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Abstract. We consider a revenue maximization problem where we are
selling a set of items, each available in a certain quantity, to a set of
bidders. Each bidder is interested in one or several bundles of items. We
assume the bidders’ valuations for each of these bundles to be known.
Whenever bundle prices are determined by the sum of single item prices,
this algorithmic problem was recently shown to be inapproximable to
within a semi-logarithmic factor. We consider two scenarios for deter-
mining bundle prices that allow to break this inapproximability barrier.
Both scenarios are motivated by problems where items are different, yet
comparable. First, we consider classical single item prices with an addi-
tional monotonicity constraint, enforcing that larger bundles are at least
as expensive as smaller ones. We show that the problem remains strongly
NP-hard, and we derive a PTAS. Second, motivated by real-life cases, we
introduce the notion of affine price functions, and derive fixed-parameter
polynomial time algorithms.

1 Introduction

Consider the situation that we want to sell a set of items to a set of bidders.
Every bidder places bids on subsets, or bundles of items, and each bidder would
like to receive one or more of these bundles (OR-bids). Bidders have valuations
for each of their bundles. The valuation is the maximum amount a bidder is
willing to pay for a particular bundle. We assume that the bundles and the
valuations are known. Hence we are faced with a purely algorithmic problem,
in contrast to a mechanism design problem where the valuations are private
information to the bidders. We have a certain amount of copies of each item
available, and this amount may be limited or unlimited, for example non-digital
or digital goods. We need to determine two things, namely which of the bidders
receive which of their requested bundles, and how much each of them needs
to pay. The goal is to maximize the total revenue received from the bidders. A
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general economic constraint on the possible prices, adopted in this paper as well,
is that of envy-freeness. It requires that no bidder is left envious in the sense
that she could afford a bundle, but doesn’t receive it1. This is the general setting
for the pricing problems studied in this paper.

In a sequence of recent papers [1,2,4,5,8,9,10], several algorithms and complex-
ity results have been derived for such price optimization problems. The pricing
model that is assumed in all these papers is the problem with single item prices,
where each item is assigned an anonymous price, and bundle prices are defined
by the sum of the respective item prices. We contribute to this line of research
in two different directions.

First, we consider the single item prices model. We introduce a monotonicity
constraint that allows us to derive results that break the semi-logarithmic inap-
proximability barrier known for the general case [5]. We impose the condition
that the price of any bundle of size k must not exceed the price of a set of size
k + 1 or larger, for any k. This condition implies that (most of) the items for
sale are comparable in the sense that the prices do not differ too much.

Second, we propose a model for determining bundle prices that actually gener-
alizes the single item prices problem. We derive fixed-parameter polynomial time
algorithms for that model. We assume that the bundle prices are determined on
the basis of arbitrary affine functions, defined on a joint set of variables. Let
us give an illustrating example: For each bundle j, there is an individual fixed
cost aj that the bidder needs to pay when purchasing that bundle. All items
are identical and the seller just needs to determine one per-item price, say x.
The price for any bundle j of size kj is then given by aj + kjx. Notice that the
price paid for any bundle is an affine function that depends on the size of the
requested bundle. In general, the affine pricing model allows for many more pric-
ing scenarios relevant in practice, e.g. groups of customers with different price
functions, quantity discounts, etc. See Section 3 for a brief discussion.

Before we elaborate on related work and our contribution, let us define the
pricing settings more formally.

1.1 Model

Let I = {1, . . . , m} denote the set of comparable items for sale, and let J =
{1, . . . , n} denote the set of bids placed by all bidders. Each bid j ∈ J is on
exactly one subset of items Ij ⊆ I. In line with notation in auction literature,
we call the set Ij also a bundle. Every bidder has a positive valuation for each of
her bundles, that is, every bundle Ij corresponding to bid j ∈ J , has a positive
valuation bj which is the maximum amount its bidder is willing to pay for bundle
Ij . We may assume w.l.o.g. that bj ≥ 1 for j ∈ J . The valuations are assumed
to be known to the seller. Let ci denote the available number of copies of item
i ∈ I. We consider both the case of unlimited availability of items, that is,
ci ≥ n for all items i ∈ I, and the case of limited availability of items.
1 More generally, envy-freeness requires that in an allocation, the bundle allocated to

a bidder belongs to her demand set, which is the set of all allocations that maximize
the bidder’s utility [11].
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A bid is a winning bid if it is assigned to the bidder, and a losing bid otherwise.
The set of winning bids is denoted by W ⊆ J . A solution to the problem is a
price p(j) for the bundle Ij corresponding to bid j ∈ J . Later we will be more
specific about further restrictions on the prices. A solution is called feasible if
the bundles of all winning bids can be afforded by the respective bidder (that
is, the price of the bundle corresponding to a bid is at most its valuation), and
if no item is oversold. A solution is envy-free if in addition, for all losing bids
the respective bundle is priced higher than the valuation of the corresponding
bid. Let us summarize the above discussion in a definition for the generic pricing
problem that we address in the paper.

Definition 1. A feasible and envy-free solution to a pricing problem consists
of a price p(j) for the bundle Ij, for all bids j ∈ J , and a set of winning bids
W ⊆ J that are assigned to their bidders such that

1. the bundle of every winning bid j is affordable for the bidder, that is p(j) ≤ bj

for all j ∈ W ,
2. the bundle of every losing bid j is too expensive for the bidder, that is p(j) >

bj for all j ∈ J \ W ,
3. no item is oversold, that is

∑
j∈W |{i} ∩ Ij | ≤ ci for all items i ∈ I.

The objective is to find a solution that maximizes the total revenue of the seller,
that is, we want to maximize

∑
j∈W p(j).

We consider two different models for the computation of prices. The first pricing
model that we consider is the single item prices model, where we have to deter-
mine item prices for all items i ∈ I. To be in line with previous papers on the
same topic, let pi denote the price of item i, and the price of bundle Ij ⊆ I is
p(j) =

∑
i∈Ij

pi, for all j ∈ J . Given that several inapproximability results exist
for this model [5,8,9], we introduce a monotonicity constraint on the set of item
prices. Specifically, we impose that the following holds true for any two subsets
of items I ′ and I ′′.

p(I ′) ≤ p(I ′′) whenever |I ′| < |I ′′| . (1)

The condition has a meaningful economic interpretation in a lot of settings where
items are different yet comparable, as it only requires that larger bundles are
at least as expensive as smaller ones. It yields that (most) item prices are of
the same order of magnitude. We show how this monotonicity constraint can be
exploited to derive results that break the inapproximability barrier known for
the general unconstrained case.

In practice, bundle prices are often not determined by the sum of individual
item prices, but rather by a function based on a few bundle characteristics.
Therefore, we propose the second model, in fact generalizing the single item
prices problem, see Proposition 1. Here, the price of bundle Ij is determined by
an affine function in some dimension K as follows.

p(j) = aj0 + aj1x1 + · · · + ajKxK , j ∈ J . (2)
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The coefficients ajk, k = 0, . . . , K, are arbitrary coefficients that are given for
all bids j ∈ J . These coefficients may, in general, depend on both the bundle
Ij and on the bidder that places bid j. Thus it may be the case that simi-
lar bundles have different prices. The pricing problem consists of determining
revenue-maximizing values for the (nonnegative) variables xk, k = 1, . . . , K. We
postpone the discussion of this model to Section 3.

In the remainder of this paper, we denote by a ρ-approximation algorithm
an algorithm that produces a solution with value at least 1/ρ times the optimal
solution value. A PTAS is a family of (1 + ε)-approximation algorithms, for any
ε > 0.

1.2 Related Work

The problem mainly addressed in the literature is the one with unlimited avail-
ability of items, single item prices, and the requirement that the solution is
envy-free [1,2,4,5,9,10]. For this problem the maximum revenue is hard to ap-
proximate to within a semi-logarithmic factor in the number of bids n [5]. In
particular, it is unlikely that a constant approximation algorithm exists. For the
same problem, Hartline and Koltun [10] present an approximation scheme with
almost linear running time, given that the number of distinct items is constant.
Moreover, given that each bidder is interested in bundles of at most k items, Bal-
can and Blum [2] derive an O(k)-approximation. Finally, there exist two fully
polynomial time approximation schemes [2,4] for the problem where the bundles
are nested, that is, for any two bundles Ij and Ij′ it holds that Ij ⊆ Ij′ , Ij′ ⊆ Ij

or Ij ∩ Ij′ = ∅.

1.3 Our Results

For the revenue maximization problem with single item prices, we derive
strong NP-hardness even if prices need to fulfill the monotonicity constraint.
Moreover, we derive a PTAS for that problem, with a time complexity of
O(nm8/ε(log B))8/ε), where B = maxj bj .

For the revenue maximization problem with affine price functions, we propose
an algorithm with a time complexity of O((K3+nK)(n+K)K). Here, parameter
K is the dimension in which the affine price functions live. In particular, for
K = 1 this is O(n2). A similar result (with slightly different time complexity)
holds for the case of limited availability of items. For the same problem with non-
constant K, and unlimited availability of items, the maximum revenue is hard to
approximate to within a semi-logarithmic factor in the number of bids n. This
follows directly from the corresponding result by Demaine et al. [5], as we can
show that the problem with single item prices is a special case. In addition, for
the same pricing problem with limited availability of items, we prove that it is
even NP-complete to approximate the maximum revenue to within a factor of
n1−ε of optimum, where n is the number of bids.

A special case of single item pricing is the so-called highway pricing problem as
suggested in [9]. There the bundles are subpaths of a simple path. We show that
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this problem remains NP-hard even under the monotonicity assumption, and we
derive a simple O(log B)-approximation algorithm, where B = maxj∈J bj .

2 Single Item Pricing with Monotonicity Constraint

In single item pricing, we need to assign an (anonymous) item price pi for each
item i ∈ I, and bundle prices p(j) are defined as the sum of the prices of the
requested items, p(j) =

∑
i∈Ij

pi, for all j ∈ J . As before, the item prices need
to yield a feasible and envy-free solution, and we wish to maximize the total
revenue, which can be written as

∑
j∈W

∑
i∈Ij

pi. Notice that in case of unlimited
availability of items both feasibility and envy-freeness is in fact no issue – yet
finding optimal prices is hard [5]. For this reason we introduce a monotonicity
constraint : p(I ′) ≤ p(I ′′) if |I ′| < |I ′′|, for any two subsets of items I ′ and I ′′.

2.1 Complexity

Theorem 1. The revenue maximization problem with single item prices and
unlimited availability of items is strongly NP-hard, even if the prices need to
satisfy the monotonicity constraint.

Proof. We use a reduction from the strongly NP-hard problem
IndependetSet [6]. Let G = (V, E) be a graph in which we want to
find a maximum cardinality set of vertices that are pairwise non-adjacent.
Let M be an integer that is large enough. For every vertex v ∈ V we create
a vertex-item, and for every edge e ∈ E we introduce an edge-item, that is,
I = V ∪ E. For every item i ∈ I, there are M + 2 bids placed on the bundle
consisting of only this item. One of these bids has valuation M , and the others
have the same valuation M + 1. Moreover, for every edge e = {u, v} ∈ E, there
are four more bids. One bid is on bundle {u, e}, one bid on bundle {v, e}, and
two bids are on bundle {u, v}. These four bids each have valuation 2M + 1.

We claim that there exists an independent set of size s in G if and only if
there is a solution for the revenue maximization problem with revenue f + s,
where f is a function of M , |V | and |E|. To prove this claim, we show that in
any optimal solution all items are priced either at M or at M + 1. Moreover,
vertex-items are priced at M + 1 if and only if the corresponding vertex belongs
to the independent set. Details of the proof are included in the full version of
this paper. 	


2.2 Approximation Scheme

In order to derive a PTAS for the problem with single item prices and mono-
tonicity constraint, we restrict the prices to powers of (1 + δ) for some δ > 0.
Assume, without loss of generality, that p1 ≤ p2 ≤ . . . ≤ pm, then by the mono-
tonicity constraint, we know 2p2 ≥ p1 +p2 ≥ pm. Similarly, 3p3 ≥ p1 +p2 +p3 ≥
pm−1 + pm ≥ 2pm−1, etc.
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Lemma 1. Suppose p1 ≤ p2 ≤ . . . ≤ pm. Any pricing of the items satisfying the
monotonicity constraint also satisfies

k pk ≥ (k − 1)pm−k+2, k = 2, . . . ,
⌈m

2

⌉
. (3)

The idea for the PTAS is now the following. Except for a constant number of
the cheapest and most expensive items, all items have prices in roughly the same
range. Therefore we can price all except a constant number of items uniformly
with the same price, without loosing too much in terms of the total revenue. We
therefore enumerate over all possible uniform prices for the bulk of the items,
and over all possible combinations of prices for the remaining (constant number
of) items.

Theorem 2. The pricing problem with unlimited availability of items, single
item prices and monotonicity constraint admits a PTAS. The time complexity is
O(nm8/ε(log B)8/ε), where ε is the precision of the PTAS and B = maxj bj.

Proof. Given an instance of the pricing problem and an ε > 0, let δ = ε/4, and
for convenience assume that 1/δ is integral. Assume that we know the order
of prices, say p1 ≤ · · · ≤ pm, in an optimum solution. Define the subsets of
items S = {i ∈ I : i ≤ 1

δ }, M = {i ∈ I : 1 + 1
δ ≤ i ≤ m + 1 − 1

δ } and
L = {i ∈ I : i ≥ m + 2 − 1

δ }. Note that M = ∅ if ε ≤ 8/(m + 1), in which case
the number of items is in O(1/ε). We round down the prices of all items in S
and L to powers of (1+ δ). Moreover, we price all items in M uniformly at price
p1+1/δ, rounded down to a power of (1+ δ). Let us call the new prices p′, and let
us call p′M the price of items in M . First observe that the order of prices does not
change. We next argue that we do not loose too much by this rounding. Clearly,
since we only round down, the set of winning bids can only increase. Moreover,
we loose at most a factor (1+ δ) on items in S and L. Finally, consider the items
in M . By (3), we have

(

1 +
1
δ

)

p1+1/δ ≥ 1
δ
pm+1−1/δ .

In other words, the price for the most expensive item in M differs from the
cheapest item in M by a factor at most (1 + δ). Hence, on items in M we loose
a factor at most (1 + δ)2.

Now we have a structured solution, but it may violate the monotonicity con-
straint. We claim that any such violation can be restored by one more rounding
operation, if necessary: We just round down the price of all items priced p′M
or higher by another factor (1 + δ). For contradiction, after this last rounding
consider two violating sets I ′ and I ′′ with |I ′| < |I ′′| and p′(I ′) > p′(I ′′), and
w.l.o.g. |I ′| = �, and |I ′′| = � + 1. Due to the ordering of prices, we then also
have that p′({1, . . . , � + 1}) < p′({m, m − 1, . . . , m − � + 1}). As long as there
are items from M in both sets, we redefine � = � − 1, and we keep violating
the monotonicity constraint. But now, all items in {1, . . . , �} have been rounded
down by a factor at most (1+ δ), and all items in {m, m−1, . . . , m− �+1} have
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been rounded down by a factor at least (1+δ). This contradicts the monotonicity
constraint of the optimal solution that we started with.

The PTAS now consists of enumerating all possible structured solutions, which
is sufficient to obtain a feasible solution that differs from the optimal solution
by a factor at most (1 + δ)3 < (1 + ε). There are

(
m

−1+2/δ

)
possible choices for

S ∪L. Since all prices are powers of (1+δ), there are log B possible prices. Given
that all items in M have the same price, there are at most (log B)2/δ structured
solutions for each choice of S ∪ L. Computation of the revenue for any such
solution takes O(nm) time. This together with δ = ε/4 yields the claimed time
complexity, where the constant hidden in the O-notation depends on ε. 	


3 Pricing with Affine Price Functions

For this section, we address revenue maximization problems with bundle prices
p(j) that are determined via affine price functions p(j) = aj0 + aj1x1 + · · · +
ajKxK , one affine function per bid j ∈ J , as defined in (2).

Let us discuss examples to motivate this model. If we let K = 1 and define
aj1 = |Ij | for all bids j, the bundle prices are determined by affine functions
that depend only on the size of the bundles. The optimization problem is to
determine the per-item price x1, which is identical for all items. Fixed costs per
bid j are incorporated by letting aj0 �= 0. Bidder-dependent characteristics are
easily incorporated as well, for example cost reductions of αt% for certain types
t of customers, e.g. letting aj2 = −αtaj1. Another meaningful interpretation
is this: There are K different item types i = 1, . . . , K for which we need to
determine the per-item prices xi, and any bid j is specified by the number of
requested items of type i, aji, and the total valuation bj. In fact, one motivation
for this model is phone contracts, where x1 represents the monthly subscription
fee (aj1 = 1 for all j), x2 is the price per SMS and x3 is the price per minute for
phone calls. Here, the coefficients aj2 and aj3 describe typical average usages for
different types j of customers.

We distinguish between unlimited and limited availability of items.

3.1 Unlimited Availability of Items

Our algorithm is polynomial as long as K, the dimension of the affine price
functions is constant. It simply enumerates all vertices of the linear arrangement
defined by the valuation constraints. Here, the valuation constraints are given by
p(j) ≤ bj for every winning bid j. More precisely, suppose that we know which
of the bids are winning bids in an optimum solution, say W ⊆ J . Then we know
that the variables x1, . . . , xK have to fulfill the |W | inequalities

aj0 + aj1x1 + · · · + ajKxK ≤ bj , j ∈ W .

Denote by P the polyhedron defined by these |W | inequalities. For an optimum
solution x = (x1, . . . , xK), at least one of these inequalities must be tight, because
otherwise the bundles corresponding to the same set of winning bids could be
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priced even higher. Assume that W ′ ⊆ W are the bids for which the above
inequalities are tight, and note that W ′ is nonempty. Then the system

aj0 + aj1x1 + · · · + ajKxK = bj , j ∈ W ′

defines a (nonempty) face F of the polyhedron P . By definition, any point x ∈ F
defines an optimal solution. Clearly, at most K inequalities are required to com-
pletely characterize the face F . Moreover, we have exactly dim(F) free variables
in the optimal solution x. In other words, the same total revenue can be obtained
by fixing the dim(F) free variables among x1, . . . , xK to 0. Hence, an optimal
solution can be obtained by considering all solutions x that are characterized by
K linearly independent constraints out of the following n + K constraints.

aj0 + aj1x1 + · · · + ajKxK = bj , j ∈ J , (4)
xk = 0 , k = 1, . . . , K . (5)

This insight can be used to define a simple algorithm that solves the revenue
maximization problem in polynomial time, as long as K is constant.

Algorithm 1. Revenue maximization with affine price functions
Input: Instance with affine price functions as defined in (2).

For all candidate solutions x = (x1, . . . , xK) that fulfill K linearly independent
constraints out of the n + K constraints (4) and (5) do:

–Let p(j) = aj0 + aj1x1 + · · · + ajKxK , j ∈ J , be the bundle prices.
–Let W := {j ∈ J : p(j) ≤ bj} be the set of winning bids.
–Let Π =

∑
j∈W p(j) be the total revenue.

Output: Maximum among all values Π , with optimal parameters x1, . . . , xK ,
and set of winning bids W .

Theorem 3. Algorithm 1 solves the revenue maximization problem with affine
price functions and unlimited availability of items in O((K3 + nK)(n + K)K)
time.

Proof. Correctness of the algorithm immediately follows from the preceding dis-
cussion. We need to consider

(
n+K

K

)
∈ O((n + K)K) systems of K constraints

each. In each of these iterations, we need to solve a linear system in K variables
and K constraints, which takes O(K3) time. Computation of the bundle prices,
winning bids, and the objective value takes O(nK) time. The claimed time com-
plexity follows. 	


In contrast, if the dimension K of the price functions is not constant, the problem
is much harder. In fact, if K is not constant, the single item prices problem is
just a special case of the problem with affine price functions: Let K = m, and let
aji = 1 whenever item i is contained in bundle Ij and aji = 0 otherwise. Then,
each item price corresponds to one variable xi, and we immediately obtain the
following.
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Proposition 1. The model with affine price functions generalizes the model
with single item prices. Hence, the semi-logarithmic inapproximability result by
Demaine et al. [5] also holds for pricing problems with affine price functions.

3.2 Limited Availability of Items

First we claim that Algorithm 1 can as well be used to solve the problem when
the availability of items is limited. Indeed, the only thing we additionally need to
check for any of the candidate solutions is feasibility: We have to verify whether
none of the items is oversold, and if yes, we do not consider the candidate so-
lution. Also note that any candidate solution is envy-free by definition. Clearly,
this feasibility check can be done in O(nm) time per candidate solution.

Corollary 1. Algorithm 1, augmented with a feasibility check, solves the revenue
maximization problem with affine price functions and limited availability of items
in O((K3 + nK + nm)(n + K)K) time.

On the negative side, it turns out that the problem with limited availability of
the items seems even harder to approximate.

Theorem 4. Consider the revenue maximization problem with affine price func-
tions and limited availability of items. For any ε > 0, it is NP-hard to approxi-
mate the maximum revenue to within a factor n1−ε. This result holds even if all
bids have a valuation of one, the availability of each item is one, and each item
is requested in at most two bids.

Proof. We use an approximation preserving reduction from IndependetSet.
Given is a graph G = (V, E), we want to find a maximum cardinality subset
V ′ ⊆ V such that no two vertices in V ′ are adjacent. Zuckerman [12] showed
that it is NP-hard to approximate the maximum independent set to within a
factor |V |1−ε, for any ε > 0.

We construct the following instance of the pricing problem. Each vertex v ∈ V
corresponds to a bid and each edge e ∈ E corresponds to an item. Each bid v is
on a bundle containing all edges incident to v, and has valuation bv = 1. Each
item e is available once (ce = 1). Let the price functions be p(v) = 1 + xv, for
all bundles Iv corresponding to bid v ∈ V .

We claim that an independent set of cardinality s exists in G if and only if
there exists a pricing for the above defined instance with total revenue s. Suppose
V ′ ⊆ V is an independent set in G, |V ′| = s. Then let xv = 0 for all v ∈ V ′,
and xv > 0 otherwise. This way the set of winning bids equals the independent
set V ′, and therefore no item is oversold. No bidder is envious, as the price of
a bundle corresponding to a losing bid exceeds its valuation, and we extract a
total revenue of s.

Conversely, assume a solution to the pricing problem with total revenue s.
Since only one copy of any item is available, the set of winning bids must define
an independent set in G. As the maximum revenue from any bidder’s bid is 1,
there exists an independent set of size s in G. 	
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4 Highway Problem with Monotonicity Constraint

A particularly intriguing special case of the single item prices problem is the
‘highway problem’ as introduced by Guruswami et al. [9]. Here, the items are
edges of a simple path, and the bundles corresponding to bids requested by
bidders are subpaths. The problem is NP-hard [4] by a simple transformation
from Partition, and a log(m)-approximation exists [2]. In this setting, it is
natural to assume that the monotonicity constraint holds for any two subpaths
only, but not necessarily for arbitrary subsets of items. For this problem we
obtain the following results.

Theorem 5. The highway problem with monotonicity constraint is NP-hard.

The proof of this theorem is deferred to the full version of this paper. Notice
that we cannot apply the PTAS from Theorem 2, as this crucially requires the
monotonicity constraint for arbitrary subsets of items. Nevertheless, we derive an
O(log B)-approximation algorithm for the highway pricing problem with mono-
tonicity constraint, where B = maxj bj . To this end, we present approximation
guarantees for two special cases first.

Lemma 2. The highway pricing problem with monotonicity constraint in which
all bundles have size at least two is approximable within a factor of 3 by optimal
uniform pricing.

Proof. Consider an optimal solution with revenue opt and let p∗max be the high-
est item price in this solution. We claim that pricing all items at p∗max/3, yields
a revenue of at least opt/3. Clearly, an optimal uniform pricing is at least as
good as the uniform p∗max/3 pricing.

First, we show that any winning bid j ∈ W in the optimal pricing remains
a winning bid for the uniform pricing at level p∗max/3. Let |Ij | = �. Then the
valuation for bid j is at least bj ≥ ��/2p∗max, as by the monotonicity constraint
the total price of any two consecutive items in an optimal solution is at least
p∗max and the bidder who placed bid j can afford the corresponding bundle Ij . In
the uniform p∗max/3 pricing, the total bundle price is �p∗max/3, which is at most
��/2p∗max, for � ≥ 2. In an optimal pricing, bundle Ij corresponding to bid j is
priced at most at �p∗max, whereas in our uniform pricing, we get �p∗max/3. Hence,
pricing all items p∗max/3 yields a revenue of at least opt/3. 	


The above lemma shows that whenever all bundles contain at least two items,
we have a constant approximation. Now, we consider only instances in which
bundles consist of exactly one item. Moreover, we restrict ourselves to instances
in which bj/bk ≤ 2, for any two bids j and k.

Property 1. Consider the highway pricing problem with monotonicity constraint,
restricted to instances in which each bid is on a bundle with exactly one item
and for any two bids j, k, it holds true that bj/bk ≤ 2. Pricing each item at
minj bj yields a revenue of at least opt/2.
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Theorem 6. The best uniform pricing yields a solution with revenue at least
opt/(3+2 log2 B) for the highway pricing problem with monotonicity constraint,
where B = maxj bj. Moreover, the time needed to find this solution is O(n2m).

Proof. Consider an optimum solution satisfying the monotonicity constraint, and
let optL denote the revenue of bidders whose bids are on bundles of size at least
two and let optr denote the revenue of bidders whose bids are on bundles of
size one with valuation 2r−1 ≤ bj < 2r (r = 1, . . . , �log2 B� + 1) in this solution.
Then opt = optL +

∑
r optr.

Moreover, let appL denote the revenue obtained by the best uniform pricing
and appr denote the revenue obtained by the best uniform pricing strategy for
the bidders with bids in Jr = {j ∈ J : |Ij | = 1 and 2r−1 ≤ bj < 2r }. By Prop-
erty 1, we have that appr ≥ optr/2 and thus maxr appr ≥

∑
r optr/(2 log2 B).

Moreover, from Lemma 2, it follows that appL ≥ optL/3. Hence, the solution
found yields a revenue of

max{appL,appr : r = 1, . . . , �log2 B� + 1} ≥ opt/(3 + 2 log2 B).

To see the claim on the time complexity, note that to find sufficiently good
uniform pricing, we need to consider at most O(n) different prices. For each
price, we need to compute the set of winning bids and the revenue obtained on
this price, which can be done in O(nm) time. So, the best uniform price can be
computed in O(n2m) time. 	


5 Conclusion

This paper studies purely algorithmic, or omniscient pricing problems, reflected
by the fact that we assume bidders’ valuations bj to be known. Even more
challenging are problems where valuations are private information, and incentive-
compatible mechanisms are sought, that is, mechanisms that induce bidders to
truthfully report their valuations. To that end, one might ask if previous ideas
on the design of (random sampling) mechanisms, e.g. by Goldberg et al. [7] or
Balcan et al. [3], can be applied. Particularly the latter paper suggests a general
approach for reducing incentive-compatible mechanism design problems to the
underlying algorithmic pricing problems. Among them, combinatorial auctions
with single-minded bidders (the model considered in this paper). We leave this
on the agenda for future research; complications might lay in the monotonicity
constraint that we impose on the pricing function, respectively the general form
of the affine price functions.
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F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 422–431.
Springer, Heidelberg (2005)

11. Walras, L.: Elements of pure economics. Allen and Unwin, London (1954)
12. Zuckerman, D.: Linear degree extractors and the inapproximability of max

clique and chromatic number, ECCC Report TR05-100 (2005), http://www.eccc.
uni-trier.de/eccc/

http://www.eccc.uni-trier.de/eccc/
http://www.eccc.uni-trier.de/eccc/

	Bundle Pricing with Comparable Items
	Introduction
	Model
	Related Work
	Our Results

	Single Item Pricing with Monotonicity Constraint
	Complexity
	Approximation Scheme

	Pricing with Affine Price Functions
	Unlimited Availability of Items
	Limited Availability of Items

	Highway Problem with Monotonicity Constraint
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




