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Abstract. We analyze the security of elastic block ciphers againsirkepvery
attacks. An elastic version of a fixed-length block ciphervsriable-length block
cipher that supports any block size in the range of one to imved the length of
the original block. Our method for creating an elastic blogkher involves in-
serting the round function of the original cipher into a gith§on-permutation
network. In this paper, we form a polynomial-time reductimween the elastic
and original versions of the cipher by exploiting the ungied network structure.
We prove that the elastic version of a cipher is secure agaigigen key-recovery
attack if the original cipher is secure against such anlat@ar analysis is based
on the general structure of elastic block ciphésms (the network’s structure, the
composition methods between rounds in the network and thiedgenethodol-
ogy) and is independent of the specific cipher.

keywords: variable-length block ciphers, security analysis, reiucproof, key
recovery attacks.

1 Introduction

Elastic block ciphers are variable-length block cipheesated from existing block ci-
phers [5]. The elastic version of a block cipher supportstdogk size between one and
two times that of the original block length, and results iranputational workload for
encryption that is proportional to the actual block sizer @ethod for creating elastic
block ciphers consists of a substitution-permutation eetvthat uses the round func-
tion from the existing fixed-length block cipher as a black.bBlastic block ciphers,
in turn, can be combined with modes of encryption to suppactyption of any size
cleartext.

Traditionally, block ciphers are designed to support a ifigdalock size, with the
security analysis and design optimized for the supportedkbtize. For a variable-
length block cipher, a more general analysis is required/éideevaluating the cipher
separately for each supported block length. Furthermarreglistic block ciphers it
is preferable to be able to analyze the ciphers as a categarp@osed to evaluating
each one individually against specific attacks to which tkedfilength versions have
previously been proven to be immune.

** This work was performed while the author was at Columbia Ersiity.



We have extensively analyzed both the underlying struatsesl to create elastic
block ciphers and practical examples of elastic block diph®ur analysis has ranged
from proving that elastic block ciphers, in theory, provideiable length pseudorandom
permutations (PRPs) and strong PRPs to creating and anglyancrete examples [4].
In this work, we present our analysis of the security of édstock ciphers against
practical attacks. These attacks typically attempt tovecthe keys or the round keys of
the block cipher. Differential cryptanalysis [3, 7], lireayptanalysis [9] and exhaustive
search methods are instances of such attacks (but othaekeyery attacks exist [2,
13)).

We prove, in general, that the elastic version of a block @ipk secure against
attacks that attempt to recover key bits if the original,ditength version of the cipher
is secure against such attackxur method is unique in that we show how to convert
such an attack on the elastic version directly into an attackhe original version with
a polynomially related time complexitynlike generic design methodologies, where
the component from which security is derived is a well defibéatk-box building
block [6], our proof requires identifying the presence ob@di-length instance of the
block cipher embedded inside the elastic design even thibisggthe round function and
not the original block cipher in its entirety that is used dsesck box. As a result of our
proof, if the original cipher is (assumed, shown heuridffcar proven to be) immune
to a certain type of attack (such as linear or differentigptanalysis) then the elastic
version is also (respectively assumed, shown heuristjaallproven to be) immune to
the attack in the same sense (with polynomially relatedrpatars that we concretely
calculate).

The use of the round function of the original block cipher aslack box in the
elastic version, together with the methods by which we caegounds and schedule
key material, is what enables us to relate the security oethastic version of a block
cipher directly to the security of the original cipher. Owengral approach is moti-
vated by reduction-oriented proofs of security. Such ptecofiniques are not typical in
symmetric-key cryptography, especially in concrete desidor a survey of proof tech-
niques in this area, see [12]:Chapter 4), and are more conmgeneric designs that
assume strong secure componeatg.(assuming a componentis a random function or
a pseudorandom function [8]).

Our elastic block cipher design exploits existing compdseia cipher to gain ef-
ficiency and avoids using the entire fixed-length cipher alsiekbbox (as was done in
earlier work, [1, 11]). Thus, it may appear at first that thiitgito perform a reduction-
based proof is lost. However, the methodology presente@linvtork demonstrates
that even concrete designs that use components of a cipheresart to reduction-
like proof techniques if the components’ properties anddhmposition methods are
carefully chosen, even with respect to concrete key-ragaigacks as opposed to only
distinguishability attacks, which are more typical in istigations of a formal theoret-
ical nature. To the best of our knowledge, this type of methagly is new in this area.
While it is not common in block cipher design, we believe itlwie a useful analysis
tool in settings that employ cipher components within edzhcontexts, and may also
be of independent interest.



The remainder of the paper is organized as follows. Sectsum2marizes the con-
struction of elastic block ciphers. Section 3 defines theti@hship between the security
of the elastic version of a block cipher against key recowattgcks to the security of
the original cipher against such attacks. Section 4 comsltite paper.

2 Elastic Block Cipher Review

2.1 Overview

We briefly review our method for creating elastic block cighis]. The method con-
verts the encryption and decryption functions of any emgstblock cipher to accept
blocks of sizeb to 2b bits, whereb is the block size of the original block cipher. The
general structure of an elastic block cipher is shown in fFédu An elastic version of
a block cipher is created by inserting the cycle of the oabfixed-length block cipher
into the network structure to form the round function of thaséc version. In each
round the leftmosb bits are processed by the round function and the rightmdsts
are omitted from the round function. Afterwards, the rigbsty bits are XORed with a
subset of the leftmostbits and the results swapped. This swapping of bits may be omi
ted after the last round. The number of rounds in the elastision is set such that the
round function is applied to each bit position at least theesaumber of times as in the
fixed-length version. The elastic version also includesaihand end-of-round whiten-
ing, and an initial and final key-dependent permutation. Kéedependent permuta-
tions are present to prevent an attacker from knowing witmodability of 1 exactly
whaty bits are omitted from the first application of the round fimictwhen encrypt-
ing or decrypting. Decryption is performed by applying tlegwork in reverse with the
round function ofG’ replaced by its inverse, specifically the inverse of theeyrl.

We use the following notation from the definition of elastiodk ciphers [5] through-
out the remainder of this paper.
Notation:

— G denotes any existing block cipher with a fixed-length bldzk $hat is structured
as a sequence of rounds. By default, any block cipher thadtistnuctured as a
sequence of rounds is viewed as having a single round.

— Acycle inG refers to the point at which altbits of the block have been processed
by the round function ofz. For example, iiG is a Feistel network, a cycle is the
sequence of applying the round function®fo the left and right halves of thebit
block. In AES [10], the round function is a cycle.

— r denotes the number of cycles@h

— b denotes the block length of the inputdbin bits.

— yis aninteger in the range, b].

— @' denotes the modifie@ with a (b + y)-bit input for any valid value of;. G’ will
be referred to as the elastic versiontaf

— 7’ denotes the number of roundsai.

— The round function oz’ will refer to one entire cycle ofs.

— The swap step will refer the step in which the rightmgdtits are XORed withy
bits from the leftmosb bits and the results swapped.
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Fig. 1. Elastic Block Cipher Structure

The elastic version of a block cipher requires a greater rarrobexpanded key
bits than the original, fixed-length version. In practicptions for the key schedule
include using a stream cipher to generate all expanded keyapplying the original
key schedule multiple times, or using the original key schedr some expanded key
bits and a stream cipher or other algorithm for the additikag bits. We note that the
use of a stream cipher for the key schedule allows for a gehesi schedule across
all elastic block ciphers and increases the pseudorandeswri¢he expanded key bits
when compared to existing key schedules, although in peadhis incurs the cost of
a decrease in the rate of key expansion [4]. The acceptalblioreships between the
expanded key bits of the elastic version and the originalbkts/are expressed in the
security analysis below.

3 Security Analysis

3.1 Overview

For any concrete block cipher used in practice, as opposadthteoretical construction
of a pseudorandom permutation (PRP), the cipher cannotdwepisecure in a formal



sense (is not proven to be a PRP or strong PRP) but rathervempay shown under
certain assumptions to be secure against known types okatthus, we can only do
the same for the elastic version of such a cipher. In orderdwige a general under-
standing of the security of elastic block ciphers, we prevadnethod for reducing the
security of the elastic version to that of the original vemsishowing that a security
weakness i’ implies a weakness 6. Our security analysis af’ exploits the fact
that there is an instance 6f embedded irG’ and is independent of the specific block
cipher used fo(.

We prove that?’ is secure against any attack that attempts to recover therkbg
expanded-key bits i€; is secure against the attack, under certain assumptiortseon t
independence of the expanded-key bitgih This is accomplished by showing how
to convert such an attack @i to an attack orz. We believe this result is important
because it implies tha®’ does not have to be analyzed against any practical attack to
which G is immune (unless a more refined analysis than the reducti@yuired). Our
approach is novel because we show how to convert an attackeowariable-length
version of a block cipher directly into an attack on the fixedgth version of the block
cipher, and, in general, it points out at a direction of idfgimtg embedded ciphers inside
ciphers when the design is not purely of a black box fashion.

Security against key recovery attacks does not by itselfyinspcurity €.g.,the
identity function which ignores the key is insecure whilg/ kecovery is impossible).
However, all concrete attacks against real ciphers (lirdifierential, higher order dif-
ferential, impossible differential, related key attackis,) attempt key or expanded-key
recovery and thus practical block ciphers should be seayménst such attacks. We
note that if there is a relationship between the plaintext eiphertext bits that does
not involve the key bits, this relationship would either rfiest itself in the results of
statistical tests on whatever versions of the block cipbegipal and/or elastic) for
which the relationship holds, and/or as algebraic equatietating the plaintext and
the ciphertext.

3.2 G within G’

Before stating our theorem, we provide some preliminarylyaigthat assists us in
conveying the linkage between the original and elasticigassof a block cipher. For
simplification of terminology only, we will refer to the fixeldngth block ciphet: as if
the round function of5 is a cycle and omit using the term "cycle”. For a@jin which a
cycle involves multiple applications of the round functisach as in a Feistel network,
our analysis holds by referring to a cycle@finstead of the round function @f.

We first draw attention to the fact that the operations peréatinG’ on the leftmost
b-bit positions in- consecutive rounds is an application(afThis is depicted intuitively
in Figure 2. We note that we are concerned only wittonsecutive rounds @’ and do
not include either the initial or final key-dependent peratioh present in the definition
of elastic block ciphers. This relationship betwegghand G can be used to convert
an attack which finds the round keys f6f to an attack which finds the round keys
for G. Let G, denoteG using round keys'k and letG,’ denoteG’ using keyk.
Let (p, ¢) be ab-bit (plaintext, ciphertext) pair, and letandz each be of lengtly. ||
denotes concatenation.@;’(p || ) = ¢ || z, a set of round keys;k, for G such



thatG,x(p) = ¢ can be formed from the round keys and the round output’iby
collapsing the end-of-round whitening and swap steps’imto a whitening step. The
leftmostb bits of the initial whitening in&’ are used as the initial whitening @and the
rightmosty bits of the initial whitening inG’ are dropped. The resulting end-of-round
whitening key bits foiGG will vary in up toy positions across the (plaintext, ciphertext)
pairs when collapsing the steps fraffi; however, it is possible to use these keys to
solve for the round keys af.

Round of G’ Round of G
‘ b bits ‘ ‘ y blts‘
| =

} whitening

y-bit shaded areas

XORed together,
remaining b-y bits *
unchanged

Fig. 2. G within G’

The following claim shows that for any set of (plaintext,logstext) pairs encrypted
under sets of round keys & where the rightmosy bits used for whitening in each
round may vary amongst the sets and all other key bits ardid@éamongst the sets,
there exists a corresponding set of (plaintext, cipherteairs for G where the round
keys used in¢’ for the round function and the leftmoktits of each whitening step
are the same as those used:inthe plaintexts used it are the leftmosb bits of the
plaintexts used i, and the ciphertexts fak are the leftmosb bits of output of the
r*" round of G’ prior to the swap step.

Claim 1:Let G be ab-bit block cipher and>’ be its elastic version. Lgt(pi, ci)} denote

a set ofn (plaintext, ciphertext) pairs such thai| = |ci| = b. Letb + y be the variable
block size forG’ where0 < y < b. Letw be ay-bit constant. Leb: be ay bit string
that may vary pet, fori = 1 ton. Under the following assumptions regarding the key
schedules:

— The rightmosty bits of each whitening step i6’ can take on any value and are
independent of any other expanded-key bits within the ramalin other rounds.



— There are no message-related expanded keys. Any expaesgidiitk utilized inG
depend only on the key and do not vary across plaintext oectpkt inputs.

— Any expanded-key bits used in the round function ofititensecutive rounds @’
can take on the same values as the expanded-key bits usesinoutid functions
of G.

— If G contains initial and end-of-round whitening, any expan#led bits used for
the leftmosb bits of each whitening step inconsecutive rounds @’ can take on
the same values as the whitening bit€in

if Gi(pi) = ci then there exista sets of round keys for the firstrounds ofG’ that are
consistent with inputgi || w producingei || vi as the output of the*” round prior to
the swap step at the end of thé round, fori = 1 to n, such that the leftmost bits
used for whitening in each round are identical acrossitkets and any expanded-key
bits used internal to the round function are identical atbhen sets.

Proof. Letrk = {rko, rk1,...rk,} be the set of round keys corresponding to kepr
G. rky denotes the key bits used for initial whitening. For eggh ci), form a set of
the firstr round keys forG’ as follows: Pick a constant strings, of y bits, such as a
string of 0’s. Let pi || w be the input toG’. Let rki’ = {rki(, rki},...rki.} denote
the round keys fotz’ through thert” round for the pair(pi, ci). Set any bits ik’
used internal to the round function to be the same as thesponeling bits in'k;. Set
the leftmosth bits used for whitening imki’; to theb bits used for whitening ink; .
Set the rightmosy bits used for whitening imki’; to be the same as thgebits left out
of the round function in roung of G’. This is illustrated in Figure 3. Notice that the
leftmostb bits used for whitening in each round are identical across tbets of round
keys formed, and any bits used internal to the round funai@enidentical across the
n sets; specifically, they correspondstb in each case, and the rightmagsbits used
in each whitening step differ based @, ci) across the: sets. The case in whia#
does not contain whitening steps corresponds to using Othédeftmosb bits of each
whitening step inG’.

The operations of’ on the leftmosb bits of rounds 1 through round prior to the
last swap, are identical to the operation&3p(pi) because the swap stepdi results
in XORing y bits of a round function’s output with 0’s. Thus, the leftmosk bits in
the output of the*" round prior to the swap step is. Therefore, fori = 1 to n there
exists a set of round keysk:’ for G/, such thatz’(pi) produces:i as the leftmosb
bits in ther” round prior to the swap step, thus proving the claim.

3.3 Reduction Between the Original and Elastic Versions of &ipher

We use the fact that an instance(®fs embedded i+’ to create a reduction frod’ to

G. As aresult of this reduction, an attack agaifithat allows an attacker to determine
some of the round keys implies an attack agaidsthat is polynomially related in
resources to the attack @. Assuming that7 itself is resistant to such attacks, we
conclude thaty is also resistant to such attacks. We note that if an attadk fime key
as opposed to the expanded-key bits (the round keys) thexttttwder can apply the key
schedule to the key to obtain the round keys. Therefore, ranalysis, we view any
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key recovery attack as providing the round keys to the attadkhe reduction requires
a set of (plaintext, ciphertext) pairs. This is not considiea limiting factor because
in most types of attacks, whether they are known plaintéxdsen plaintext, adaptive
chosen plaintext, chosen ciphertext.,the attacker acquires a set of such pairs.

In our analysis, we considé#¥’ without the initial and final key-dependent permu-
tations. This allows us to focus on the core components oélasgtic block cipher al-
gorithm. If present, the initial and final permutations osérve to increase the security
of G’ since they prevent an attacker from knowing with probapdite which bits are
omitted from the first application of the round function whesrcrypting or decrypting.
Furthermore, since these permutations are added stepppfasas to modifications to
components ofy) using key material that is independent of the round andeslmig
key bits, they do not impact our analysis.

Theorem 1. Given a fixed-length block cipheg, that works onb-bit blocks and its
elastic version(&’, that works on(b + y)-bit blocks, wherd < y < b, if there exists an
attack, A, onG’ that allows the round keys to be determinedifaonsecutive rounds
of G’ using polynomial (irb and/orr) time and memory, then there exists an attack on
G with r rounds that finds the round keys f@rand that uses polynomial (inand/or

) many resources ad,, assuming:

— There are no message-related expanded keys. Any expaagéitkutilized inG
depend only on the key and do not vary across plaintext orectpht inputs.

— An attack on’ rounds ofG’ implies a reduced-round attack errounds ofG’ for
r <7,



— Ay, finds all possible sets of round keys, if more than one sesexis

— Any expanded-key bits used in the round functionafnsecutive rounds @¥ can
take on the same values as the expanded-key bits used irutiefranctions of.

— If G contains initial and end-of-round whitening, any expandteg bits used for
the leftmosb bits of each whitening step inconsecutive rounds @’ can take on
the same values as the whitening bit€in

Before beginning the proof, we have a few comments on thad¢neand assump-
tions. We first note that for an attack @# to be computationally feasible, it must
involve < 2° (plaintext, ciphertext) pairs because otherwise an estvausearch or?
would be possible, implying is insecure against practical attacks. The first assumption
is typical of existing block ciphers and is true of the elastrsions of block ciphers.
The second assumption is true of block ciphers used in peacthe last two assump-
tions mean that the key schedule(fis defined such that a subset of the expanded-key
bits can have the same values as if they were generated bgytsekedule ofs. These
assumptions are easily satisfied in practice by using the&egdule of~ to generate a
subset of the round key bits and a separate algorithm to geidre expanded-key bits
required inG’ for the additional’ — r rounds and any whitening presentGh that is
not present irG. Another option is if the key schedule 6f generates pseudorandom
expanded-key bits such that it is possible the expandedbikeyor the round function
and leftmost bits of whitening inr consecutive rounds can take on the same values
generated by the key schedule@fIn practice, given an expanded-key, it is feasible to
check if the expanded-key adheres to a specific block ciptkey schedule. A subset
of the expanded-key bits being tested can be inserted intkeh schedule to generate
additional key bits which can be checked against the bitsén/alue being tested.

The theorem holds by default for the case wher- 0, sinceG’ is justG (with
the possible addition of whitening which can be set to 0’smvapplying the attack if
G does not contain whitening). We vie@ as having whitening steps in the proof to
Theorem 1. This is not an issue for the following reason. éf dittack onG’ involves
solving for the round key bits directly and allows the bitedisn the whitening steps
to be set ta) for bit positions not swapped and @cor 1, as necessary, for bit positions
swapped, then the whitening on the leftmédiits is equivalent to XORing wit,
which is the same as having no whiteningGh If the attack onG”’ finds all possible
keys or sets of round keys, the attack must find the key(s)t¢s)saf round keys cor-
responding to round keys that are equivalent to XORing witBetting a subset of bits
in each whitening step i to 0's is equivalent to using a weaker version@®f. Any
attack that works o’ will work on the weaker version. This is merely the case where
the attacker knows certain bits of each whitening stepate

We note that Theorem 1 only states that an attackzbran be converted to an
attack onG and not the reverse. This is because, in general, the clatathattack
on G can be converted into an attack 6 does not hold. Consider the case wh&n
contains the initial and end-of-round whitening steps. Whe= 0, G’ is G with the
initial and final key-dependent permutations added andéfyeskhedule replaced (such
as by a stream cipher). If the attack @ris due to the original key schedule, the attack
does not necessarily hold if the key schedule is changedterge pseudorandom bits
when creatindg=’. For any attack not due to the key schedule, in order to claahdn



attack on implies an attack o, it is necessary that the attack 6be such that the
addition of the initial and final key-dependent permutagidhe addition or expansion
of the whitening steps and the addition of the swap steps doesalt in the attack
becoming inapplicable or computationally infeasible. éngral, the conversion of an
attack fromG’ to G works because there is a decrease in the complexity of thuk blo
cipher being attacked when going fr@f to G; whereas, the reverse is not true because
there is an increase in the complexity of the block ciphermié@nverting to G'.

To prove Theorem 1, we must show for any valuegypfvhere0 < y < b, that if
an attack exists ot it can be converted into an attack 6husing polynomial time
and memory. We define the steps for converting a round-keyvesy attack orG’ to
an attack orG. We describe two ways of performing the conversion. The ffirsthod
works for any value ofy, where0 < y < b. The second method is is applicable for
values ofy satisfyingr(y — 2) < b, wherer is the number of rounds in the original
cipher. We include the second method because it requiresr feavnputations than the
first method and thus is useful for small valuegjoffhe methods treat whitening key
bits as if they are pseudorandom in that the whitening keydzih take on any value. In
G, if there is a relationship amongst the whitening key bitd/anbetween whitening
key bits and key material used within the round function duthée key schedule af,
such keys will be a subset of all the possible sets of round k@aynd using the attack
onG’. Then the set of round keys that satisfies the key scheddlecah be determined
by checking which of the potential keys corresponds to tlyeskbedule. If the number
of potential sets of round keys found by the attack(@nis large enough such that it
is computationally infeasible to determine which ones adhe the key schedule of
G, then the attack o’ is not computationally feasible. This is because the number
of potential sets of round keys it finds for a set of (plaintexthertext) pairs will also
be large enough such that it is computationally infeasibteah attacker to determine
which set to use to decrypt additional ciphertexts.

When we refer to converting the round keys(dfinto round keys foz, we mean
the following: In round; of G’, letb;; denote thd'" bit of the b bits output from the
round function prior to the end-of-round whitening. liet;; denote the end-of-round
whitening key bit applied td,;. If b;; is involved in the swap step at the end of round
J, lety;, denote the bit from the rightmogtbits with whichb;; is swapped and let
kw;;, denote the whitening key bit applied $g,,. Set thel'” whitening bit in round;
of G to kwj; ® kwj, @ y;n whenj > 2. Whenj = 1, the !*" whitening bit is set to
kwy; @ kwip ® y1n D kwop, in order to include the initial whitening on the rightmast
bits in the conversion. Set all other key bits usedrifboth whitening and any internal
to the round function) to be identical to the key bits usedsinWe refer to the initial
whitening as round 0. The initial whitening f&¥ is converted to initial whitening fo&
by using the leftmogi expanded-key bits of the initial whitening as the initialitening
inG.

Proof of Theorem I; First Method We describe here a method for converting the
attack onG’ to an attack orz. Without loss of generality, we use the firstounds of

G’ as ther consecutive rounds for which the round keys are found. Tiwearsion is
presented in terms of solving for the round keys from th@ahwhitening to round-,
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but may also be performed by working from rountack to the initial whitening or by
using any consecutiverounds with whitening applied before the first round as losg a
the plaintext forG is the leftmosb bits of input to ther rounds and the corresponding
ciphertext fromG is the leftmosb bits of the output of the rounds.

This attack runs in quadratic time in the number of rounds oThe attack A, on
G’ is used to solve for round keys 0 and 1 &y then repeatedly solves for one round
key of G at a time, using the output of one round®hs partial input to a reduced round
version ofG’, running the attack o’ and converting thé** round key ofG’ to the
round key for the next round a@¥. By the second condition in Theorem 1, if an attack
on G’ with r’ rounds exists, then a reduced round attackz6exists for any number of
rounds< r’.

Let P be a set of plaintexts an@ be a set of ciphertexts. We use the notation
{(P, C)} to indicate a set of (plaintext,ciphertext) pairs of thenfidpi, ci) with pi € P
andci € C. Given ase{(P*,C*)} = {(pi*, ci*)} of n (plaintext, ciphertext) pairs for
G, create asef(P,C)} = {(pi* || 0, ci* || vi,)} of n (plaintext, ciphertext) pairs for
anr-round version of’. Note: we only require that thg bits appended to eagh*
when forming{(P, C)} be a constant; we choose to use 0. Thevalues appended
to theci* values are arbitrary and do not need to be identical. Thebscript invi,.
denotes the number of rounds. Our method runs reduced rdtauksonG’ and the
vi,'s can vary each time. Solv@’ for round keys 0 and 1. By the pseudorandomness
of the round keys, sets of round keys exist that correspodd®pC)} and which are
identical in at least the initial whitening and first rountdetround keys across all
pairs may be identical in additional rounds, but we are oolyoerned with the initial
whitening and first round at this point in the process). Dertbese ask{, andrk}.
Use the leftmost bits of rk{, as round key Orko, for G. Since the rightmosgj bits are
identical across all inputs @/, whenrk] is converted to a round key f@¥, the result
will be the same across all elements of (P*,C*)}. Use the converted round key as
round key 1,k;, for G. For eactpi*, apply the initial whitening and first round ¢t
using the two converted round keys. zgf denote the output of the first round 6f
for i = 1 ton. Using a reduced round version 6f with » — 1 rounds and the initial
whitening removed, sef(P,C)} = {(pi1 || 0,ci* || vir-—1)} and solve for the first
round key ofG’. As before, convert the resulting round key for the first @ohG’ to
a round key forz, but this time use the converted key as the second round key.fo
Repeat the process for the remaining roundé&péach time using the outputs of the
last round ofG for which the round key has been determined as the input¥ @nd
reducing the number of rounds @ by 1, to sequentially find the round keys 16t

This attack involves applying each round@fto n inputs for a total of-n rounds
of G. m rounds ofG’ are computed in the worst caseAf,, requires knowing
the output of each round of the reduced round versio@’db find the first round key.

r applications ofA;,, are needed on the reduced round version§‘ofLet ¢4 denote
the time to runAy,,. Let ks; be the time to check that an expanded-key foundipy
adheres to the key schedule®@f The time to attacks is O(nr? + rta + ks).

In summary, the attack ofd can be written as:

Input{(P*,C*)} = {(pi*, ci*) fori = 1 ton}.
Create{(P,C)} = {(pi* || 0, ¢i* || vi,) for i = 1 ton} for ar-round version of?,
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where thevi’s are arbitrary.
Using A, solve ar-round version of3’ for rkj, andrk;.
Convertrk{ to rky andrk} tork;.
Setpi; = first round output of7 usingrk, andrky, fori = 1 ton.
Forj=1tor—1{
{(P,C)} ={(pi; || 0,ci* || vi,—;) fori = 1ton}.
Solve ar — j reduced round version @¥' for the first round keyy & .
Convertrk] to formrk;; 1.
pij+1 = output of roundj + 1 of G onpi; usingrk;,q, fori = 1ton.

Proof of Theorem I: Second Method Our second method for proving Theorem 1
requires fewer computations than the first method, but dessound keys for a smaller
set of (plaintext, ciphertext) pairs. The attack works d¥es: Assume there exists a
known (plaintext, ciphertext) pair attack @ which produces the round keys either
by finding the original key and then expanding it, or by findihg round keys directly.
Using round keys for rounds 0 toof G’, convert the round keys into round keys for
G one round at a time. For each round, extract the largest gptantext, ciphertext)
pairs used in the attack @’ that have the same converted round key. If therengre
(plaintext, ciphertext) pairs involved at roupgthere will be at leas§Z pairs remaining
for which the round keys are consistent after rogin@he end result is a set of round
keys forG: that are consistent with a set gf—; b-bit (plaintext, ciphertext) pairs for
G. We then describe how to take a set of (plaintext, ciphéerieairs for G, convert
them into a set of (plaintext, ciphertext) pairs f&tin order to run the attack o’ to
find the round keys fo€.

Let{(P,C)} = {(pi || =i, ci || i)}, fori = 1 ton, denote a set of known(b+y)-
bit (plaintext, ciphertext) pairs fa&’, where|pi| = |ci| = b and|zi| = |zi| = y.

Let A be an attack o’ that finds the key(s) corresponding{t@P, C)} in time
less than an exhaustive search for the key.rhatenote the number of keys found. In
practice, only one key should be found for any set of (plaih@phertext) pairsm > 1
only impacts the time to perform the attack and not the mettsedf. Without loss of
generality, it is assumed that the keys are available inregé form.

Let k be one of then keys found byAs. and letek be the expanded-key bits corre-
sponding tok. Let ek; be the expanded-key bits f6f resulting from the conversion of
ek when applied to thé" element of{ (P, C)}. Let R;,,; denote any bits ofk utilized
within the round function. The values found for the bits/af,; will be the same fot’
andG (the same irek and everyefci). For eachi, the bits ofek; corresponding to the
initial whitening in G (round 0) will be the leftmosh bits of the initial whitening bits
fromek.

Let {(P,U)} = {(pi||zi, ui||vi)} such thatui||vi is the output of the'” round of
G’ prior to the swap step, whetei| = b and|vi| = y.

When the round keys fromi: are converted to those fek;, at mosty bits change in
the leftmost bits of each end-of-round whitening step. Thus, the resyitound keys
forroundg, 1 < ¢ < r can be divided for each of thempacted bits into those that have
a0 in the affected bit and those that have & the affected bit. Fog = 1 to r, define
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Srna, as the maximum-sized set of; values fromS,..q,_, that have identical bits for

roundq, wheres,..q, = {el}i, fori = 1ton}. Let{(P,U)na,} be the corresponding
elements of (P,U)}. When forming{(P,U),na, }, at least2~¥) x [{(P, U)rnd,_, }|

of the elements from{ (P, U),,q4,_, } are included. There is no swap step afterit
round sO|Synd,.| = |Srnd,_, |- Acrossr rounds, the number of (plaintext, ciphertext)
pairs are reduced at mast- 1 times.

To illustrate how the setS,.,.q, and{(P, U),.q, } are created, consider the example
shown in Figure 4 wheré = 4, y = 2, and the leftmos® bits are swapped with
they bits in the swap step. The round numbegiand{(P,U),,q4,_, } contains three
(plaintext, ciphertext) pairs. Suppose the outputs of thend function in the/!” of G’
are100101,110011 and 111111 and the whitening bits in the*” round are011010.
The whitening bits of the converted round keys correspanttinthe three cases are
0110,1110 and1110. Sincel110 occurs in the majority of the cases, set ¢ round
key of G t0 1110. S;,.4, CONtains the elements 6§.,4, , that produced110 as thegt"
round key, and (P, U),nq, } contains the second and third (plaintext, ciphertext)gair
from {(P,U)rna, . }-

1001 01 1100 11 1111 11

KB «—KY KB% «— KY KB—» «— KY

1111 00 1010 10 1001 10
KB =0110
KY =01
1111 11 0010 10 0001 10
1001 1100 1111
CO“foITed converted converted
key bits key bits key bits
0110 1110 1110
1111 0010 0001

Fig. 4. FormingS;.q,

Letrk be the contents &4, . 7k is the expanded key bits fé¥. Let{(P,C)¢} =
{(pi. ci)|(pi || i, i || vi) € {(P.U)rna, }}- [{(P,C)a} = n/2¢0 =D {(P.C)c} is
a set of (plaintext, ciphertext) pairs for whi¢h.,.(pi) = ci ¥V (pi,ci) € {(P,C)q}-
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So far we have defined a method that produces a set of atigast (plaintext, ci-
phertext) pairs that are consistent with the round keyss Tdwer bound on the number
of (plaintext, ciphertext) pairs can be slightly increased,—; by using(b + y)-bit
plaintexts that are the same in the rightmpbits (which we did by setting these bits to
0). This will result in|S;..4,| = n. Since we also havs; 4, | = |Srnd,_, |, the set of
(plaintext, ciphertext) pairs is not reduced in the first affdrounds. Then the number
of (plaintext, ciphertext) pairs produced #Grthat are consistent with the round keys for
G is > 5= . The number of possible plaintexts fGris 2%, therefore, it is necessary
for y(r — 2) < b to use this method.

To perform the attack o6 when given a set of (plaintext, ciphertext) pairs for
convert the pairs into a set of (plaintext, ciphertext) p&ir G’ and find the round keys
for G’, and then forG as follows: Given a sef(P*,C*)} = {(pi*,ci*)} fori =1
to n known (plaintext, ciphertext) pairs faF, create the sef(P,C)} of (plaintext,
ciphertext) pairs to use in the attack onarmound version of5’ by settingpi || zi =
pi* || 0andci || zi = ci* || zi, for i = 1 ton. For the set of P, C) pairs created,
{(P,U)} = {(pi* || 0,ci* || z7)}. Apply the attack or’ to solve for the round keys
of G’ then produce the set§ P, U);nq, } @andS,,q,. The round keys irf,.,4, will be
consistent with the (plaintext, ciphertext) pairs{i(P, U),..4, }. A set of round keys
that adheres to the key schedule®Wwill be found by Claim 1 and the assumption that
the attack oz’ finds all possible sets of round keys.

Lett, be the time to rum rounds ofG’ andt 4 be the time to ruM . Recall that
m is the number of keys (sets of round keys) foundAy.. In the case of obtaining at
least one sef(P,U)naq, } Of size> 57—y the time required beyontd, consists of
nmt, time to obtain the outputs of the firstrounds for eacH (P, U)}, O(nmr) time
to perform the conversion of the round keys fréthto round keys folG andO(nmr)
time to form theS,.,.4,. sets. Lets, be the time to check that an expanded-key adheres
to the key schedule af. Thus, the additional time required to attaGk(beyond the
time required to attack”) is O(nm(r +t,.) + mks;). The only unknown value isu. If
m is large enough, to the extent that it approaches the averagber of keys to test in
a brute force attack 06", then this contradicts the assumption that an efficientlatta
exists onGG’ because the attacker is left with a large set of potentias keryydecrypting
additional ciphertexts.

4 Conclusions

We have proven that the elastic version of a block cipherdsgeagainst any practical
attack that attempts to recover key or expanded-key biteibriginal cipher is secure
against the attack. This eliminates the need to analyze asti@lersion of a block
cipher against these types of attacks if the original cigheecure against such attacks
(unless one is interested in improving the concrete workofacand probabilities of
success). Our result follows from the network structuredusecreating elastic block
ciphers and the fact that the round function of the origineddilength block cipher
is used as a black box when forming its elastic version. We tiat while reduction-
based proofs of security are a cornerstone of cryptogragiadysis, they are typical
when complete components are used as sub-components igea ¢gsign and used
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in a black box fashion. We are not aware of the use of such tgabs in the case of
concrete block cipher designs.
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