
G. O'Hare et al. (Eds.): ESAW 2006, LNAI 4457, pp. 209–228, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modeling the Interaction Between Semantic Agents and
Semantic Web Services Using MDA Approach

Geylani Kardas1, Arda Goknil2, Oguz Dikenelli3, and N. Yasemin Topaloglu3

1 Ege University, International Computer Institute, 35100 Bornova, Izmir, Turkey
geylani.kardas@ege.edu.tr

2 Software Engineering Group, University of Twente, 7500 AE, Enschede, The Netherlands
a.goknil@ewi.utwente.nl

3 Ege University, Department of Computer Engineering, 35100 Bornova, Izmir, Turkey
{oguz.dikenelli,yasemin.topaloglu}@ege.edu.tr

Abstract. In this paper, we present our metamodeling approach for integrating
semantic web services and semantic web enabled agents under Model Driven
Architecture (MDA) view which defines a conceptual framework to realize
model driven development. We believe that agents must have well designed
environment specific capabilities to fully utilize the power of semantic web
environment. Hence, we first define a conceptual architecture for semantic web
enabled agents and then discuss how this conceptual architecture can form the
basis of a metamodel that can be used in the development of semantic web
enabled agents with a model driven approach. We then zoom into the specific
part of the metamodel that defines the interactions between semantic web
enabled agents and semantic web services since it is not possible to cover all the
aspects of the metamodel at one time. So we extend the metamodel of the
conceptual architecture from the point of entity aspect for the interaction
between semantic agents and semantic web services. Finally, we discuss the
mappings between the entities of this extended metamodel and the implemented
entities of SEAGENT framework.

1 Introduction

Recently, model driven approaches have been recognized and become one of the
major research topics in agent oriented software engineering community [2] [17] [27].
Model driven development is considered as the most promising generational shift in
programming technology [28] and even has been characterized as a paradigm shift [6]
by several researchers. Model driven development aims to change the focus of
software development from code to models. This would increase the level of
abstraction in development. Therefore software products would be less affected from
the changes in the technological advancements and also the productivity of software
developers would be improved [1]. To work in a higher abstraction level is of critical
importance for the development of Multi-agent Systems (MAS) since it is almost
impossible to observe code level details of MAS due to their internal complexity,
distributedness and openness.

210 G. Kardas et al.

The key activity in model driven development is model transformation [29] and
model transformation requires syntactical and semantical definitions of models which
are provided by metamodels. Various metamodels have been proposed for specific
MAS methodologies like Gaia, Adelfe, PASSI [5] and SODA [21]. These
metamodels have been generally used for presenting concepts and only recently they
are being considered as a foundation for MAS development tools [26].

Collaborating with Object Management Group’s (OMG) Agent SIG, the FIPA
Modeling Technical Committee proposes a metamodel called Agent Class
Superstructure Metamodel (ACSM) [24] which is based on – and extends – UML 2.0
superstructure [25]. The metamodel presents a formal proposal for agent
organizations considering the agent, group and role concepts and their relations. In
fact, representing the MAS structure with these main meta-entities is not new and
formerly proposed in AALAADIN MAS metamodel [12] but not as formal as FIPA
Modeling TC’s work.

On the other hand, MetaDIMA [15] is a metamodeling project which aims at
bridging the gap between existing agent architectures with their development tools
and agent-based methodologies, inspired by the Model Driven Architecture. It deals
with metamodeling and transformations for agents. However, the project is currently
in its preliminary phase.

In [26], Pavon et al reformulates their agent-oriented methodology called
INGENIAS in terms of the Model Driven Development paradigm. This reformulation
increases the relevance of the model creation, definition and transformation in the
context of multi-agent systems.

However, we believe that a significant deficiency exists in above mentioned agent
metamodeling and model-driven MAS development studies when we consider
modeling of agent systems working on Semantic Web [4] environment. Near future’s
agent systems will doubtlessly work in this environment and agents in these systems
will have capabilities to interact with other semantic entities such as semantic web
services.

In this study, we present our approach for integrating semantic web services and
semantic web enabled agents under a model driven view. The primary focus of our
work is the semantic web environment. We believe that agents must have well
designed environment specific capabilities to fully utilize the power of semantic web
environment. Hence in this paper, we first define a conceptual architecture for
semantic web enabled agents and then discuss how this conceptual architecture can
form the basis of a metamodel that can be used in the development of semantic web
enabled agents with a model driven approach.

Model driven architecture (MDA) [23] defines a conceptual framework to realize
model driven development. MDA is based on developing Platform Independent
Models (PIMs) and then converting these PIMs to Platform Specific Models (PSMs)
by model transformation. Therefore definitions of PIM and PSM are required for the
development of semantic web enabled MAS with the MDA approach. In this paper,
we zoom into the specific part of the metamodel that defines the interactions between
semantic web enabled agents and semantic web services since it is not possible to
cover all the aspects of the metamodel at one time. So we extend the metamodel of
the conceptual architecture from the point of entity aspect for the interaction between

 Modeling the Interaction Between Semantic Agents and Semantic Web Services 211

semantic agents and semantic web services. We model the agents and the relation
between these agents and semantic web services.

The paper is organized as follows: In Section 2, we introduce the proposed
approach for Semantic Web enabled MAS modeling. Our conceptual architecture for
Semantic Web enabled MASs is discussed within this section. Section 3 introduces
our metamodel that extends ACSM. This metamodel is the first step to incorporate a
model driven approach to the development of MASs. So, in section 4, we model the
interaction between the semantic agents and semantic web services using MDA
approach from the entity view. We also discuss a model transformation example for
agent plans within this section. Conclusion and future work are given in Section 5.

2 Proposed Approach for Semantic Web Enabled MAS Modeling

The basic entities of a Semantic Web enabled Multiagent System must be defined in
order to apply model driven approaches for development of these systems. We believe
that these entities can be derived from the conceptual architecture of Semantic Web
enabled MASs. These conceptual entities derived from the conceptual architecture
will constitute the key point for application models which are defined within the
context of model driven software development. For this reason, we introduce the
conceptual architecture of Semantic Web enabled MASs in the first following
subsection and discuss the use of these conceptual entities and components within the
context of model driven approach in the second subsection.

2.1 A Conceptual Architecture for Semantic Web Enabled MASs

As it is mentioned in Berners-Lee et al’s study [4], the real power of the Semantic
Web will be realized when programs are created that collect Web content from
diverse sources, process the information and exchange the results with other
programs. The computer programs in question are software agents and their
effectiveness will increase exponentially as more machine-readable Web content and
automated services (including other agents) become available. First of all, we need to
define a conceptual architecture for semantic web enabled MASs to realize this
vision. In this MAS architecture, autonomous agents can also evaluate semantic data
and collaborate with semantically defined entities such as semantic web services by
using content languages.

Our proposed conceptual architecture for Semantic Web enabled MASs is given in
Figure 1. The architecture defines three layers: Architectural Service Layer, Agency
Layer and Communication Infrastructure Layer. A group of system agents provides
services defined in the Architectural Service Layer. Every agent in the system has an
inner agent architecture described in the Agency Layer and they communicate with
each other according to the protocols defined in the Communication Infrastructure.

Semantic web agents are agents which are initiated by using the platform
architecture and able to use semantic services within the service layer. In
Architectural Service Layer, services (and/or roles) of semantic web agents inside the
platform are described. All services in the Architectural Service Layer use the

212 G. Kardas et al.

capability of the Agency Layer. Besides domain specific agent services, yellow page
and mediator services should also be provided.

Agent Registry is a system facilitator in which capabilities of agents are
semantically defined and advertised for other platform members. We also define a
conceptual entity called Semantic Service Registry in the proposed architecture in
order to provide semantic service discovery and execution for platform agents by
advertising semantic capabilities of services. Ontology Mediator is another
architectural service in which translation and mapping of different ontologies are
performed to support interoperability of different agent organizations using different
ontologies.

The middle layer of the architecture is the Agency which includes inner structural
components of Semantic Web enabled agents. Every agent in the system has a
Semantic Knowledgebase which stores the agent’s local ontologies. Those ontologies
are used by the agent during his interaction with other platform agents and semantic
web services. Evaluation of the ontologies and primitive inference are realized by the
Reasoner. Semantic Knowledge Wrapper within the Agency provides utilization of
above mentioned ontologies by upper-level Agency components.

Fig. 1. The conceptual architecture for Semantic Web enabled MASs

The Planner of the Agency Layer includes necessary reusable plans with their
related behavior libraries. On the other hand, the Semantic Content Interpreter
module uses the logical foundation of semantic web, ontology and knowledge
interpretation in order to check content validity and interpretation of the message
during agent communications.

 Modeling the Interaction Between Semantic Agents and Semantic Web Services 213

The bottom layer of the architecture is responsible of abstracting the architecture’s
communication infrastructure implementation. More detailed discussion of this
proposed conceptual architecture can be found in [20].

2.2 Model Driven Engineering Approach for Semantic Web Enabled MAS

The implementation of methods and tools for the development of semantic web
enabled multi agent systems based on the conceptual architecture discussed in Section
2.1 can be addressed by Model Driven Engineering (MDE). MDE [6] is a recent
approach that aims to increase the abstractness level in software development by
using models in different phases and therefore by freeing the developers from the
code level details. Each conceptual part of the architecture should be analyzed and
designed while developing a semantic web enabled multiagent system. Using a model
driven approach will enable us to reuse the components of the architecture and to
generate the source code of the system from high level abstraction models.

Model Driven Architecture (MDA) [23] is one of the realizations of MDE to
support the relations between platform independent and various platform dependent
software artifacts. MDA defines several model transformations which are based on
the Meta-Object-Facility [22] framework. These transformations are structured in a
three-layered architecture: the Computation Independent Model (CIM), the Platform
Independent Model (PIM), and the Platform Specific Model (PSM). A CIM is a view
of a system from the computation independent viewpoint [23]. Such a model is
sometimes called a domain model or a business model. CIM requirements should be
traceable to the PIM and PSM constructs by marking the proper elements in CIM. For
instance, although the CIM does not have any information about agents and web
services, the entities in the CIM are marked in an appropriate notation to trace the
agents and semantic web services in the PIM of the semantic web enabled MAS.
Bauer and Odell [2] discuss which aspects of a MAS could be considered at CIM and
PIM.

The PIM specifies a degree of platform independency to be suitable for use with a
number of different platforms of similar type [23]. In our perspective, the PIM of a
semantic web enabled MAS should define the main entities and interactions which are
derived from the conceptual architecture in Section 2.1. Also, the PIM of semantic
web enabled MAS should have different aspects where specific concerns can be
addressed. The PIM for service-oriented architecture discussed in [3] identifies four
aspects: information aspect, service aspect, process aspect and Quality of Service
aspect. In our approach, the PIM of semantic web enabled MAS can have mainly two
aspects: entity aspect and interaction aspect in order to avoid decomposing the system
into too many views. While the entity aspect combines the information aspect and
service aspect defined in [3], the interaction aspect is similar with the process aspect
and describes a set of interactions between agents and semantic services in terms of
message exchange.

On the other hand, the PSM combines the PIM with the additional details of the
platform implementation. The platform independent entities in the PIM of semantic
web agents are transformed to the PSM of an implemented semantic web enabled
agent framework like SEAGENT [8]. The flexible part of this approach is that the

214 G. Kardas et al.

PIM enables to generate different PSMs of semantic web enabled agent frameworks
automatically. These PSMs can be considered as the realizations of our conceptual
architecture.

The metamodel proposed in [20] defines the general concepts and entities of the
proposed conceptual architecture. This metamodel provides the key point for
customizing the entities for PIM and PSM metamodels in the MDA based
development of this agent system. However, the current metamodel could not be
considered as a complete PIM for semantic web enabled MAS. For instance,
Semantic Web Service meta-entity and its related entities such as Service Ontology
should be detailed. We believe that new entities for agent - semantic service
interaction will be needed to add into the metamodel to provide this metamodel as a
PIM for modeling the interaction in question.

Obviously, a Semantic Web Service encapsulates a service interface and a service
process mechanism for its discovery and execution by semantic web agents. This
interface and the semantic process should also be represented by appropriate entities
in the metamodel in order to constitute the PSM of such MAS or directly generate
semantic web enabled agent platform source code. Although there are ongoing efforts
e.g. OWL-S [31] and WSMO [33] which aim to describe web services semantically,
there is currently no platform independent standard for representation of these web
services in order to be used in the semantic web environment. Due to the lack of this
standard, representation of the service interface and the process mechanism constructs
in the metamodel are difficult. Hence, it is not possible to define a PIM metamodel for
semantic web enabled MAS without including these appropriate entities in the
metamodel.

Another part of the semantic web enabled MAS architecture that must be detailed
in the metamodel is the behavior library (planner). One of the implementation of
reusable plans in the behavior library is the Hierarchical Task Network (HTN)
planning [11] which is an AI planning methodology that creates plans by task
decomposition. From the point of MDA based development, this HTN or other
realization techniques of planning is defined in PSM level. For instance, SEAGENT
which is a semantic web enabled MAS framework is based on the HTN planning
framework presented by Sycara et al. [30] and the DECAF architecture [13]. If we
consider the metamodel of SEAGENT framework as PSM, the HTN and other
specific entities of the SEAGENT framework are defined in this metamodel as PSM
entities. In PIM level, the general concepts of planning mechanism should be modeled
and any specific component of HTN or other planning mechanisms should not be
considered for platform independence.

In this study, we model the planning mechanism and the relation between this
planning mechanism and semantic web service from the point of entity aspect. That is
why we use the Class diagram to represent the model of this relation. In semantic web
enabled MAS architecture, planner mechanism has the capability of executing plans
consisting of special tasks for semantic service agents in a way described in [16]. The
agents in the system can discover the appropriate service and invoke this service
through the planning mechanism. The metamodel of the semantic web enabled MAS
should consider the general entities of planner mechanism, semantic web service
profile parameters and the relation between these entities. While the PIM metamodel

 Modeling the Interaction Between Semantic Agents and Semantic Web Services 215

does not have any platform specific entities like HTN, OWL-S or WSMO, the
implementation of this mechanism in SEAGENT could be considered as platform
specific realization.

3 A Metamodel for Semantic Web Enabled MASs

In [20], we introduced a core agent metamodel superstructure to define elements and
their relationships of a Semantic Web enabled MAS depending on the previously
discussed conceptual architecture. However, the metamodel in question was improper
to be used in model transformations and it was too primitive to support widely-
accepted software modeling tools due to its arbitrary formalism. Therefore, in this
study, we present one representation of the above metamodel by extending FIPA
Modeling TC’s Agent Class Superstructure Metamodel (ACSM) [24]. Although
ACSM is currently also in its preliminary phase, we believe that it neatly presents an
appropriate superstructure specification that defines the user-level constructs required
to model agents, their roles and their groups. By extending this superstructure we do
not need to re-define basic entities of the agent domain. Also, ACSM models
assignment of agents to roles by taking into consideration of group context. Hence,
extending ACSM clarifies relatively blurred associations between Semantic
Organization, Semantic Agent and Role concepts in our metamodel by appropriate
inclusion of ACSM’s Agent Role Assignment entity. However, ACSM extension is
not sufficient and we provide new constructs for our metamodel by extending UML
2.0 Superstructure and Ontology UML Profile which is defined by Djuric [9].

Before discussing our metamodel, ACSM is briefly mentioned below. More
information about ACSM can be found in [24] and [25]. ACSM has a specification
which is based on –and extends- UML superstructure. It proposes a superstructure
for modeling agents, agent roles and agent groups. Its class model is illustrated in
Figure 2.

ACSM utilizes the distinction between UML Classifier and UML Class. The agent
classification in the model is based on an extension of Classifier. This provides
omitting features of object-orientation (such as object-based messaging and
polymorphism) which are troublesome for agents.

An Agent Classifier in the model defines various ways in which agents will be
classified. It has two subclasses: Agent Physical Classifier which defines the primitive
or basic classes describing core requirements of an agent and Agent Role Classifier
which classifies agents by the various kinds of roles agents may play.

The Agent class defines the set of all agents that populate a system. Each instance
of an Agent is associated with one or more Agent Classifiers that define its necessary
features.

Group is defined as a set of agents which have been collected together for some
reason. Within a group, its member agents interact according to the roles that they
play. Groups are partitioned into Agentified Groups and Non-Agentified Groups
according to whether or not they are addressable as an agent and can act as an agent in
their own right.

216 G. Kardas et al.

Fig. 2. FIPA Modeling TC’s Agent Class Superstructure Metamodel [24]

Besides UML Classifier utilization, another noteworthy feature of the ACSM is
modeling Agent – Role assignment as a ternary association. The fact that assignment
of Agents to Roles is dynamic, required association is modeled by the Agent Role
Assignment entity. A Role assignment between an agent and its role must be qualified
by a group context. Hence, an Agent Role Assignment is a Class in the model whose
associated instances associate Roles, Groups and Agents. Each instance of the ternary
Agent Role Assignment associates a role, a group and an agent.

The Semantic Web enabled MAS metamodel being proposed in this study is given
in Figure 3. The model extends FIPA Modeling TC’s Agent Class, UML 2.0
superstructures and Ontology UML Profile.

As given in [20] a Semantic Web Agent is an autonomous entity which is capable
of interaction with both other agents and semantic web services within the
environment. It is a special form of the ACSM’s Agent class due to its entity
capabilities. It includes new features in addition to Agent classified instance.

Roles provide both the building blocks for agent social systems and the
requirements by which agents interact as it has been remarked in [25]. We believe that
the same is true for roles played in Semantic Web enabled agent environments.
However, this general model entity should be specialized in the metamodel according
to task definitions of architectural and domain based roles: An Architectural Role
defines a mandatory Semantic Web enabled MAS role that should be played at least
one agent inside the platform regardless of the organization context whereas a
Domain Role completely depends on the requirements and task definitions of a
specific Semantic Organization created for a specific business domain.

The Role concept in the metamodel is an extension of Agent Role Classifier due to
its classification for roles the semantic agents are capable of playing at a given time.
This conforms to the Agent – Agent Role Classifier association defined in ACSM

 Modeling the Interaction Between Semantic Agents and Semantic Web Services 217

Fig. 3. The metamodel for Semantic Web enabled MASs which extends FIPA Modeling TC’s
Agent Class, UML 2.0 Superstructure and Ontology UML Profile

[25]: Semantic Web Agents can be associated with more than one Role (which is also
an Agent Role Classifier) at the same point in time (multiple classification) and can
change roles over time (dynamic classification).

Agent Role Classifiers form a generalization hierarchy. This is also valid for
Semantic environment’s Role elements. For example, in Figure 4, a hierarchy of
Architectural Roles in SEAGENT [8] MAS framework is given. Due to its FIPA
compliancy, related framework also defines a Registry Role called Directory Facili-
tator (DF). However, it also includes a service role called Semantic Service

218 G. Kardas et al.

Fig. 4. A generalization hierarchy of Architectural Roles in SEAGENT MAS

Matcher (SSM) which should be played by some of the platform agents in order to
realize Semantic Web Service – Agent interaction.

On the other hand, Semantic Web Organization is defined as a specialization of the
ACSM’s Group entity in the proposed model because it should be implemented as
only a composition of Semantic Web Agents. However, a Semantic Web
Organization may or may not behave as a Semantic Web Agent in overall manner.
Hence, it shouldn’t be defined neither as Agentified nor Non-Agentified Group. It is a
direct extension of the Group Composite Structure.

Above discussed ACSM extensions provide clarification of the relations between
Semantic Web Agent, Role and Semantic Web Organization in our model by
presenting practicability of ACSM’s Agent Role Assignment ternary association
between Agent, Agent Role Classifier and Group.

The metamodel is also based on – and extends – UML 2.0 Superstructure to define
meta-elements of the Semantic Web environment. For example, we have defined a
first-class entity called Semantic Web Service Classifier in our core model. This
entity is defined in the final model as a UML 2.0 Classifier extension.

A Semantic Web Service represents any service (except agent services) whose
capabilities and interactions are semantically described within a Semantic Web
enabled MAS. A Semantic Web Service composes one or more Service entities. Each
service may be a web service or another service with predefined invocation protocol
in real-life implementation. But they should have a semantic web interface to be used
by autonomous agents of the platform.

Like agents, semantic web services have also capabilities and features which could
not be just based on object-oriented paradigm. Hence, we define new Classifiers and
their related Instance Specifications in the metamodel to encapsulate semantic web
entities. We have applied classifier – classified instance association between Semantic
Web Service Classifier and Semantic Web Service. Same is valid for Service Classifier
– Service relationship.

Ontology entities (Organization Ontology, Service Ontology and Role Ontology)
are defined as extensions of the Ontology element of the Ontology UML Profile
(OUP) defined in [9]. OUP captures ontology concepts with properties and
relationships and provides a set of UML elements available to use as semantic types
in our metamodel. By deriving the semantic concepts from OUP, there will be
already-defined UML elements to use as semantic concepts within the metamodel.

 Modeling the Interaction Between Semantic Agents and Semantic Web Services 219

One Role is composed of one or more Behaviors. Task definitions and related task
execution processes of Semantic Web agents are modeled inside Behavior entities.
The Behavior entity is defined in the metamodel as a UML 2.0 Behavioral Feature
because it refers to a dynamic feature of a Semantic Web Agent (e.g. an agent task
which realizes agent interaction with other agents).

According to played roles, agents inevitably communicate with other agents to
perform desired tasks. Each Communication entity defines a specific interaction
between two agents of the platform which takes place in proper to predefined agent
interaction protocol. One Communication is composed of one or more Messages
whose content can be expressed in a RDF based semantic content language.

Figure 5 portrays an example semantic role assignment considering a MAS
working in Tourism domain.

Fig. 5. A Semantic Role Assignment for a MAS working in Tourism domain

In this system, there exists an Agent Role Assignment Class called “Reservator
Role Assignment” which represents the three-way association between a Hotel Client
Agent, the Room Reservator Role and Tourism Organization. Hotel Client is a
Semantic Web Agent which reserves hotel rooms on behalf of its human users.
Within the Semantic Web Organization called Tourism Organization, the semantic
web agent plays a Room Reservator Role. The related role includes a semantic web
service interaction during its task execution: Hotel Client Agent uses Reservation
Composite semantic web service which may be a composition of discovery,
engagement and invocation services for hotel room reservation.

4 Elaboration of the Metamodel by Considering the Interaction
Between Semantic Agents and Semantic Web Services

The metamodel discussed in the previous section defines required meta-entities and
entity relations of a Semantic Web enabled MAS architecture. However, interaction

220 G. Kardas et al.

between semantic agents and external services needs to be studied in more detail in
order to realize model transformations during system development. Such a study also
provides a practical evaluation of the proposed metamodel. The extended model given
in Figure 6 elaborates the agent – service interaction from the point of entity aspect.

Fig. 6. The extended metamodel of the interaction between Semantic Agents and Semantic
Web Services

Semantic Web Agents have Plans to discover and execute Semantic Web Services
dynamically. In order to discover service capabilities, agents need to communicate
with a service registry. For this reason, the model includes a specialized agent entity,
called Semantic Service Matchmaker Agent. This meta-entity represents matchmaker
agents which store capability advertisements of semantic web services within a MAS
and match those capabilities with service requirements sent by the other platform
agents.

When we consider various semantic web service modeling languages such as
OWL-S [31] and WSMO [33], it is clear that services are represented by three
semantic documents: Service Interface, Process Model and Physical Grounding.
Service Interface is the capability representation of the service in which service
inputs, outputs and any other necessary service descriptions are listed. Process Model
describes internal composition and execution dynamics of the service. Finally

 Modeling the Interaction Between Semantic Agents and Semantic Web Services 221

Physical Grounding defines invocation protocol of the web service. These Semantic
Web Service components are given in the metamodel with Interface, Process and
Grounding entities respectively. Semantic input, output and web service definitions
used by those service components are exported from the UML Semantic Web Service
Profile proposed in [14].

Semantic Web Agents have two consecutive plans to interact with Semantic Web
Services. Semantic Service Finder Plan is a Plan in which discovery of candidate
semantic web services takes place. During this plan execution, the agent
communicates with the service matchmaker of the platform to determine proper
semantic services. After service discovery, the agent applies the Semantic Service
Executor Plan in order to execute appropriate semantic web services. Process model
and grounding mechanism of the service are used within the plan. An instance model
of the above metamodel is given in Figure 7 for the interaction between a Hotel Client
Agent and a Reservation Service within a MAS working in Tourism domain.

Fig. 7. An instance model for the agent – service interaction within a MAS working in Tourism
domain

As previously mentioned, the client agent is a Semantic Web Agent which reserves
hotel rooms on behalf of its human users. During its task execution, it needs to
interact with a semantic web service called Reservation Composite Service.
Matchmaker Agent is the service matcher of the related agent platform.

222 G. Kardas et al.

When we consider the metamodel as a PIM of the agent – service interaction, we
should give the corresponding PSM entities in an implemented Semantic Web
enabled MAS environment. As previously mentioned, SEAGENT [8] is a MAS
development framework which provides built-in components for Semantic Web
enabled MASs. Hence, in Table 1, we give the mappings between entities of our
proposed metamodel and SEAGENT framework. These mappings precede the
transformation between PIM and PSMs of such kind of MASs according to MDA
approach.

Table 1. Mappings between the metamodel and SEAGENT framework entities

Metamodel Entity SEAGENT Entity Explanation
Registry Role
Semantic Service Matchmaker
Agent (SSMA)

Semantic Service
Matcher (SSM)

Both Registry role and
SSMA in the metamodel
corresponds to the SSM in
SEAGENT.

Plan HTN Plan In SEAGENT MAS, agent
plans are designed as
hierarchical task networks.

Semantic Service Finder Plan HTN Finder Task
Semantic Service Executor Plan HTN Executor Task
Semantic Web Agent Agent
Semantic Web Service OWL-S Service In SEAGENT, capabilities

and process models of
semantic web services are
defined by using OWL-S
markup language.

Interface OWL-S Profile
Process OWL-S Process
Grounding OWL-S Grounding

To derive a transformation (based on the mappings listed in Table 1) from

metamodel entities depicted in Figure 6 to SEAGENT entities, we first define a
platform dependent metamodel and instance models of SEAGENT. Since SEAGENT
is implemented in Java, we do not need a customized metamodel instead of Java
metamodel. All SEAGENT entities defined in Table 1 are a realization of the meta
classes in Java metamodel. In our transformation we use a Kernel MetaMetaModel
(KM3) based on the Java metamodel which is defined in a metamodel zoo [32]. All
the metamodels available in this zoo [32] are expressed in KM3 [18] metamodel
format and can be injected to an “ecore” file which is an Eclipse Modeling
Framework (EMF) [10] format.

SEAGENT dependent plan and semantic web agent models based on this Java
metamodel for the interaction between semantic web agents and semantic web
services contain the components of SEAGENT plan structure. Gürcan et al [16]
define a software platform which fulfills fundamental requirements of Semantic Web
Services Architecture's (SWSA) [7] conceptual model including all its sub-processes

 Modeling the Interaction Between Semantic Agents and Semantic Web Services 223

and a planner that has the capability of reusable plans in which these sub-processes
are modeled for development of semantic service agents. This plan structure [16] is
similar to the frameworks presented by Sycara et al [30] and the DECAF architecture
[13]. As a requirement of HTN, tasks might be either complex (called behaviors) or
primitive (called actions). Each plan consists of a complex root task consisting of sub-
tasks to achieve a predefined goal.

Components of our plan structure are shown in Figure 8. Tasks have a name
describing what they are supposed to do and have zero or more provisions
(information needs) and outcomes (execution results). The provision information is
supplied dynamically during plan execution. Tasks are ready, and thus eligible for
execution, when there is a value for each of its provisions. Related control is done via
isAllProvisionsAreSet() method. The more detailed information about SEAGENT
plan structure can be found in [16].

Fig. 8. Components of SEAGENT Plan Structure [16]

According to the plan structure depicted in Figure 8, we define an instance
SEAGENT plan model based on Java metamodel for the agent – service interaction
within a MAS working in Tourism domain whose platform independent model is
shown in Figure 7.

Figure 9 shows an instance plan model in SEAGENT for the agent – service
interaction within a MAS working in Tourism domain. This is the corresponding
platform dependent model of the plan part of the platform independent model
depicted in Figure 7. Every entity in this model is a Java class which is defined as a
meta class in the Java metamodel. In this plan, FindaHotel, FindaRoom, and
MakeRoomReservation sub-tasks of the plan are concrete realizations of
ExecuteService task. They are connected with their provisions and outcome slots, and
because they are domain dependent plans they know what input parameters they will
take. Since the realization of a Plan from another plan is done through inheritance

224 G. Kardas et al.

Fig. 9. An instance plan model in SEAGENT for the agent – service interaction within a MAS
working in Tourism domain

relations between Java classes in SEAGENT, FindaHotel class is extended from
ExecuteService class and ExecuteService class is extended from Behaviour class.

Currently, we are working on implementing the transformations derived from the
mappings given in this study to realize the model driven development of Semantic
Web enabled MASs using MDA approach. For this purpose, we use ATLAS INRIA
& LINA research group’s ATL (Atlas Transformation Language) which is a model
transformation language specified as both a metamodel and a textual concrete syntax
[19].

Figure 10 summarizes the full model transformation process. A model Ma,
conforming to a metamodel MMa, is here transformed into a model Mb that conforms
to a metamodel MMb. The transformation is defined by the model transformation
model Mt which itself conforms to a model transformation metamodel MMt. This last
metamodel, along with the MMa and MMb metamodels, has to conform to a
metametamodel MMM such as MOF (Meta Object Facility) or Ecore [10].

In our transformation case, MMM is Ecore and MMt is ATL. Our source model
(Ma) is the model given in Figure 7 which conforms to metamodel (MMa) given in
Figure 6. When we apply a transformation into our source model, we aim to obtain
the platform specific destination model (Mb) which conforms to metamodel of the
SEAGENT planner depicted in Figure 9.

 Modeling the Interaction Between Semantic Agents and Semantic Web Services 225

Fig. 10. An overview of model transformation [19]

Consider the simple example in which we transform a Semantic Service Finder
Plan (in Figure 6) into its corresponding SEAGENT plan which is
DiscoverCandidateService (in Figure 9) within the ATL environment. To do this we
have to create EMF encodings -.ecore files- of both models and use them in ATL
transformation.

EMF provides its own file format (.ecore) for model and metamodel encoding.
However the manual edition of Ecore metamodels is particularly difficult with EMF.
In order to make this common kind of editions easier, the ATL Development Tools
(ADT) include a simple textual notation dedicated to metamodel edition: the Kernel
MetaMetaModel (KM3) [18]. This textual notation eases the edition of metamodels.
Once edited, KM3 metamodels can be injected into the Ecore format using ADT
integrated injectors. More information about KM3 and Ecore injection can be found
in [18, 19].

Following is the part of the KM3 file in which Semantic Service Finder Plan is
represented:

package SemanticServiceFinderPlan {
 class SemanticServiceFinderPlan {
 attribute plan_name : String;
 reference desiredServiceInterface : Interface;
 }
 class Interface {
 attribute input: String;
 attribute output: String;
 attribute precondition: String;
 attribute effect: String;
 }
}

package PrimitiveTypes { datatype String; }

Notice that service interface metamodel definition in here is extremely simplified
for the demonstration purposes. In a real transformation, IOPE (Input, Output,
Precondition and Effect) attributes of a semantic service interface would have
complex types. The ecore model conforming to above metamodel includes the
following model instance which will be given into transformation process:

226 G. Kardas et al.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xmi:XMI xmlns:xmi="http://www.omg.org/XMI" xmlns="SemanticServiceFinderPlan">
 <SemanticServiceFinderPlan>

<name>Hotel Client’s Service Discovery Plan</name>
<Interface>ReservationServiceInterface</Interface>

 </SemanticServiceFinderPlan>
</xmi:XMI>

The KM3 representation of the destination model’s metamodel is given below:

package DiscoverCandidateService {
 class DiscoverCandidateService {
 attribute name : String;
 attribute candidateServiceInputList : String;

 attribute candidateServiceOutputList : String;
 }
}

package PrimitiveTypes { datatype String; }

Finally, here is the transformation rule written in ATL which will be used by the
ATL engine in order to generate the model conforming to
DiscoverCandidateService’s metamodel:

module SemanticServiceFinderPlan2DiscoverCandidateService;
create OUT : DiscoverCandidateService from IN : SemanticServiceFinderPlan;
rule SemanticServiceFinderPlan {
 from
 ssfp : SemanticServiceFinderPlan!SemanticServiceFinderPlan
 to
 dcs : DiscoverCandidateService!DiscoverCandidateService (
 name <- ssfp.name,
 candidateServiceInputList <- ssfp. desiredServiceInterface.input,
 candidateServiceOutputList <- ssfp. desiredServiceInterface.output
)
}

The engine applies the above rule in order to transform “Hotel Client’s Service

Discovery Plan” model which conforms to SemanticServiceFinderPlan metamodel
into a model instance that can be used within the SEAGENT environment conforming
to plan metamodel of DiscoverCandidateService.

5 Conclusion and Future Work

A metamodel for Semantic Web enabled MASs and the extended part of this
metamodel for the interaction between semantic agents and semantic web services are
introduced in this paper. This extended metamodel can be considered as a part of
Platform Independent Model within the context of MDA approach. This PIM models
the planning mechanism and the relation between this planning mechanism and
semantic web service from the point of entity aspect. The agents in the system can
discover the appropriate semantic services and invoke these services through the
planning mechanism. General entities of the planner mechanism, semantic web

 Modeling the Interaction Between Semantic Agents and Semantic Web Services 227

service profile parameters and the relation between these entities are considered.
While the PIM does not have any platform specific entities of HTN, OWL-S or
WSMO, the implementation of these mechanisms in SEAGENT could be considered
as platform specific realization. The mappings between the entities of the metamodel
and the implemented entities of SEAGENT framework in Section 4 show the
practical relevance of the metamodel.

In our future work, we aim to define interaction aspect of this extended metamodel
at first. Meanwhile, we also intend to improve mappings and model transformations
introduced in this study. The metamodel in here is only extended for interaction
between semantic agents and semantic web services. Hence, as our further work, we
plan to extend other parts of the metamodel according to the components of the
layered conceptual architecture and provide tool support for the proposed metamodel.

References

[1] Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation.
IEEE Software 20, 36–41 (2003)

[2] Bauer, B., Odell, J.: UML 2.0 and Agents: How to Build Agent-based Systems with the
New UML Standard. Journal of Engineering Applications of Artificial Intelligence 18(2),
141–157 (2005)

[3] Benguria, G., Larrucea, X., Elvesaeter, B., Neple, T., Beardsmore, A., Winchester, M.: A
Platform Independent Model for Service Oriented Architectures. In: Interoperability for
Enterprise Software and Applications Conference (I-ESA’06), Bordeaux, France (2006)

[4] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

[5] Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A Study of some
Multi-Agent Meta-Models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004.
LNCS, vol. 3382. Springer, Heidelberg (2005)

[6] Bezivin, J.: Model Driven Engineering: Principles, Scope, Deployment and Applicability.
In: Proceedings of 2005 Summer School on Generative and Transformational Techniques
in Software Engineering (July 2005)

[7] Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M., Paolucci, M., Sheth, A.,
Williams, S.: A semantic web services architecture. IEEE Internet Computing 9(5), 72–81
(2005)

[8] Dikenelli, O., Erdur, R.C., Kardas, G., Gümüs, O., Seylan, I., Gurcan, O., Tiryaki, A.M.,
Ekinci, E.E.: Developing Multi Agent Systems on Semantic Web Environment using
SEAGENT Platform. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005.
LNCS (LNAI), vol. 3963, pp. 1–13. Springer, Heidelberg (2006)

[9] Djuric, D.: MDA-based Ontology Infrastructure. Computer Science Information Systems
(ComSIS) 1(1), 91–116 (2004)

[10] Eclipse Modeling Framework (2006) available at: http://www.eclipse.org/emf
[11] Erol, K., Hendler, J.A., Nau, D.S.: Complexity Results for HTN Planning. Ann. Math.

Artif. Intell. (1996)
[12] Ferber, J., Gutknecht, O.: A Meta-Model for the Analysis and Design of Organizations in

Multi-Agent Systems. In: Proc. 3rd International Conference on Multi-Agent Systems,
pp. 128–135. IEEE Computer Society Press, Los Alamitos (1998)

[13] Graham, J.R., Decker, K., Mersic, M.: DECAF – a flexible multi agent system
architecture. Autonomous Agents and Multi-Agent Systems (2003)

228 G. Kardas et al.

[14] Gronmo, R., Jaeger, M.C., Hoff, H.: Transformations between UML and OWL-S. In:
Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 269–283.
Springer, Heidelberg (2005)

[15] Guessoum, Z., Thiefaine, A., Perrot, J., Blain, G.: META-DIMA: a Model-Driven
Architecture for Multi-Agent Systems, (last accessed: 2006), http://www-
poleia.lip6.fr/%7Eguessoum/MetaDima.html

[16] Gürcan, Ö., Kardas, G., Gümüs, Ö., Ekinci, E.E., Dikenelli, O.: A Planner for Implementing
Semantic Service Agents based on Semantic Web Services Initiative Architecture. In:
Fourth European Workshop on Multi-Agent Systems, Lisbon, Portugal (2006)

[17] Jayatilleke, G.B., Padgham, L., Winikoff, M.: Towards a Component Based Development
Framework for Agents. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.)
MATES 2004. LNCS (LNAI), vol. 3187, pp. 183–197. Springer, Heidelberg (2004)

[18] Jouault, F., Bezivin, J.: KM3: A DSL for Metamodel Specification. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

[19] Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

[20] Kardas, G., Goknil, A., Dikenelli, O., Topaloglu, N.Y.: Metamodeling of Semantic Web
Enabled Multiagent Systems. In: Multiagent Systems and Software Architecture
(MASSA), Erfurt, Germany, pp. 79–86 (2006)

[21] Molesini, A., Denti, E., Omicini, A.: MAS Meta-models on Test: UML vs. OPM in the
SODA Case Study. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005.
LNCS (LNAI), vol. 3690. Springer, Heidelberg (2005)

[22] Object Management Group (OMG): Meta Object Facility (MOF) Specification. OMG
Document AD/97-08-14, (September 1997)

[23] Object Management Group (OMG): MDA Guide Version 1.0.1. Document Number:
omg/2003-06-01 (2003)

[24] Odell, J., Levy, R., Nodine, M.: FIPA Modeling TC: Agent Class Superstructure
Metamodel (2004), available at: http://www.omg.org/docs/agent/04-12-02.pdf

[25] Odell, J., Nodine, M., Levy, R.: A Metamodel for Agents, Roles and Groups. In: Odell, J.J.,
Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382. Springer, Heidelberg (2005)

[26] Pavon, J., Gomez, J., Fuentes, R.: Model Driven Development of Multi-Agent Systems.
In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 284–298.
Springer, Heidelberg (2006)

[27] Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Modeling. In:
Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382. Springer,
Heidelberg (2005)

[28] Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20, 19–25
(2003)

[29] Sendall, S., Kozaczynski, W.: Model Transformation – the Heart and Soul of Model-
Driven Software Development. IEEE Software 20, 42–45 (2003)

[30] Sycara, K., Williamson, M., Decker, K.: Unified information and control workflow in
hierarchical task networks. In: Working Notes of the AAAI-96 workshop ‘Theories of
Action, Planning, and Control’ (1996)

[31] The OWL Services Coalition: Semantic Markup for Web Services (OWL-S) (2004),
http://www.daml.org/services/owl-s/1.1/

[32] The Atlantic Zoo: Metamodels expressed in KM3 (2006), available at:
http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/

[33] Web Service Modeling Ontology (2005), http://www.wsmo.org/

	Modeling the Interaction Between Semantic Agents and Semantic Web Services Using MDA Approach
	Introduction
	Proposed Approach for Semantic Web Enabled MAS Modeling
	A Conceptual Architecture for Semantic Web Enabled MASs
	Model Driven Engineering Approach for Semantic Web Enabled MAS

	A Metamodel for Semantic Web Enabled MASs
	Elaboration of the Metamodel by Considering the Interaction Between Semantic Agents and Semantic Web Services
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

