, etc. Schematic maps can however
be designed for arbitrary environments featuring a great variety of objects.
Therefore, approaches to schematic map interpretation by means of recog-
nizing specific objects or specific spatial properties are restricted to specific
environments. We are interested in the fundamental principles of recogniz-
ing spatial environments and, henceforth, do not aim at recognizing hallways,
doors, etc. This allows responding to arbitrary environments and maps.

By considering abstract sensor readings retrieved from a schematic floor
plan in relation to a robot capable of scanning the borderline of free space
(e.g. by means of a range sensor) we characterize the localization task using
a schematic map. First, as with any absolute representation, schematic maps
provide information free of a specific perspective. Second, the granularity of
schematic maps is coarser than of sensor information. However, not all differ-
ences between metric maps and schematic maps are due to reduced resolution.
When transforming a metric map into a schematic map, it undergoes a se-
lection process that only retains salient, characteristic information (compare
[3]). For a robot not capable of distinguishing different kinds of obstacles the
relation between sensor information and schematic map information presents
a small modality change, as the set of objects that can be perceived by the
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robot differs from the set of objects registered in the schematic map. There-
fore, we classify the localization using a schematic map on the generalization
strand different perspective, different resolution, same sensor towards GSL
(see Fig. 1).

3 Localization Strategies

In this section we will analyze approaches to SL that employ some kind of
map representation. We will evaluate their applicability to more generalized
localization tasks. First, the SL problem is decomposed into distinct subtasks
and aspects; this decomposition provides a classification scheme for individual
approaches to SL.

3.1 Computing the Pose

The challenge in SL is to find a sensible transformation from an agent-centered
perspective to a specific reference system, typically an absolute one. Therefore,
SL primarily is a question of spatial reasoning. On a closer look, additional
aspects emerge, though.

A robot can localize itself by determining the correspondence between its
sensory input and the map. In other words, we compute the pose which —
according to its map — explains the sensory input. The problem of deter-
mining this correspondence is termed the correspondence problem or the task
of data association; a good solution to the correspondence problem is among
the hardest problems in mobile robot navigation [40, 20]. Once a correspon-
dence between perceived features in their local frame of reference and map
features in the absolute frame of reference is established, simple trigonometric
computation yields the robot’s absolute pose. Important criteria of the appli-
cability of specific approaches are the robot’s perceptual features. The ability
to uniquely identify landmarks, for example, would make the correspondence
problem trivial. Industrial applications sometimes use unique artificial tags to
simplify recognition in a robot’s working environment [18, 15]. In the present
chapter, however, we will consider unaltered environments, though.

To approach the correspondence problem if a — possibly vague — pose
estimate is available, matching algorithms are employed. These algorithms
calculate the most likely correspondence between the sensory input and the
expected perception on the basis of the pose estimate and the internal map. On
the basis of this correspondence they infer the expected percept. In the context
of statistical frameworks for robot localization the role of matching algorithms
is providing a solid perceptual model to infer the probability of each individual
pose hypothesis (compare [39]). The more robust a correspondence can be
determined, even in absence of precise pose estimates, the fewer hypotheses
need to be considered; this improves efficiency. Differences between true and
estimated robot perspective result in differences between actual and expected
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percept. Robustness of matching algorithms is important, especially in the
context of GSL. Here, variations may also appear due to shifts of modality or
granularity.

To sum up, the key challenge in map-based localization is to find a good
solution to the correspondence problem. There are four essential factors that
shape approaches to localization:

- Feature representation: Which features are made explicit in the map?
(sensor reflection points, extracted feature points, . . .)

- Representation of configurations: Which spatial relations are made ex-
plicit in the map? (qualitative knowledge, metric data, . . .)

- Spatial reasoning / configuration matching: Which matching algorithm
is used? (Iterative Closest Point, shape matching, . . .)

- Temporal reasoning: How is history information handled? (stochastic es-
timators, conceptual neighborhoods, . . .)

In the following sections we will discuss these factors in some detail.

3.2 Feature representation

Sensor data is interpreted in terms of environmental features. Features can
range from hardly interpreted sensor patterns to complex objects and their
properties. The manifold of features possible can be classified into spatial
properties (e.g. position, size, shape) and non-spatial properties (e.g. color,
object category). In the following we will focus on spatial features in unpre-
pared environments that can be perceived by robots as well as by humans.
Though exploitation of non-spatial properties would support the recognition
processes and would complement spatial information, intelligent processing of
spatial information is one indispensable ingredient to successful localization.

The choice of features to be used for localization depends on the type of
sensors; applicability to GSL adds further requirements. In external represen-
tations such as schematic maps a coarse level of granularity entails a complete
lack of unimportant features whereas other features may be schematized, i.e.
they are coarsely represented. To successfully match information on different
levels of granularity, means for determining the saliency of a feature and means
for shifting the level of granularity are required. Determination of saliency al-
lows to estimate whether a feature at hand will be represented on a specific
level of granularity or not; means of shifting granularity levels are required to
identify correspondences. Proceeding from simple to more complex features
we examine these properties as well as the contribution of a specific feature
to robust localization.

Raw sensor patterns

A prominent approach relying on matching sensor data is the ‘view-based
approach’. It matches raw sensor images and does not extract features from



10 Diedrich Wolter and Christian Freksa and Longin Jan Latecki

sensory input. Typically, sensor snapshots are obtained and stored for different
discrete view points. For example, Franz et al. [12] handle linear panoramic
camera images taken at specific locations in the environment. Similar to the
view-based map representation, the lowest level of Kuipers’ spatial semantic
hierarchy ([24, 25]) associates the robot’s action patterns at decision points
with the corresponding locations.

Uninterpreted data does not allow for granularity shifts and cannot be in-
tegrated with external information. Furthermore, uninterpreted data provides
no information about the local spatial configuration; data can only related to
the view point.

Landmarks

Landmarks are objects in space that are easy to identify; for localization
purposes, they can be represented by their position. Landmarks are typi-
cal environmental features for localization in human navigation (see e.g. [8]).
Landmarks are well-researched in the context of human navigation, but the
detection of landmarks that are commonly used in human communication (e.g.
“the gas station”) is not yet possible in computer implementations. Landmarks
that can be used in robotics still must be comparatively simple. For example,
Forsman [10] developed a tree detection approach on the basis of range data;
it was tailored to an outdoor park scenario. Similarly, corners detected in the
environment can be used as landmarks [1]. In human-robot communication it
is desirable to identify entities in the environment that provides both species
a spatial reference for their interaction.

Specific landmark identification approaches restrict applicability to en-
vironments that contain those landmarks. It is however possible to derive
additional information from landmarks which can be used, for example, to
estimate their appearance in a representation at a specific level of granularity.
The utilization of landmarks in human-robot interaction is still a challenge;
its solution depends on sophisticated object recognition which is still beyond
reach.

Free space

The boundary of free space is of special importance to robots and humans
since it limits the accessible environment and it constrains possible actions.
Consequently, many approaches represent free space, its boundary, or geomet-
ric features derived from it. Information about free space also can be obtained
from maps that are used by humans. Sensors like laser range finders or sonars
measure the boundary of free space directly. We will now review the most
important features for representing boundaries of free space.
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Cell occupancy

In cell occupancy representations, spatial cells are classified as occupied or
free. The spatial domain is partitioned into square-shaped cells of fixed size
(e.g., 10cm x 10cm). The typical map representation employed is the so-called
occupancy grid [34]. This technique is particularly popular when using range
sensors like laser range finders (LRF); sensor output can be used directly
without processing (other than noise filtering). A clear advantage is the uni-
versality of the approach, as it can be used in arbitrary environments. The
simplicity entails severe limitations, though. Occupancy grids are basically
bitmap images that, if related to externally provided maps, would require
sophisticated image processing techniques for matching. As of today, commu-
nication on the basis of occupancy grids is limited to strongly constrained
settings like multi-robot mapping involving identical robots and known start
poses of all robots (see e.g. [23]).

Free space boundary

Reflection points measured by a range finder represent the boundary of free
space. To capture a wider context than single points and to reduce the amount
of data, points can be grouped to geometric primitives. For indoor environ-
ments grouping into line segments is especially popular (e.g. [32, 36, 7, 9]). In
connection with communication tasks it may be desirable to identify salient
boundary configurations. A starting-point for defining saliency is given by
considering the size of configurations, e.g. the length of a line.

Existing grouping approaches are limited to environments whose bound-
aries present mostly straight lines. To achieve more universal applicability,
Wolter & Latecki [45, 46] propose to use polygonal lines to approximate arbi-
trarily shaped boundaries. In this way, the universality of point-based repre-
sentations and the compactness of abstract geometric features can be retained.
Feature saliency based on shape complexity and an approach to schematiza-
tion complex shapes have been proposed by Barkowsky et al. [3].

Routes

A prominent geometric feature derived from free space is the Generalized
Voronoi diagram (GVD) [30]. The GVD represents the medial axis of free
space (“skeleton”), the set of all points equally and maximally apart from the
nearest boundaries. Each point of the GVD is the center of a circle inscribed
in the free space that touches at least two points of obstacle boundaries. A
graph, the so-called Generalized Voronoi Graph (GVG), is then derived from
the GVD; meet points and end points of the GVD constitute the nodes in
the GVG. Nodes belonging to a GVG are identified by their degree. Roughly
speaking, the degree corresponds to the number of Voronoi paths emanating
from a given point on the GVD. GVGs offer abstract and compact means
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for representation [38]. Furthermore, routes that follow the GVD are max-
imally safe as they maintain maximum distance to obstacles. However, the
graph structure of GVGs is susceptible to noise in input data; the problem
of robust recognition on the basis of GVGs has not yet been solved. It is
not yet possible to handle the absence of environmental features in external
maps when matching them to perceived information, as the graph structure
changes fundamentally when objects disappear. The applicability of GVGs
to place recognition depends on improvements in handling multiple levels of
granularity and in skeleton-based recognition. These topics are currently un-
der investigation (see [44]).

3.3 Representation of configurations

A configuration describes the spatial arrangement of features that can be per-
ceived in the environment. Frequently coordinate systems are used to repre-
sent the position of objects, but qualitative spatial relations describing relative
positions (e.g., “A is north of B”) or topology information may also be used.

Qualitative representations

Qualitative representations employ a finite, typically small set of relations to
model spatial information. Relations usually describe by means of relative
information as obtained by comparison; for example, “north of” and “south
of” can serve as qualitative relations acquired by comparing the geographic
location of two objects.

Some authors confide the set of potential relations to a single connectiv-
ity relation, topology (among others, see [6, 25, 48]). Topological information
captures connectivity information of distinctive places and can be represented
by an (attributed) graph structure. For example, Yeap & Jefferies [48] repre-
sent connectivity of local maps. Graph labeling is required to enable agents
to identify individual edges that meet in a single node of the graph. Yeap
& Jefferies associate edges with exits of the local maps. Kuipers [24] labels
directed edges by robot commands. The execution of an action associated
with an edge takes the robot from one node to the other. In contrast, Franz
et al. [12] use directional information to label edges. Hereby, directions are
determined by the relative positions of the two nodes connected. The kind
of information used to attribute the graph structure influences the matching
process in important ways so that general statements about the properties of
relational representations cannot be made.

Ordering information is another important representative of qualitative
information in navigation. Schlieder [37], for example, represents the cyclic
order of point-like landmarks and Barkowsky et al. [2] utilize cyclic order of
extended landmarks in non-cyclic environments. Cyclic order of perceivable
objects has also been used to instruct a mobile robot by means of a schematic
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map [47]. The self-localization approach proposed in the present chapter uti-
lizes cyclic ordering, as well.

Qualitative representations have been claimed to provide adequate means
for communicating spatial information; Moratz & Tenbrink [33] utilize pro-
jective relations between objects in a robot instruction setting. A robot is
instructed to move to a position described by qualitative relations. This task
is strongly connected to the localization problem.

Qualitative calculi

Qualitative calculi extend qualitative relations by introducing means to “cal-
culate with relations”, e.g. to infer, if the relations holding between A and
B & B and C are known, which relation holds between A and C (relation
composition). To relate spatial relations, reasoning — often based on relation
composition & constraint propagation — is applied. With respect to corre-
spondence determination, constraint-based reasoning could be exploited to
prune the search space. A mapping of objects is only admissible, if it is con-
sistent with qualitative constraints posed on the objects. Thus, qualitative
calculi can be employed to introduce hard constraints in correspondence com-
putation (compare [42]). Additionally, conceptual neighborhood structures
(see Sec. “Spatio-temporal reasoning” on page 16) have been introduced for
qualitative reasoning. Conceptual neighborhoods are in particular valuable to
resolve conflicts on the symbolic level by defining an interrelation on the level
of relations. However, the application of qualitative reasoning to the corre-
spondence problem, e.g. by means of constraint propagation (see Sec. 3.4) has
not yet been thoroughly investigated.

Quantitative representations

Quantitative formalisms describe the world by means of absolute, often fine-
grained, uniform scales. Quantitative representations employ no abstraction
besides reduction of resolution. Henceforth, sensor data, e.g. distance infor-
mation sensed by a range finder, can be mapped directly to a quantitative
representation. The most prominent form of quantitative representation is
coordinate-based geometry; landmark positions, for example, are represented
as points in the Euclidean plane. Most approaches in robotics represent po-
sitions as coordinates in the absolute frame of reference given by the global
map (see Thrun [40] for an overview).

Generally speaking, in quantitative representations all available informa-
tion is maintained while in qualitative approaches some details may be inten-
tionally discarded. In quantitative approaches all values are treated equally
and no aspects are made explicit. This can hamper recognition, as a small ex-
ample on coordinate-based geometry shows. Consider an agent that observes
two landmarks that are located close to one another. By measuring their po-
sition the agent determines two similar coordinates that are both subject to
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measurement errors. By evaluating the measurements and taking into account
the error margins, we may not be able to decide which of the landmarks is
located on the left and which is located on the right. The agent can, however,
observe with certainty which of the two landmarks is left of the other. In a
quantitative approach, this knowledge is shadowed by a representation that
relates observations to an external scale rather than to one another. Notably,
there are situations where we cannot decide in advance which spatial relations
will be required later on. In such cases, quantitative approaches are more eco-
nomical as it is impossible to record all potentially relevant spatial relations
in an environment.

3.4 Matching

Matching establishes the correspondence between observed features and fea-
tures represented in the robot’s internal map.3. A transformation from an
agent-centered to the absolute frame of reference can then be computed on
the basis of correspondences between observed features and map features. In
other words, by establishing the correspondence the agent is localized.

The correspondence problem is challenging in three regards: obtaining a
feasible solution, handling uncertainty, and integrating spatio-temporal knowl-
edge. In the following we will review strategies addressing these problems and
we will analyze how these strategies meet the requirements of GSL.

Achieving feasibility in data association

Considering a map containing n features and an observation comprising m
features, there are

n∑
i=0

(
n

i

)
·
(

m

i

)
· i! (1)

potential correspondences if observed features are not necessarily represented
in the map and only correspondences of type 1-to-1 are taken into account.
Even this restricted case is infeasibly complex, so additional knowledge must
be exploited to reduce the search space and computation time. Confident
knowledge, for example, can be exploited in terms of hard constraints re-
stricting the search space. If a pose estimate is available, the projection filter
[32] can be employed to disregard map features that are estimated to be hid-
den to the robot. Likewise, observed features are filtered. The pose estimate
must be of high quality in order not to disregard features erroneously classified
as invisible; this would affect the matching result. In many robot applications
pose estimates are provided by odometry.

Computational complexity can be further reduced, if distinguishable fea-
tures are exploited. For example, using extremes in range scans, Lingemann
3 In the case of SL by means of feature tracking (e.g. [36, 31]), the agent’s previous

observation assumes the role of the internal map in map-based SL.
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and Hertzberg [31] restrict consideration of correspondences to features of the
same type (minimum or maximum). If uncertainty in feature classification
is an issue, a feature similarity measure is used as heuristic, i.e. similarity
provides a soft constraint, and matching is transformed into a discrete opti-
mization task that assigns the most similar features to one another. In the case
of using occupancy as feature, feature similarity considers difference of cell oc-
cupancy; this difference is typically represented as probability value [19, 40].
Utilization of complex features allows for fine distinctions in the similarity
measure and yields both efficient matching and robustness. In our approach
we will argue for shape features that represent the boundary of free space to
exploit distinctive shape similarity in the matching procedure.

An alternative approach to increase the efficiency of the matching proce-
dure is to respect the spatial configuration of observed features in relation
to the configuration of map features. Admissible mappings from perception
to the map preserve the configuration of the features. This can, in principle,
be achieved similarly as in constraint propagation (compare [42]), treating
relative position of features as constraints. If, for example, feature A is ob-
served north of feature B, then by assigning A to some map feature, the set of
candidates for B can be pruned. Unfortunately, uncertainty inherent in map
and observation requires a careful selection of hard constraints that model
confident knowledge. In our approach, we utilize circular order of visibility
as a source of certain information (compare Sec. 5.2). Notably, the appli-
cation of the Mahalanobis distance for pruning potential candidates can be
interpreted as an application to constraint propagation. Here, correlations of
distances are exploited for gating in a statistical framework (compare [35]).
To our knowledge, constraint propagation has not been further utilized in
this context and remains an open research issue. Instead, correspondences
are sometimes pruned in a successive step; correspondences which entail a
transformation from an agent-centered to an absolute frame of reference that
deviate significantly from the transformation obtained by averaging the indi-
vidually obtained transformations can be removed [16].

To avoid costly computation of robust matching, some SL approaches han-
dle the correspondence problem indirectly. They seek to directly determine the
robot pose which explains the percepts (e.g. [40, 17, 32, 5, 7]). In this family
of approaches, the robot pose is no longer derived from the discrete correspon-
dence problem; instead, it is obtained by a continuous optimization search for
an optimal pose. A pose estimate is required as a start value. Within each step,
a simple but fast matching procedure relates perceived features already trans-
formed to the absolute frame of reference to map features. Typically, nearest
neighbor algorithms are applied to perform the matching [17, 32, 5, 7]. Embed-
ded in an iterative optimization framework, erroneous results of the matching
algorithm can be recovered in successive steps. Notably, all optimization al-
gorithms are susceptible to local minima and erroneous matching can further
affect the overall performance. Therefore, this family of approaches relies on
a high quality pose estimate as start value.
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Handling uncertain information

Inescapable uncertainty in real-world data inhibits perfectly congruent corre-
spondences. Therefore, the goal must be to find those correspondences which
explain the agent’s observations best. This requires integrating differences of
assigned features on the level of feature appearance and configuration. The
most successful approaches today use statistical methods to “explain” and
correct for these differences (see Thrun [39, 40] for an extensive overview).
The role of matching algorithms in a statistical framework is to determine the
degree of belief in a specific hypothesis of observation, robot pose, and map
appearance [19].

Statistical models also are helpful to handle uncertainty beyond sensor
noise, e.g. sporadical errors in feature detection — given that a stochastic
distribution can be found to model this phenomenon. Hähnel et al. [19] re-
gard a uniform distribution as sufficient to handle erroneous measurement of
individual laser beams by a laser range finder. However, in cross-modality,
granularity, or perspective shifts of GSL it is unclear if and how differing ap-
pearances for a specific source of abstract sensor readings can be adequately
modeled by means of a probability distribution. For example, it appears im-
practical to model which perceived objects are registered in a schematic map.
Therefore, we argue for an additional utilization of qualitative knowledge in
GSL which, by advancing to a more abstract representation, allows disregard-
ing deviations on a fine level of granularity.

Spatio-temporal reasoning

Spatio-temporal reasoning ties spatial and temporal information together. The
possible sequences of physical robot locations and orientations constrain hy-
potheses about its actual and future pose; therefore spatio-temporal reasoning
is an important ingredient to determining the pose of a robot.

In robotics, spatio-temporal reasoning often is tightly coupled with stochas-
tic models to represent uncertainty. Therefore, robot movements are modeled
stochastically. SL can then, for example, be approached by means of Markov
processes [21] or Monte Carlo methods [41, 11]. This is advantageous in a
stochastic framework of SL, but likewise to the aforementioned considerations
it is questionable how to express spatio-temporal constraints when information
on different levels of granularity needs to be interrelated. In qualitative repre-
sentations, changes on the level of qualitative information can be represented
by discrete conceptual neighborhood [14, 13] structures of qualitative spatial
relations. Conceptual neighborhoods denote transitions between qualitative
relations. Two relations are neighbored, if and only if they can be directly
transformed into each other by steady motion. For example, when distinguish-
ing four cardinal directions, “north” and “west” are conceptual neighbors, but
“east” and “west” are not. If, for example, a landmark is expected in direction
“north” but cannot be observed, this conflict may be resolved most easily by
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searching in the conceptually neighboring directions “west” or “east”. Con-
ceptual neighborhoods allow expressing spatio-temporal constraints in terms
of admissible transitions on the qualitative level.

3.5 Conclusions

In reviewing the variety of map features, we identify three main categories
of information sources used in localization: features represented in absolute
maps, sensor patterns in egocentric observations, and approaches completely
abstaining from map representations (see Fig. 3 for an overview). Completely
abstaining from maps either requires employing position sensors like GPS
— this requires external information to establish a frame of reference — or
to incrementally determine the robot’s movement by tracking static features
and updating the pose estimate. In principle, any approach to feature tracking
can be related to a map-based approach, if considering a map that exclusively
represents the last observation. However, we are interested in approaches that
allow expressing the robot’s pose in an externally supplied reference system,
i.e. a schematic map. Thus, approaches handling allocentric map information
are most adequate.

There are two principle alternatives in map features to choose from, namely
features that represent landmark positions and features that describe free
space (either directly, e.g. occupancy grids, it’s boundary, e.g. line-based maps,
or derived geometric information, e.g. Voronoi diagrams). Considering maps
commonly used by humans we conclude that landmarks and representation
of free space are both suitable choices, boundary of free space being the more
fundamental feature, though. Moreover, landmarks typically used by humans
are difficult to identify for a robot. Therefore we suggest anchoring map rep-
resentations on a representation of free space boundaries.
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Fig. 3. Categories of information employed in localization
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With regards to representing configurations, we reviewed relational ap-
proaches which link features by means of a graph, qualitative approaches
describing the relative position of objects, and quantitative approaches em-
ploying coordinate systems. An overview of this classification is presented in
Fig. 4. Quantitative approaches support expressive and precise pose represen-
tation. Relational and qualitative approaches, on the other hand, are valuable
for handling spatial information on a coarser level of granularity. They abstain
from metrics and, by doing so, avoid inescapable differences on the metrical
level, e.g., if two configurations on a different level of granularity are related.
In localization tasks employing coarse external maps we therefore propose to
explicitly integrate qualitative or relational information.

• occupancy grids 

• map of landmarks 
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• route networks
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configuration 
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direcctional
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Fig. 4. Categorization of representing configurations

Many matching algorithms employed in robotics align perception and map
by means of continuous optimization which searches for the pose value which
best aligns perception and map. The correspondence problem is eclipsed. This
approach has two major drawbacks. First, they require a pose estimate to
start the search. In the case of using an external map no good start estimate
may be available. Second, optimization algorithms are susceptible to getting
stuck in local minima. This can easily happen when the optimal alignment
of perception and map is of poor quality, i.e. when features identified in the
sensor information are not registered in the map, or vice versa. This may be
the case, for example, if we use a schematic map.

We suggest focusing on the correspondence problem in order to find an
optimal correspondence between perception and map. The problem may then
be formulated as a discrete optimization problem that can be solved ana-
lytically, i.e. without the risk of getting stuck in a local minimum. Certain
information can be explicitly introduced by means of qualitative information,
its exploitation allows for an efficient approach. In summary, by incorporat-
ing qualitative constraints on spatio-temporal processes, on one hand, and
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by relaxing requirements on insignificant distinctions, on the other hand, we
can considerably reduce the number of alternatives that must be taken into
consideration. This approach resembles knowledge-based hypothesis match-
ing in natural cognitive systems more closely and considerably cuts down the
computational complexity.

4 Spatial representation based on shape information

In our approach, the spatial representation utilizes shape features that de-
scribe the boundary of free space as basic map entities. Shapes are represented
by configurations of polygonal lines. In these configurations, scene features are
simultaneously related by qualitative ordering information and by quantitative
position information. In the following we refer to this approach as shape-based
localization or, shortly, SBL. This section presents details on the construction
of its underlying representation.

From the sensor readings of a range sensor we extract shape information
as polygonal lines, termed polylines. Polylines resemble the discrete structure
of sensor data; they allow us to approximate arbitrary contours with arbitrary
precision. SBL differs from other approaches to extracting complex features
in that it is parameter-free and does not require a noise model of the sensor4.
All control-values are determined adaptively, but preset values reduce com-
putational cost. In the following, we will present a brief description of the OA
algorithm; for an extensive description refer to [45, 46]; intermediate stages of
the shape extraction process are shown in Fig. 5.

4.1 Extracting shape features from range information

Shape extraction starts by grouping sensor reading points. The maximum dis-
tance between neighboring points within a single polyline is controlled by a
threshold. Ideally, each polyline represents a single object in view and each
object is represented by a single polyline. As different view points and noise
can cause different groupings, we need to account for differences in later pro-
cessing stages. When we match perceived shapes against the map, we allow
for re-joining and splitting polylines. The threshold that controls the grouping
is chosen to resemble an assumed minimum object distance of 10 cm.

To obtain a compact representation of shapes without loss of important
shape information and to cancel the effects of sensor noise, we apply Latecki’s
& Lakämper’s Discrete Curve Evolution method (DCE) [26]. DCE describes
a context-sensitive process of evolving polylines by iterative vertex removal.

4 Veeck & Burgard [43] also suggest to use polygonal lines. Their approach re-
quires an accurately aligned set of scans as starting point of their computation.
In contrast, we pursue incremental map construction [46, 45]
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(a) (b) (c) (d)

Fig. 5. States in extracting shape features; grid size is 1m x 1m. (a) input data
obtained from a range sensor in an indoor environment, (b) grouping, (c) application
of DCE, (d) vertex labels in the relevance computation. Framed boxes in (a), (b),
and (c) show enlargements.

A vertex relevance measure is defined to determine individual vertices’ con-
tribution to the shape information; the measure can be computed locally. It
is defined for neighboring vertices u, v, w (see Figure 5 (d)) as

r(u, v, w) = d(u, v) + d(v, w)− d(u, we) (2)

where d denotes Euclidean distance.
After vertex removal, the relevance measures of neighboring vertices get

updated. Hence, DCE is a fast process (complexity O(n log n) for polylines
with n vertices). In practical use, DCE can process laser range scans consisting
of 361 measurements in just a few milliseconds. Besides for noise cancellation,
DCE can be used in schematization processes to coarsen the granularity level
[3], it simplifies the contour but maintains the overall appearance.

DCE selects vertices to be removed in the context of a single polyline. The
identification of relevant vertices can be improved by extending the context to
sets of corresponding polylines. To this end, we do not stop the evolution of
polylines on the basis of a fixed threshold; rather, we terminate the evolution
process on the basis of shape similarity (see Sec. 5.1). Efficiency is improved
by first performing DCE without consideration of shape similarity until an
intermediate, fixed stop threshold is reached. Then, DCE is continued under
consideration of shape similarity. The evolution process for exemplary poly-
lines obtained from a simulated laser range finder is depicted in Fig. 5 (a) –
(c).

4.2 Representing configurations

Configurations describe the relative positions of shape features, i.e. polygonal
lines. Most importantly, the cyclic order of visibility is represented. As laser
range data is ordered cyclically to begin with — i.e. ordered by angle of
perception — we simply need to retain the sequence of shape features. We
can consider ordering information as reliable information, i.e., there is no
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uncertainty about the ordering of perceived features. Respecting ordering as
a hard constraint in the matching process greatly improves efficiency and
robustness. However, if we were to restrict the representation of configurations
to cyclic ordering, we would face some limitations. For example, if the map
were to contain two objects of identical shape, but only one similar object
was found in the sensor data, it would not be possible to determine which
of the two objects in the map represents the sensor data. To overcome this
limitation, we include metric positional information along with the ordering
information.

5 Matching based on ordered shape information

Matching integrates the recognition of individual shape features and the recog-
nition of configurations. We first describe the recognition of polylines which
is based on shape similarity. Thereafter, recognition of configurations is de-
scribed.

5.1 Shape similarity

SBL examines shape similarity to determine potentially corresponding shape
features. Shape similarity is modeled by a shape distance measure — the
minimum distance of 0 refers to identical shapes.

Shape distance measures play an important role in computer vision, partic-
ularly in object recognition. They measure the difference between two shapes
and aim at mirroring human intuition. There is a strong connection between
object recognition in vision and recognition processes in localization, although
the connection between computer vision and robot mapping has not yet been
sufficiently exploited according to Thrun [40]. We derived a shape distance
measure from state-of-the-art shape matching used in computer vision [28, 26].
To tailor the approach to the domain of range data, some adaptations have
been made (for details see [28, 27]).

The idea of measuring the distance between a polyline p and a model q is to
disregard irrelevant features that make polylines dissimilar from one and an-
other; in other words, we focus on the subset of vertices that exhibit maximal
similarity. Therefore, the measure has been termed partial optimal similarity
[28]. Here, p corresponds to a polyline extracted from LRF data (which may
still contain some noise), whereas q will be a matching candidate extracted
from the map. The map is typically derived from multiple observations; we
consider map data as absolute reference. The algorithm proceeds as follows:
Evolution by means of DCE is continued for polyline p while a simplification
of p improves the similarity to q.

The basic similarity measure for comparing simplified ps and qs as detailed
in [45, 27] establishes an optimal correspondence of maximal arcs and accu-
mulates differences in relative angular directions. Optimal correspondence of
arcs is computed by means of Dynamic Programming — see [26] for details.
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5.2 Matching configurations

Provided we have two configurations of features; the task of the matching
algorithm is to determine a sensible correspondence relation on the level of
polylines. In SBL the currently observed configuration is related to the config-
uration extracted from the map using the robot’s last location as view point.
In other words, we do not make use of odometry information to achieve a
pose estimate. Due to the distinctiveness of the shape information and the
sensibility of the shape distance measure we do not require such pose esti-
mate [45]. Differences of perceived configurations are small on the qualitative
level of ordered shape features if the robot has not traveled too far (e.g. less
than 1m). These differences can easily be handled by configuration matching.

Matching is formulated here as a discrete optimization problem. We seek to
determine the optimal correspondence of shape features. When matching two
configurations, changes in the environment, variations of perspective, or noise
can cause differences. Constraints and observations that must be considered
are as follows:

• Only polylines showing similar shape may correspond.
• The cyclic order of shape features must not be violated. For example, when

finding corresponding counterparts for polylines p and q, where p proceeds
q, p’s counterpart must also proceed q’s counterpart.

• An object’s visibility can change. Therefore, some polylines may need to
be disregarded.

• Correspondences are not necessarily of the type 1-to-1 due to different
outcomes of the segmentation process. Instead, 1-to-n, n-to-1, and n-to-m
types of correspondence must also be considered.

• Each potential correspondence of two polylines induces an alignment that
would adjust the complete shapes involved. We demand that all alignments
induced by corresponding polylines are consistent.

We now formulate the discrete minimization problem. Let S? : polyline×
polyline → R+ ∪ {0} denote the shape distance measure described ear-
lier. We will denote configurations, i.e. cyclic ordered vectors of polylines
by P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qm) respectively; a sub-vector
(pi, pi+1, . . . , pj) will be denoted Pi,j . Pi,i will be abbreviated Pi. Sub-vectors
represent a single polyline composed by concatenating a sequence of polylines;
they are introduced to correct segmentation differences. Furthermore, let ∼
denote the relation of correspondence which pins polylines from two configu-
rations together. Our aim is to compute the optimal correspondence relation
∼.

The quality of a match ∼ is determined as the sum of corresponding poly-
lines’ shape distances. To compute the optimal match as an optimization
process, a penalty for not finding a polyline’s counterpart is introduced; oth-
erwise, the empty correspondence relation would yield 0, the lowest possible
value, i.e. the optimal choice. The counterweight used is a penalty function
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R : polyline → R+∪{0} that grows linearly with the polyline’s angular size in
the field of view. A linearly growing penalty reflects the observation that the
shape distance of two polylines that differ only by independent noise grows
linearly, too ([45, 46]). This penalty function also addresses feature saliency
by consideration of size. Preferring larger features over smaller ones is advan-
tageous in matching a perceived configuration with many details against a
schematic map which only presents salient shape features.

The observation that an object is to the left (or right, respectively) of
another object is not affected by noise in sensor data. Cyclic order of visibility
can therefore be considered certain knowledge. This allows to exploit order
as hard constraint and reduce the search space. Observe that the task of
determining the optimal correspondence relation of polylines restricted to only
correspondences of type 1-to-1 which respect the cyclic order, i.e. (pi ∼ qi′ ∧
pj ∼ qj′∧i < j) → i′ < j′, is a standard application of Dynamic Programming
[4]. Therefore, the unconstrained search space declared in Eq. 1 is reduced to

n ·m (3)

We now formulate the matching which respects the constraints and obser-
vations listed above as a minimization problem and we show how it can be
solved by an extended Dynamic Programming scheme.

We require that an estimate for the alignment induced by any pair of corre-
sponding polylines exists. This estimate can either be derived from odometry
or it can be computed purely based on shape information (see Sec. 5.3). Let
us now assume that such an estimate, i.e. a translation vector t and a rota-
tion by Φ exists. We denote the alignment induced by corresponding polylines
P and Q by A(P,Q). The difference of the induced alignment A(P,Q) and
the estimated alignment is denoted as ∆A(P,Q). To measure ∆A(P,Q) our
experimental system utilizes

D(dt, dΦ) = ||dt||+ 10dΦ (4)

Denoting the set of polylines {pi, pi′ , . . . , qj , qj′ , . . .} not belonging to any
correspondence by PQ, determination of the optimal correspondence relation
∼? is formulated as follows:

∼?= argmin
∑

(Pi,j ,Qi′,j′ )∈∼

 shape distance︷ ︸︸ ︷
S(Pi,j ,Qi′,j′) +

robot pose consistency︷ ︸︸ ︷
∆A(Pi,j ,Qi′,j′)

 +

penalty︷ ︸︸ ︷∑
r∈PQ

R(r)

(5)
To solve the equation, the Dynamic Programming scheme is extended. To

enable detection of correspondences of types 1-to-n, n-to-1, or n-to-m, we
introduce an updating step that reconsiders the correspondence determined
in the previous step. This overcomes the prefix requirement of Dynamic Pro-
gramming: Suppose a polyline p shall be matched against two polylines q1, q2

which are created by splitting p. In classical DP, the result of comparing (the
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prefix) q1 to p cannot be altered in subsequent computation. Thus, if p and q1

are significantly dissimilar, q1 is disregarded once and for all. Consequently,
q2 would not be matched either. In our extension to DP, we reconsider q1

when comparing q2 and p; this gives us the correct correspondence of p and
the concatenation of q1 and q2.

5.3 Shape complexity & correspondence quality

Matching correlates two sets of shape features which are expected to have a
correspondence relation. In the case of relating significantly different config-
urations (e.g. relating robot perception with schematic map information or
perceptions from significantly different view points) metric information about
position of objects is of little help; yet if considered, different metric infor-
mation can even hinder correspondence association. To overcome this limi-
tation we introduced a shape complexity measure that allows us to perform
the matching restricted to salient shape features (compare [45] for details).
Matching the subset of the most salient shape features in a configuration is
more robust than matching nearly featureless, small shapes. Hence we per-
form matching as a two-step process. In a first step we only consider the
most similar and most complex pairs of the corresponding shape features; we
can estimate the metric displacement required for the robot pose consistency
measure ∆A. In a second matching step, this knowledge can be taken into
account; it allows to robustly associate simple shape features even in signifi-
cantly different configurations [45].

6 Experimental Comparison

To evaluate different approaches to localization, we set up a simulated envi-
ronment using a virtual robot equipped with a laser range finder. Simulation
allows us to easily measure the performance of individual simulation methods,
as the ground truth is known. Additionally, we can systematically alter the
environment and other parameters like sampling rate or sensor quality to gain
a better understanding of the capabilities of individual methods.

To maintain the focus on spatial aspects we do not incorporate stochas-
tic models; we only determine the most plausible pose. In the context of a
hypothetical stochastic framework this would mean that we focus on the de-
velopment of individual hypotheses. The more reliably a single hypothesis
can estimate the robot’s true pose, the better a complete system including
stochastics performs. Furthermore, incorporating comprehensive uncertainty
handling would conceal the ability of judging the performance of spatial rep-
resentation and reasoning techniques, to a certain extent.
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6.1 Experiments & discussion

We examined two experimental setups. The first setup is a typical map-based
robot SL task. A simulated robot traveled a total distance of 43.03m in the
environment depicted in Fig. 6 (a). The average travel distance of the robot
between sensing the environment amounts to 11 mm and the average rotation
between sensing amounts to 4.0◦. The true map was accessible to the localiza-
tion methods. Hence, the main challenge of this setup is to robustly extract
features from noisy input data and to robustly handle the correspondence
problem.

In the second setup we investigated into generalized SL using a schematic
map as reference system. The robot traveled along the same route as in the
first experiment, localizing once every 104 mm on the average; this entails
an average rotation between sensing and SL of 30.6◦. In this experiment, the
schematic map presented in Fig. 6(b) was supplied to the localization methods.
This added an extra challenge to mediating between information present in
different levels of resolution and to robustly handle objects that were missing
in the map (compare Sec. 2.3).

In the experiments we compare our approach with the following localiza-
tion methods from different categories discussed in Sec. 3.

• Map-based localization by line matching [7, 32, 16, 17]
• Iterative Closest Point (ICP) used in connection with occupancy grids [5]
• SBL based on shape matching and ordering information [45, 46]

map-based SL:
average difference to true

method position [mm] heading [◦] proximity test [%]

ICP 534 1.5 21
line-based 5167 65 0.4
shape-based 144 1.21 78

SL using schematized map:
average difference to true

method position [mm] heading [◦] proximity test [%]

ICP 2234 25.9 50
line-based 1836 16.6 30
shape-based 553 3.3 86

Table 1. Tabular overview of localization results obtained. The proximity test eval-
uates, if a determined pose is close enough to ground truth. In the map-based lo-
calization, the test is passed if the difference is less than 100mm in position an less
than 45◦ in heading. The proximity test for SL using a schematic map allows for a
difference in position less than 500 mm and 45◦ in heading.
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(a) (b)

Fig. 6. Experimental setups to test robot self-localization performance. (a) depicts
the test environment of aprox. 14×23 meters containing furniture, complex obstacles,
etc. The path of the robot (dark line), and the path as reconstructed from the
simulated odometry readings (dashed line); (b) shows a schematic map of the test
environment.

The methods listed above have been implemented according to the spec-
ifications given in the literature. Grid size for occupancy grids in ICP was
50mm x 50mm. We determined the quality of the localization by compar-
ing the differences between true pose (ground truth) and localized pose. A
proximity test was applied to compare the deviation between computed pose
and ground truth against a threshold. In map-based localization, the test is
passed if the position deviation is less than 100mm and the heading deviation
is less than 45◦. The proximity test for SL using a schematic map allows for
a difference in position less than 50cm and 45◦ in heading. Results presented
in Table 1 and in the Fig. 7 and 8 will be discussed in the following.

Considering the map-based localization experiment, we observe that line-
based localization relying on line detection in the LRF data quickly looses
track of the correct path; it passed the proximity test in less than 1% of the
cases. At first glance, ICP seems to resemble the robot’s true trajectory (see
Fig. 7 (a)). However, due to susceptibility for local minima in ICP’s opti-
mization process, pose estimates often get stuck in their local surroundings;
however, ICP recovers when the robot moves on further. 21% of the estimated
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poses satisfied the proximity test. Shape-based localization passed the prox-
imity test in 78% of the cases. This demonstrates that our approach is able
to robustly perform standard SL tasks.

Using LRF data corresponding to the same test environment as before, but
providing a simplified schematic map for localization instead of the true map
simulates wayfinding using an overview map. In this setting we relaxed the
proximity limit to a distance of 50cm, since sensed LRF data and schematic
map differ significantly. We observe a decrease in localization performance
which is caused by the large differences between map and perception. ICP
met the proximity constraint in 50% of the computed poses, line-based local-
ization succeeded in 30%, and shape-based localization in 86% of the cases. Of
these methods, ICP first looses track of the robot’s path, but coarsely resem-
bles the true path (see Fig. 8 (a)). An interesting observation is that line-based
localization performs better in the localization using the schematic map than
in the classical localization task; a reason for this can be seen in the eased line
extraction from the schematic map as compared to the true environment map
containing mostly non-linear obstacles. However, as regards the average local-
ization error, line-based localization is outperformed by ICP with an average
error in line-based localization of about 2.2 m as compared to about 1.8 m
in ICP. In contrast, SBL estimates poses with an average error of 0.55m, just
about the proximity test threshold of 0.5m. SBL estimates the path closely
until the robot enters the last room in the top-left corner. The failure when
entering the room was caused by erroneously matching the perceived circular
obstacle against the wall registered in the schematic map. Considering the
average differences between true and estimated trajectory (see Table 1), it
can be concluded that only SBL is able to master the generalized localization
setting.

7 Conclusion

We proposed a generalization of the self-localization problem for robots to
integrate a variety of localization tasks. These tasks include localization with
respect to an externally supplied coarse or schematic map and localization
based on route descriptions. We identified three strands of generalization:
change of perspective, change of sensor, and change of resolution.

SL approaches are classified with respect to their choice of map features,
their representation of configuration information, their approach to the cor-
respondence problem, and their integration of spatio-temporal reasoning. For
utilizing external floor plans in a generalized localization task, map features
describing the boundary of free space are particularly valuable. The involve-
ment of coarse maps requires an abstraction of configuration information from
fine-grained metric details which are meaningless in schematic maps to a qual-
itative level. We argue in favor of improving matching algorithms to approach
the correspondence problem analytically rather than by means of optimiza-
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(a) (b) (c)

Fig. 7. Results obtained in the map-based localization experiment. Determined
poses and true poses are plotted. (a) ICP, (b) line-based, and (c) shape-based

(a) (b) (c)

Fig. 8. Results obtained in the localization experiment involving a schematic map.
Computed and true poses are plotted. (a) ICP, (b) line-based, and (c) shape-based



Towards a Generalization of Self-Localization 29

tion. Analytical solutions do not get stuck in local minima; getting stuck
in local minima inevitably occurs when differing views are correlated, as in
cross-modal setups or due to a granularity change.

We describe our approach to SL which makes use of expressive shape fea-
tures. Configuration information makes qualitative knowledge explicit along-
side metric information. Qualitative knowledge about cyclic ordering enables
design of an efficient analytical approach to the correspondence problem.

In an experimental evaluation we demonstrated the applicability of our
approach to standard map-based localization and SL using a schematic map.
The experiments highlighted that our approach performs comparably well as
often-used ICP-based localization in map-based localization. In the case of
SL using a schematic map only the shape-based approach is able to robustly
perform localization.

To sum up, several tasks exist that have a close relation to SL and can
all be integrated into a more general task definition. For all dimensions of
generalization, a sensible abstraction is the key to finding a solution. Sensi-
ble abstraction of spatial information can be achieved by including abstract
qualitative knowledge and advancing to more expressive map features.
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