Skip to main content

Small Stretch Spanners in the Streaming Model: New Algorithms and Experiments

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4698))

Abstract

We present deterministic algorithms for computing small stretch spanners in the streaming model. An (α,β)-spanner of a graph G with n vertices is a subgraph S ⊆ G such that for each pair of vertices the distance in S is at most α times the distance in G plus β. We assume that the graph is given as a stream of edges in arbitrary order, that the number of vertices and the number of edges are not known in advance and that only one pass over the data is allowed. In this model, we show how to compute a (k,k − 1)-spanner of an unweighted undirected graph, for k = 2,3, in O(1) amortized processing time per edge/vertex. The computed (k,k − 1)-spanners have O(n 1 + 1/k) edges and our algorithms use only O(n 1 + 1/k) words of memory space. In case only Θ(n) internal memory is available, our algorithms can be adapted to store some of the data structures in external memory. We complement our theoretical analysis with an experimental study that suggests that our approach can be of practical value.

Partially supported by the Italian Ministry of University and Research under Project MAINSTREAM “Algorithms for Massive Information Structures and Data Streams”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Experimental package, See: http://www.dis.uniroma1.it/~ribichini/spanner/

  2. Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model augmented with sorting primitive. In: FOCS 2004, pp. 540–549 (2004)

    Google Scholar 

  3. Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

    Article  Google Scholar 

  4. Ausiello, G., Franciosa, P.G., Italiano, G.F.: Small stretch spanners on dynamic graphs. Journal of Graph Algorithms and Applications 10(2), 365–385 (2006)

    Google Scholar 

  5. Awerbuch, B.: Complexity of network synchroniz. JACM 32(4), 804–823 (1985)

    Article  MATH  Google Scholar 

  6. Baswana, S.: Dynamic algorithms for graph spanners. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 76–87. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Baswana, S.: Faster streaming algorithms for graph spanners: (2006), http://www.citebase.org/abstract?id=oaiarXiv.org:cs/0611023

  8. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (α, β)-spanners and purely additive spanners. In: SODA 2005, pp. 672–681 (2005)

    Google Scholar 

  9. Baswana, S., Sen, S.: A simple linear time algorithm for computing (2k − 1)-spanner of O(n 1 + 1/k) size for weighted graphs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 384–396. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Cai, L.: NP-completeness of minimum spanner problems. Discr. Appl. Math. and Combinat. Operations Res. and Comp. Science 48(2), 187–194 (1994)

    MATH  Google Scholar 

  11. Cai, L., Keil, J.M.: Degree-bounded spanners. Par. Proc. Lett. 3, 457–468 (1993)

    Article  Google Scholar 

  12. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph mining. In: 4th SIAM International Conference on Data Mining (2004)

    Google Scholar 

  13. Chew, L.P.: There are planar graphs almost as good as the complete graph. Journal of Computer and System Sciences 39(2), 205–219 (1989)

    Article  MATH  Google Scholar 

  14. Das, G., Joseph, D.: Which triangulations approximate the complete graph? In: Djidjev, H.N. (ed.) Optimal Algorithms. LNCS, vol. 401, pp. 168–192. Springer, Heidelberg (1989)

    Google Scholar 

  15. Dobkin, D., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. Discrete & Computational Geometry 5, 399–407 (1990)

    Article  MATH  Google Scholar 

  16. Erdős, P., Rényi, A.: On random graphs. P. Math. Debrecen 6, 290–291 (1959)

    Google Scholar 

  17. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the streaming model: the value of space. In: SODA 2005, pp. 745–754 (2005)

    Google Scholar 

  18. Liestman, A.L., Shermer, T.: Grid spanners. Networks 23, 122–133 (1993)

    Google Scholar 

  19. Liestman, A.L., Shermer, T.: Additive graph spanners. Networks, 23, 343–364 (1993)

    Google Scholar 

  20. Peleg, D., Shäffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MATH  Google Scholar 

  21. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM Journal on Computing 18(4), 740–747 (1989)

    Article  MATH  Google Scholar 

  22. Richards, D., Liestman, A.L.: Degree-constrained pyramid spanners. JPDC: Journal of Parallel and Distributed Computing 25, 1–6 (1995)

    Article  Google Scholar 

  23. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005)

    Google Scholar 

  24. Vitter, J.S.: External memory algorithms and data structures: dealing with massive data. ACM Computing Surveys 33(2), 209–271 (2001)

    Article  Google Scholar 

  25. Zwick, U.: Personal communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Michael Hoffmann Emo Welzl

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ausiello, G., Demetrescu, C., Franciosa, P.G., Italiano, G.F., Ribichini, A. (2007). Small Stretch Spanners in the Streaming Model: New Algorithms and Experiments. In: Arge, L., Hoffmann, M., Welzl, E. (eds) Algorithms – ESA 2007. ESA 2007. Lecture Notes in Computer Science, vol 4698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75520-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75520-3_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75519-7

  • Online ISBN: 978-3-540-75520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics