Top-k Retrieval in Description Logic Programs Under
Vagueness for the Semantic Web

Thomas Lukasiewicz'2 and Umberto Straccia®

I pIS, Sapienza Universita di Roma, Via Ariosto 25, [-00185 Roma, Italy
lukasiewicz@dis.uniromal.it

2 Institut fiir Informations systeme, Technische Universitit Wien,
Favoritenstrale 9-11, A-1040 Wien, Austria
lukasiewicz@kr.tuwien.ac.at
3 ISTI-CNR, Via G. Moruzzi 1, [-56124 Pisa, Italy
straccia@isti.cnr.it

Abstract. Description logics (DLs) and logic programs (LPs) are important rep-
resentation languages for the Semantic Web. In this paper, we address an emerg-
ing problem in such languages, namely, the problem of evaluating ranked top-k
queries. Specifically, we show how to compute the top-k answers in a data-
complexity tractable combination of DLs and LPs under vagueness.

1 Introduction

Description logics (DLs) and logic programs (LPs) are important representation lan-
guages for the Semantic Web. In this paper, we address an emerging issue, namely, the
problem of evaluating ranked top-k queries in a combination of such languages under
vagueness. Under the classical semantics, an answer to a query is a set of tuples that
satisfy a query. The information need of a user, however, very often involves so-called
vague predicates. For instance, in a logic-based e-commerce process, we may ask “find
a car costing around $15000” (see [[12])); or in ontology-mediated access to multimedia
information, we may ask “find images about cars, which are similar to a given one”
(see, e.g., [11419]). Unlike the classical case, tuples now satisfy these queries to a de-
gree (usually in [0, 1]). Therefore, a major problem is that now an answer is a set of
tuples ranked according to their degree. This poses a new challenge when we have to
deal with a huge amount of facts. Indeed, virtually every tuple may satisfy a query with
a non-zero degree, and thus has to be ranked. Of course, computing all these degrees,
ranking them, and then selecting the top-k ones is likely not feasible in practice.

In this work, we address the top-k retrieval problem for a data complexity tractable
combination of DLs and LPs under a many-valued semantics. In our language, at the
extensional level, each fact may have a truth value, while at the intensional level many-
valued DL axioms and LP rules describe the application domain.

2 Preliminaries

0o 1 m—1 m

The truth space that we consider here is the finite set [0, 1], = {,-, =, ..., 5,
(for a natural number m > 0), which is pretty common in fuzzy logic. Throughout the

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 16-30 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 17

[ID] MODEL [TYPE [PRICE] KM [COLORJAIRBAG|INTERIOR TYPEJAIR COND[ENGINE FUEL|
455 MAZDA3 Sedan 12500 {10000 Red 0 VelvetSeats 1 Gasoline

34 ALFA 156 Sedan 12000 {15000 Black 1 LeatherSeats 0 Diesel
1812|FORD FOCUS |StationVagon| 11000 [16000| Gray 1 LeatherSeats 1 Gasoline

Fig. 1. The car table

[ID[HOTEL[PRICE Single[PRICE Double[DISTANCE[[s |

1] Verdi 100 120 5Min 0.75
2 | Puccini 120 135 10Min 0.5
3 |Rossini 80 90 15Min {[0.25

Fig. 2. The hotel table

paper, we assume m = 100 in the examples with usual decimal rounding (e.g., 0.375
becomes 0.38, while 0.374 becomes 0.37).

A knowledge base K consists of a facts component F, a DL component O, and an
LP component P, which are all three defined below.

Facts Component. F is a finite set of expressions of the form
(R(c1y..y¢n)yS)

where R is an m-ary relation, every c; is a constant, and s is a degree of truth (or

simply score) in [0, 1],,,. For each R, we represent the facts (R(cy,...,cp),s) in F
by means of a relational n + 1-ary table T, containing the records {ci, ..., cp, S).
We assume that there cannot be two records {(c1, ..., ¢y, $1) and {c1, ..., cp, S2) in T

with s1 # so (if there are, then we remove the one with the lower score). Each table is
sorted in descending order with respect to the scores. For ease, we may omit the score
component and in such cases the value 1 is assumed.

Example 1 ([12]]). Suppose we have a car selling site, and we would like to buy a car.
The cars belong to the relation CarTable shown in Fig.[Il Here, the score is implicitly
assumed to be 1 in each record. For instance, the first record corresponds to the fact

(CarTable(455, MAZDAS, Sedan, 12500, 10000, Red, 0, VelvetSeats, 1, Gasoline), 1) .

Example 2 ([15/20]). Suppose we have information about hotels and their degree of
closeness to the city center, computed from the walking distance according to some pre-
defined function, and we would like to find a cheap hotel close to the city center. The
hotels belong to the relation CloseHotelTable shown in Fig.2l The column s indicates
the degree of closeness. For instance, the first record corresponds to the fact

(CloseHotelTable(1, Verdi, 100, 120, 5Min),0.75) .

Semantically, an interpretation T = (A, -T) consists of a fixed infinite domain A and
an interpretation function - that maps every n-ary relation R to a partial function
RT: A™ — [0,1],, and every constant to an element of A such that aZ #b% if a #b
(unique name assumption). We assume to have one object for each constant, denoting
exactly that object. In other words, we have standard names, and we do not distinguish

18 T. Lukasiewicz and U. Straccia

Cars C Vehicles LeatherSeats C Seats

Trucks T Vehicles VelvetSeats T Seats

Vans C Vehicles MidSizeCars C PassengerCars
LuzuryCars T Cars SportyCars T PassengerCars
PassengerCars C Cars CompactCars E PassengerCars
J1:CarTable C Cars Vehicles C 31 :hasMaker

Sedan T Cars Vehicles C 31 :hasPrice

StationWagon T Cars J1:hasPrice T Vehicles
39:CarTable C Seats J1:hasMaker C Vehicles

Mazda T CarMake 32:hasMaker C CarMaker
AlfaRomeo T CarMake Cars C 31:hasKm
Ford © CarMake 32:hasFuel C Fuel Type

Fig. 3. A car selling ontology

between the alphabets of constants and the objects in A. Note that, since R may be a
partial function, some tuples may not have a score. Alternatively, we may assume R”
to be a total function. We use the former formulation to distinguish the case where a
tuple ¢ may be retrieved, even though the score is 0, from the case where a tuple is not
retrieved, since it does not satisfy the query. In particular, if a tuple does not belong to
an extensional relation, then its score is assumed to be undefined, while if RZ is total,
then the score of this tuple would be 0.

An interpretation Z is a model of (or satisfies) a fact (R(cy,...,c,), s), denoted
Tk (R(c1,---,¢cn),8),iff RE(c1,...,c,) = s whenever RZ(cq, ..., c,) is defined.

DL Component. O is a finite set of axioms having the form
cin...nccce

(called concept inclusion), where all C; and C' are concept expressions. Informally,
C1M...MC; C C says that if cis an instance of C;; to degree s;, then ¢ is an instance of C'
to degree at least min(sy, ..., s;). A concept expression is either an atomic concept A
or of the form 3i: R, where R is an n-ary relation and i € {1, ..., n}. Informally, Ji: R
is the projection of R on the i-th column. These concepts are inspired by the description
logic DLR-Lite [2]], a LogSpace data complexity family of DL languages, but still with
good representation capabilities.

We recall that despite the simplicity of its language, the DL component is able to
capture the main notions (though not all, obviously) to represent structured knowledge.
In particular, the axioms allow us to specify subsumption, concept A; is subsumed by
concept As, using A1 T Ag; typing, using Ji: R T A (the i-th column of R is of
type A); and participation constraints, using A C 3i: R (all instance of A occur in the
projection of R on the i-th column).

Example 3. Consider again Example [[I An excerpt of the domain ontology is des-
cribed in Fig. [3] and partially encodes the web directory behind the car selling site
www . autos . com. For instance, the axiom

Vehicles C 31 :hasPrice

dictates that each vehicle has a price.

../../../../../Research/Articoli/Approximate%20Reasoning/SUM07/SUM07/www.autos.com

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 19

Semantically, an interpretation Z = (A, -Z) maps every atom A to a partial function
AT: A — [0,1],,. In the following, ¢ denotes an n-tuple of constants, and c|i] denotes
the i-th component of c. Then, - has to satisfy, for all ¢ € A:

(3i:R) (c) = sup R%(c).
c’ean, e’[i]=c, RE(c’) is defined

Then, Z }= C, M...MNC, CC iff, for all c€ A, min(C1%(c), ...,C/% (c)) < C%(c)
whenever all C;% (¢) are defined.

LP Component. P is a finite set of vague rules of the form (an example of a rule is
shown in Example 4] below.)

R(x) — Jy.f(Ri(z1),. .., Ri(z1),p1(21), - .., pn(2h))
where

. Ris an n-ary relation, every R; is an n;-ary relation,

. x are the distinguished variables;

. y are existentially quantified variables called the non-distinguished variables;

. Zi, z;. are tuples of constants or variables in x or y;

. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple c; a score p;(c;) €
[0, 1] ;- Such predicates are called expensive predicates in [3]] as the score is not
pre-computed off-line, but is computed on query execution. We require that an n-
ary fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate p’ such
that m < n and p = p’. Informally, all parameters are needed in the definition of p;

6. f is a scoring function f: ([0,1],,)"*" — [0, 1],,, which combines the scores

of the [relations R;(c;}) and the n fuzzy predicates p;(c}) into an overall score

to be assigned to the rule head R(c). We assume that f is monotone, that is,
for each v, v’ € ([0,1],,)"*" such that v < v/, it holds f(v) < f(v’), where

(V1,. . vgn) < (v, .., vy,) iff v, < wf for all i We also assume that the

computational cost of f and all fuzzy predicates p; is bounded by a constant.

We call R(x) the head and Jy.f(Ri(z1), ..., Ri(z1),p1(Z)),...,pn(2),)) the body
of the rule. We assume that relations occurring in O may appear in rules in P and that
relations occurring in F do not occur in the head of rules and axioms (so, we do not
allow that the fact relations occurring in F can be redefined by P or O). As usual in
deductive databases, the relations in F are called extensional relations, while the others
are intensional relations.

(S IOV (S

Example 4. Consider again Example 2l The following rule may be used to retrieve a
cheap single room in a hotel close to the city center:

q(x1,x2) «— CloseHotelTable(x1, T2, x3, x4, x5) - cheap(zs) ,
where)
przce)
250 7

In the rule, cheap is a fuzzy predicate that computes the degree of cheapness of a given
price. The overall score to be assigned to the retrieved hotels (c1, co) is computed as

cheap(price) = max(0,1 —

20 T. Lukasiewicz and U. Straccia

the product (which is here the scoring function) of the degree of the closeness of a hotel
(that is, the score of CloseHotelTable(cq, ca, c3, ¢4, ¢5)) and the degree of cheapness of
it (cheap(c3)). Clearly, the product is a monotone score combination function. We will
see that the instances of ¢(x1, 22) together with their score will be

ID HOTELHs

1 Verdi 0.45
2 Puccini {|0.26
8 Rossini (|0.17 .

Semantically, an interpretation Z is a model of arule r of the form R(x) «— Jy.¢(x, y),
where ¢(x,y) =3Fy.f(Ri(z1),..., Ri(z1),p1(21), ..., pn(2},)), denoted T = r, iff
for all ¢ € A™ such that R%(c) is defined, the following holds (where ¢7 (¢, ¢’) is ob-
tained from ¢(c, ¢’) by replacing every R; by RZ and every constant ¢ by ¢?):

R (e) > up (e, c).
c’eax-xA, ¢F(c,c’) is defined

We say 7 is a model of a knowledge base X, denoted Z |= IC, iff 7 is a model of each
expression E € FUOUP. We say K entails R(c) to degree s, denoted K |= (R(c), s),
iff for each model Z of K, it is true that RZ(c) > s whenever RZ(c) is defined. The
greatest lower bound of R(c) relative to K is glb(K, R(¢)) = sup{s | K = (R(c), s)}.

Example 5. The table in Example [l reports the greatest lower bound of the instances
of q(x1,x2). In particular, glb(KC, ¢(1, Verdi)) = 0.45.

Example 6. Consider again Example 3l Now, suppose that in buying a car, preferably
we would like to pay around $12000 and the car should have less than 15000 km. Of
course, our constraints on price and kilometers are not crisp as we may still accept
to some degree, e.g., a car’s cost of $12200 and with 16000km. Hence, these con-
straints are rather vague. We model this by means of so-called left-shoulder functions
(see Fig. Ml for some typical fuzzy membership functions), which is a well known fuzzy
membership function in fuzzy set theory. We may model the vague constraint on the
cost with [s(z; 10000, 14000) dictating that we are definitely satisfied if the price is less
than $10000, but can pay up to $14000 to a lesser degree of satisfaction. Similarly, we
may model the vague constraint on the kilometers with Is(z; 13000, 17000)@ We also
set some preference (weights) on these two vague constraints, say the weight 0.7 to
the price constraint and 0.3 to the kilometers constraint, indicating that we give more
priority to the price rather than to the car’s kilometers. The rules encoding the above
conditions are represented in Fig.[3l Rule (1) in Fig. 3 encodes the preference on the
price. Here, Is(p; 10000, 14000) is the function that given a price p returns the degree
of truth provided by the left-shoulder function s(- ; 10000, 14000) evaluated on the in-
put p. Similarly, for rule (2). Rule (3) encodes the combination of the preferences by
taking into account the weight given to each preference. The table below reports the
instances of Buy(z, p, k) together with their greatest lower bound.

! Recall that in our setting, all fuzzy membership functions provide a truth value in [0, 1],.

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 21

Fig. 4. (a) Trapezoidal function trz(z;a,b, c,d), (b) triangular function tri(z;a,b, c), (c) left
shoulder function Is(x; a,b), and (d) right shoulder function rs(z; a, b)

Pref1(xz,p) <« min(Cars(z), hasPrice(z, p), Is(p; 10000, 14000)) ; (1)
Pref2(xz,k) <« min(Cars(z), hasKM (x, k), Is(k; 13000, 17000)) ; (2)
Buy(x,p, k) < 0.7 - Prefl (z,p) + 0.3 - Pref2(z, k) . (3)

Fig. 5. The car buying rules

ID PRICE KM _||s

455 12500 10000][0.56
34 12000 15000(0.50
1812 11000 160001]0.60 .

The basic inference problem that we are interested in here is the top-k retrieval problem,
which is formulated as follows.

Top-k Retrieval. Given a knowledge base I, retrieve k tuples (c, s) that instantiate
the query relation R with maximal scores (if k£ such tuples exist), and rank them in
decreasing order relative to the score s, denoted

ansk (K, R) = Top,{(c,s) | s = glb(K, R(c))} .
Example 7. It can be verified that the answer to the top-2 problem for Example[6]is
ID PRICE KM ||s

1812 11000 16000(|0.60
455 12500 100001|0.56 .

Whereas for Example[3lthe answer to the top-2 problem is

ID HO TELHs
1 Verdi 0.45
2 Puccini {|0.26 .

3 Top-k Query Answering for Deterministic KBs

We next provide a top-down top-k query answering algorithm.
We say that K is deterministic if for each relation symbol R there is at most one
axiom or rule in X having R in its head. Given XC, we first note that we can remove the O

22 T. Lukasiewicz and U. Straccia

component by transforming axioms into rules. Indeed, can rewrite C; M1...MC; C C
as oo < min(oc,,...,00,), where

[Az) ifC=A
oc = R(ml,...7aci,17x7xi+1,...,mn) ifC:Ei:R7

and A is an atomic concept name. So, without loss of generality, we assume that O is
empty. Obviously, we may also use a more expressive O component in which we con-
sider axioms of the form f(Ci,...,C;) C C instead, where f is a score combination
function. The translation (and so semantics) would be o¢ < f(o¢y,...,00,).

Concerning the computation of the top-k answers, of course, we always have the
possibility to compute all answers, to rank them afterwards, and to select the top-k ones
only. However, this requires computing the scores of all answers. We would like to
avoid this in cases in which the extensional database is large and potentially too many
tuples would satisfy the query.

A distinguishing feature of our query answering procedure is that we do not deter-
mine all answers, but collect, during the computation, answers incrementally together
and we can stop as soon as we have gathered k answers above a computed threshold.

Overall, we build a procedure on top of current technology for top-k retrieval in
databases, specifically on RankSQL [9]. In the database we store the facts and new
derived facts and use RankSQL to retrieve incrementally new tuples. On top of it, we
have a reasoning module, which deals with the rules of the KB.

The presentation of our algorithm proceeds as follows. We first present a top-k an-
swering procedure for deterministic KBs. Then we address the more general case of
non-deterministic KBs as well. In the following, given an intensional relation @, we
denote by r¢ the set of all rules r : Q(x) < ¢ € P (that is, the set of all rules
r in P having @ in their head). Given r : Q(x) «— ¢ € P, we denote by s(Q,r)
the set of all sons of () relative to r (that is, the set of all intensional relation sym-
bols occurring in ¢). We denote by p(Q) the set of all parents of @, that is, the set
p(Q) ={R;: Q € s(R;,r)} (that is, the set of all relation symbols directly depending
on Q).

The procedure TopAnswers is detailed in Fig.[6l We assume that facts are stored into
database tables, as specified in the facts component description. We also use some auxil-
iary functions and data structures: (i) for each intensional relation P, rankedList(P) is
a database relation containing the current top-ranked instances of P together with their
score. For each P, the tuples (c, s) in rankedList(P) are ranked in decreasing order
with respect to the score s. We do not allow (c, s) and (¢, s’) to occur in rankedList(P)
with s # s’ (if so, then we remove the tuple with the lower score); (ii) the variable
dg collects the relation symbols that the query relation () depends orf; (iii) the array
variable ezp traces the rule bodies that have been “expanded” (the relation symbols oc-
curring in the rule body are put into the active list); (iv) the variable in keeps track of
the relation symbols that have been put into the active list so far due to an expansion (to
avoid, to put the same relation symbol multiple times in the active list due to rule body
expansion); (v) ¢ is a threshold with the property that if we have retrieved & tuples for

% Given a rule, the relation in the head directly depends on the relations in the body. Depends on
is the transitive closure of the relation “directly depends on” with respect to a set of rules.

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 23

Procedure TopAnswers(K, Q, k)
Input: KB /C, intensional query relation symbol @, k > 1;
Output: Mapping rankedList such that rankedList(Q) contains top-k answers of @
Init: 6 = 1, for all rules r : P(xz) < ¢in P do
if P intensional then rankedList(P) = ();
if P extensional then rankedList(P) = Tp endfor

1. loop
2. Active :={Q}, dg :== {Q}, in := 0,
for all rules 7 : P(x) < ¢ do exp(P,r) = false;
3. while Active # () do
4. select P € A where r : P(x) «— ¢, Active := Active \ {P}, dg := dg U s(P,7);
5. (t,s) := getNextTuple(P,T)
6. if (¢, s) # NULL then insert (¢, s) into rankedList(P),

Active := Active U (p(P) N dg);

7. if not exp(P,r) then exp(P,r) = true,
Active := Active U (s(P,) \ in), in := in U s(p, r);

endwhile

8. Update threshold 4;

9. until rankedList(Q) does contain k top-ranked tuples with score above §
or rL' = rankedList;

10. return top-k ranked tuples in rankedList(Q);

Procedure getNext Tuple(P, 1)
Input: intensional relation symbol P and rule r: P(x) < Jy.f(Ri(21),..., Rn(2z1)) €P;
Output: Next tuple satisfying the body of the r together with the score

loop
1. Generate next new instance tuple (¢, s) of P,

using tuples in rankedList(R;) and RankSQL

2. ifthereisno (t,s’) € rankedList(P,r) with s < s’ then exit loop

until no new valid join tuple can be generated
3. return (t, s) if it exists else return NULL

Fig. 6. The top-k query answering procedure

with the score above ¢, then we can stop, as it is guaranteed that any new tuple being
an instance of () has a score below §. The threshold ¢ is determined by the RankSQL
system and is described in more detail in [316].

Overall, the procedure works as follows. Assume, we are interested in determining
the top-k answers of Q(x). We start with putting the relation symbol @ in the active
list of relation symbols Active. At each iteration step, we select a new relation sym-
bol P from the queue Active and get a new tuple (getNexTuple(P,r)) satisfying the
rule body r whose head contains P with respect to the answers gathered so far. If the
evaluation leads to a new answer for P ({(t,s) # NULL), we update the current an-
swer set rankedList(P) and add all relations P; directly depending on p to the queue
Active. At some point, the active list will become empty and we have actually found
correct answers of Q(x). A threshold will be used to determine when we can stop

24 T. Lukasiewicz and U. Straccia

retrieving tuples. Indeed, the threshold determines when any newly retrieved tuple for
@ scores lower than the current top-k, and thus cannot modify the top-k ranking (step
9). So, step 1 loops until we do not have k answers above the threshold, or two succes-
sive loops do not modify the current set of answers (step 9). Step 2 initializes the active
list of relations. Step 3 loops until no relation symbol has to be processed anymore. In
step 4, we select a relation symbol to be processed. In step 5, we retrieve the next answer
for P. If a new answer has been retrieved (step 6, (¢, s) # NULL), then we update the
current answer set rankedList(P) and add all relations P; that directly depend on P to
the queue Active. In step 7, we put once all intensional relation symbols appearing in
the rule body of P in the active list for further processing.

Finally, the getNextTuple procedure’s (see Fig.[6) main purpose is, given a relation
symbol P and arule : P(x) < ¢, to get back the next tuple (and its score) satisfying
the conditions of the rule r. It essentially converts r into a RankSQL query to be sub-
mitted to the database engine (the translation is pretty standard) and returns the next top
ranked unseen tuple.

Example 8. For instance, consider
Buy(x,p, k) < 0.7 - Preft (xz,p) + 0.3 - Pref2(z, k)

as described in Example[@l Step 2 of the getNext Tuple procedure can be implemented
as the RankSQL query

SELECT pl.id, pl.price, p2.km

FROM rankedList(Prefl) p1, rankedList(Pref2) p2

WHERE pl.id = p2.id AND (exclude already processed tuples for rule r)
ORDER BY 0.7*pl.s + 0.3*p2.s

NEXT 1

The NEXT £ statement allows incrementally to access to the next k tuples of the query
(see the iMPro algorithm in [3]). We also use the condition “exclude already processed
tuples for rule »” to guarantee that we do not join tuples twice for the rule 7. This can be
implemented using additional flags in rankedList(Prefi). Afterwards, we can proceed
with the other steps of the getNext Tuple procedure.

For more details on RankSQL, the interested reader may refer to [98]. Using Rank-
SQL [9]] has a further advantage as it directly provides us the threshold ¢ (see [3l6]]) to
be used to stop the computation.

Example 9. Assume that we have the following query rule

Q(.”L') — min<R1(x’y)vR2(yvz)))

where () is the query relation, and R; and R, are extensional relations with tables as
described in Fig.[/] left side. A top-2 retrieval computation is reported in Fig. [7} right
side. In this case, the threshold ¢ is computed as (see [6])
6 = tf‘.score - t;—.score
b2 = tI.score - té‘.score
(5 = max((ﬁl,&g) 5

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 25

o’ || R |

TopAnswers
1 [la b 1.0[m h 0.95] [77JActiveP[A, [rankedList(P) [0
2 [e d 0.9][m j 085 A g [0l k.075) (e k.0.75) 0.8
3 lle J 08\ f kOT5) 5 [Q[(I, k,0.7) |(e, k,0.75), (, &, 0.7) 0.75
4 ||t m 0.7)lm n 0.65) 37 [Q[{7,7,0.7) |{e, k,0.75), (I, k, 0.7), {1, 7,0.7)|0.75
5o p 0.6]|p ¢ 0.55) L. 0.65 | (€ 5:0.75), (I, h, 0.7), 07
P I O A (R B e '

Fig. 7. Facts and computation of Example[9]

TopAnswers
It.JActive| P|A, |rankedList (P) |6
1. 1Q Q|(1, Verdi, 0.45) (1, Verdi, 0.45) -
2.1Q Q|(2, Puccini, 0.26)|(1, Verdi, 0.45), (2, Puccini, 0.26)|0.25

Fig. 8. Facts and computation of Example [10]

where tf- is the last tuple seen in R;, while tiT is the top ranked one in R;. With ¢;.score
we indicate the tuple’s score.

The first call of getNextTuple(Q) finds the tuple (e, k,0.75). In the second call,
we get (I, h,0.7). In the third call, we get (I, j,0.7). Finally, in the fourth call, we re-
trieve (I,n,0.65). As now rankedList(Q)) contains two answers not smaller than the
threshold 0.7, RankSQL will stop in providing new tuples in the getNextTuple proce-
dure, and we return {{e, k,0.75), (I, h,0.7) }. Note that no additional retrieved answer
may have a score above 0.7. Indeed, the next one would be (o, ¢, 0.55). Hence, in this
case, not all tuples are processed.

Example 10. Consider Example[d and the query
q(z1,z2) «— CloseHotelTable(x1, xa,x3,24,x5) - cheap(xs) .

The top-2 computation is shown in Fig. |8l After the second iteration, RankSQL stops
(see [3]) in providing new tuples in the getNextTuple as we have already two tuples
for ¢ above the threshold, and RankSQL also knows that any successively retrieved
tuple have a score below 0.25- 1.0 = 0.25 (1.0 is assumed as the highest possible score
for the degree of cheapness of the price for the single room in hotel Rossini). Of course,
in the worst case, RankSQL has to sequentially scan the whole table as we may not
know in advance how the fuzzy predicate cheap evaluates on the tuples. In fact, the tuple
with the lowest degree of closeness may end up with the highest degree of cheapness.

Let us briefly discuss the computational complexity. Let I be a KB. As we have seen,
the O component can be translated into P, and thus @ = () can be assumed. Let Dq
be the set of relation symbols that depend on the query relation symbol (). Of course,
only relation symbols in Dg may appear in Active. Let ground(F U P) denote the
grounding of the logic program F U P. For a rule r; of the form R;(x) < Jy.¢;(x, y),
let k; be the arity of the body of the rule 7, and let £ be the maximal arity for all rules

26 T. Lukasiewicz and U. Straccia

in P. Let p; be of arity n;, and let n be the maximal arity of relation symbols. Therefore,
the number of ground instances of this rule is bounded by | HU |*+, and thus is bounded
by |HU|*, where HU is the Herbrand universe of F U P. Similarly, the number of
ground instance of R; is bounded by | HU|™, and thus is bounded by | HU|™. Let ¢; be
the cost of evaluating the score of the rule body of r;.

Now, observe that any tuple’s score is increasing as it enters in rankedList. Hence,
the truth of any ground instance of relation symbol R; is increasing as R; enters in
the Active list (step 6), except it enters due to step 7, which may happen one time
only. Therefore, each R; will appear in Active at most O(|HU|" - m + 1) timesH as a
relation symbol is only re-entered into Active if a ground instance of R;(x) evaluates
to an increased value, plus the additional entry due to step 7. As a consequence, the
worst-case complexity is

"om+41)).

oY e (HU

R;€Dg

If for ease we assume that the cost ¢; is O(1) and that m is a fixed parameter (that is,
a constant), then we get a worst-case complexity of

O(lground(F UP)]),

and so TopAnswer is exponential with respect to |F U P| (combined complexity), but
polynomial in | F| (data complexity), and so is as for classical Datalog. The complexity
result is not surprising as we resemble a top-down query answering procedure for Data-
log. We have the following termination and correctness result (termination is guaranteed
by the finiteness of [0, 1],, and the monotonicity of the score combination functions).

Theorem 1. Let K be a deterministic KB, and let Q be a query. Then, Top Answers (K,
Q, k) terminates with TopAnswers(K, Q, k) = ansi(K, Q).

4 Top-k Query Answering for General KBs

Our top-k retrieval algorithm is based on the fact that whenever we find k tuples with
score above the threshold we can stop. Unfortunately, if R is in the head of more than
one rule, this is no longer true, and we have to modify slightly the computation of the
threshold. Note that since interpretations involve partial functions, e.g., R(z) — R;(z)
and R(xz) «— Ry(x) are not the same as Q(z) < max(R;(z), R2(x)) (in the latter
case, x has to belong to both R; and Ry, while in the former case, it suffices that
belongs either to R; or to RQ)H

To accommodate the case where not always |rr| < 1, we have to make the following
modifications to the TopAnswer procedure as shown in Fig. [0 Essentially, we process
all rules related to a selected relation symbol P (step 4.1), and the threshold is updated
according to step 8, where each 6,., for r € 7, is the threshold determined by RankSQL

? We recall that m is the parameter in [0, 1],y,.
* If for an application we may live with Q(z) « max(R; (), Ra(x)), then this guarantees that
we may restrict our attention to deterministic KBs.

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 27

Procedure TopAnswersGen(IC, Q, k)
Input: KB /C, intensional query relation Q, k > 1;
Output: Mapping rankedList such that rankedList(Q) contains top-k answers of Q
Init: § = 1,Vr € rg.6, = 1,for allrules r : P(x) < ¢ in P do
if P intensional then rankedList(P) = 0;
if P extensional then rankedList(P) = Tp endfor

1. loop

2. Active :=={Q}, dg := {Q}, in := 0,
for all rules r : P(x) < ¢ do exp(P,r) = false;

3. while Active # 0 do

4. select P € A, Active := Active \ {P};

4.1 forallr : P(x) — ¢ € P, dg := dgU s(P,r);

5. (t,s) := getNextTuple(P,r)

6. if (t,s) # NULL then insert (t, s) into rankedList(P),
Active := Active U (p(P) N dg);

7. if not exp (P, r) then exp(P,r) = true,
Active := Active U (s(P,r) \ in), in := in U s(p, r);

endfor
endwhile

8. Update threshold as 6 = maXrerg O

9. until rankedList(Q) does contain k top-ranked tuples with score above §
or rL' = rankedList;

10. return top-k ranked tuples in rankedList(Q);

Fig. 9. The top-k query answering procedure for general KBs

as for the deterministic case. Here, we have to use max, since a tuple instantiating the
query relation () may be derived for some of the rules in rg. The following example
illustrates the basic principle behind the TopAnswersGen procedure.

Example 11. Consider the rules

r1: Q(x) — Ri(z);
r2: Q(z) — P(x);
r3: P(x) < Ra(z)

and facts in Fig. left side. The top-2 computation is shown in Fig. [IQ right side.
After step 5, we can stop, since we already have two answers with a score above the

threshold 0.4, and we do not need to continue anymore. Note that any successively
retrieved answer, e.g., (e, 0.3) has a score below the threshold 0.4.

The complexity is as for the deterministic case, and we have the following termination
and correctness result.

Theorem 2. Let K be a general KB, and let Q) be a query. Then, TopAnswersGen (K,
Q, k) terminates with TopAnswersGen (K, Q, k) = ansi(K, Q).

28 T. Lukasiewicz and U. Straccia

TopAnswers

Ry Rs [t.|Active|P|Ar |mnkedList(P) |6 |6T1|6T2

ID[s | [ID] s | [1.]@ |QNa,0.5)](a,0.5) 1.0[0.5]1.0
al05][cl07] [2[P |P|(c,0.0) [(c,0.7) -
b (04 [d 02| [3.[Q |Q|(b,0.4) {a,0.5), (b,0.4) 1.0[0.41.0
e 03] [g 01 Q |Q[(c,0.7) [(c, 0.7, {a,0.5), (b,0.4) 0.7]0.4]0.7
£10.1] [h [0.05| [4 [P |P[(d,0.2)|(c,0.7), (d,0.2) -
510 |Q|(d,0.2)](c, 0.7, (a, 0.5, (b, 0.4), (d,0.2)|0.4]0.4]0.2

Fig. 10. Facts and computation of Example [T

5 Related Work

While there are many works addressing the top-k problem for vague queries in
knowledge representation and reasoning. For instance, [21] considers non-recursive
fuzzy logic programs in which the score combination function is a function of the score
of the atoms in the body only (no expensive fuzzy predicates are allowed). The work
[L6] considers non-recursive fuzzy logic programs as well, though the score combina-
tion function may consider expensive fuzzy predicates. However, a score combination
function is allowed in the query rule only. We point out that in the case of non-recursive
rules and/or axioms, we may rely on a query rewriting mechanism, which, given an
initial query, rewrites it, using rules and/or axioms of the KB, into a set of new queries
until no new query rule can be derived (this phase may require exponential time relative
to the size of the KB). The obtained queries may then be submitted directly to a top-k
retrieval database engine. The answers to each query are then merged using the disjunc-
tive threshold algorithm given in [16]. The works [[17/15] address the top-k retrieval
problem for the description logic DL-Lite only, though recursion is allowed among the
axioms. Again, the score combination function may consider expensive fuzzy predi-
cates. However, a score combination function is allowed in the query only. The work
[19] shows an application of top-k retrieval to the case of multimedia information re-
trieval by relying on a fuzzy variant of DLR-Lite. Finally, [18] addresses the top-k
retrieval for general (recursive) fuzzy LPs, though no expensive fuzzy predicates are
allowed. Closest to our work is clearly [18]. In fact, our work extends [18]] by allowing
expensive fuzzy predicates, which have the effect that the threshold mechanism de-
signed in [[18] does not work anymore. Furthermore, in this paper, we made an effort to
plug-in current top-k database technology, while [18] does not and provides an ad-hoc
solution. Though we have not yet performed experimental evaluations, we hope that
this choice, beside allowing a more expressive language, will provide better efficiency.

6 Summary and Outlook

The top-k retrieval problem is an important problem in logic-based languages for the
Semantic Web. We have addressed this issue for a combination of a fuzzy DL and LP.

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 29

An implementation of our algorithm is under development, by relying on RankSQL.

Other main topics for future work include: (i) Can we apply similar ideas to more ex-
pressive DLs and/or non-monotonic LPs? (ii) How can we approach the top-k problem
under a probabilistic setting, or more generally under uncertainty, possibly relying on
emerging top-k retrieval systems for uncertain database management [13/14]]?

Acknowledgments. Thomas Lukasiewicz is supported by the German Research Foun-
dation (DFG) under the Heisenberg Programme. We thank the reviewers for their con-
structive and useful comments, which helped to improve this work.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases:
Mapping strategies and performance evaluation. ACM TODS 27(2), 153-187 (2002)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proc. KR-2006, pp. 260-270 (2006)

. Chang, K.C.-C., Hwang, S.-W.: Minimal probing: Supporting expensive predicates for top-k

queries. In: Proc. SIGMOD-2002, pp. 346-357 (2002)

. Fagin, R.: Combining fuzzy information: An overview. SIGMOD Rec. 31(2), 109-118

(2002)

. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proc.

PODS-2001 (2001)

. Ilyas, LE., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational data-

bases. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases, Information Systems,
and Peer-to-Peer Computing. LNCS, vol. 2944, pp. 754-765. Springer, Heidelberg (2004)

. llyas, L.F.,, Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.: Adaptive

rank-aware query optimization in relational databases. ACM TODS 31(4), 1257-1304 (2006)

. Li, C, Chang, K.C.-C., Ilyas, I.F.: Supporting ad-hoc ranking aggregates. In: Proc. SIGMOD-

2006, pp. 61-72 (2006)

. Li, C., Chang, K.C.-C,, Ilyas, L.F,, Song, S.: RankSQL: Query algebra and optimization for

relational top-k queries. In: Proc. SIGMOD-2005, pp. 131-142 (2005)

Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible databases.
ACM TODS 29(2), 319-362 (2004)

Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information retrieval. J.
ACM 48(5), 909-970 (2001)

Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.M.: Vague knowledge bases
for matchmaking in P2P e-marketplaces. In: Proc. ESWC-2007, pp. 414428 (2007)

Ré, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on probabilistic data. In:
Proc. ICDE-2007, pp. 886-895 (2007)

Soliman, M.A., Ilyas, L.F., Chang, K.C.: Top-k query processing in uncertain databases. In:
Proc. ICDE-2007, pp. 896-905 (2007)

Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proc. IPMU-2006, pp. 2238-
2245 (2006)

Straccia, U.: Towards top-k query answering in deductive databases. In: Proc. SMC-2006,
pp. 4873-4879 (2006)

Straccia, U.: Towards top-k query answering in description logics: The case of DL-Lite. In:
Proc. JELIA-2006, pp. 439451 (2006)

Straccia, U.: Towards vague query answering in logic programming for logic-based informa-
tion retrieval. In: Proc. IFSA-2007, pp. 125-134 (2007)

30 T. Lukasiewicz and U. Straccia

19. Straccia, U., Visco, G.: DLMedia: An ontology mediated multimedia information retrieval
system. In: Proc. DL-2007 (2007)

20. Vojtas, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124, 361-370 (2001)

21. Voités, P.: Fuzzy logic aggregation for semantic web search for the best (top-k) answer. In:
Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web. Capturing Intelligence, ch. 17, pp.
341-359. Elsevier, Amsterdam (2006)

	Introduction
	Preliminaries
	Top-k Query Answering for Deterministic KBs
	Top-k Query Answering for General KBs
	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

