Skip to main content

Determining the Smallest k Such That G Is k-Outerplanar

  • Conference paper
Algorithms – ESA 2007 (ESA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4698))

Included in the following conference series:

Abstract

The outerplanarity index of a planar graph G is the smallest k such that G has a k-outerplanar embedding. We show how to compute the outerplanarity index of an n-vertex planar graph in O(n 2) time, improving the previous best bound of O(k 3 n 2). Using simple variations of the computation we can determine the radius of a planar graph in O(n 2) time and its depth in O(n 3) time.

We also give a linear-time 4-approximation algorithm for the outerplanarity index and show how it can be used to solve maximum independent set and several other NP-hard problems faster on planar graphs with outerplanarity index within a constant factor of their treewidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41, 153–180 (1994)

    Article  MATH  Google Scholar 

  2. Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica 5, 93–109 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs using PQ-trees. J. Comput. System Sci. 30, 54–76 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Di Battista, G., Tamassia, R.: Incremental planarity testing. In: Proc. 30th IEEE Symp. on Foundations of Computer Science, pp. 436–441 (1989)

    Google Scholar 

  7. Gallai, T.: Elementare Relationen bezüglich der Glieder und trennenden Punkte von Graphen. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 9, 235–236 (1964)

    MATH  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, Calif (1979)

    MATH  Google Scholar 

  9. Gu, Q.P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3) time. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 373–384. Springer, Heidelberg (2005)

    Google Scholar 

  10. Harary, F., Prins, G.: The block-cutpoint-tree of a graph. Publicationes Mathematicae Debrecen 13, 103–107 (1966)

    MATH  MathSciNet  Google Scholar 

  11. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR tree. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Mehlhorn, K., Mutzel, P.: On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. Algorithmica 16, 233–242 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Reed, B.: Finding approximate separators and computing tree-width quickly. In: Proc. 24th Annual ACM Symp. on Theory of Computing (STOC 1992), pp. 221–228 (1992)

    Google Scholar 

  14. Röhrig, H.: Tree Decomposition: A Feasibility Study, Master’s thesis, Max-Planck-Institut für Informatik in Saarbrücken (1998)

    Google Scholar 

  15. Robertson, N., Seymour, P.D.: Graph minors. I Excluding a forest. J.Comb.Theory Series B 35, 39–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Robertson, N., Seymour, P.D.: Graph minors. III Planar tree-width. J.Comb.Theory Series B 36, 49–64 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tarjan, R.E.: Depth-first search and linear algorithms. SIAM J. Comp. 1, 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  19. Whitney, H.: Non-separable and planar graphs. Trans. Amer. Math. Soc. 34, 339–362 (1932)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Michael Hoffmann Emo Welzl

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kammer, F. (2007). Determining the Smallest k Such That G Is k-Outerplanar. In: Arge, L., Hoffmann, M., Welzl, E. (eds) Algorithms – ESA 2007. ESA 2007. Lecture Notes in Computer Science, vol 4698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75520-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75520-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75519-7

  • Online ISBN: 978-3-540-75520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics