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Abstract. The promise of Brain-Computer Interfaces (BCI) technology is to 
augment human capabilities by enabling interaction with computers through a 
conscious and spontaneous modulation of the brainwaves after a short training 
period. Indeed, by analyzing brain electrical activity online, several groups have 
designed brain-actuated devices that provide alternative channels for 
communication, entertainment and control. Thus, a person can write messages 
using a virtual keyboard on a computer screen and also browse the internet. 
Alternatively, subjects can operate simple computer games, or brain games, and 
interact with educational software. Work with humans has shown that it is 
possible for them to move a cursor and even to drive a wheelchair. This paper 
briefly reviews the field of BCI, with a focus on non-invasive systems based on 
electroencephalogram (EEG) signals. It also describes three brain-actuated 
devices we have developed: a virtual keyboard, a brain game, and a wheelchair. 
Finally, it shortly discusses current research directions we are pursuing in order 
to improve the performance and robustness of our BCI system, especially for 
real-time control of brain-actuated robots. 
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1   Introduction 

The idea of controlling machines not by manual operation, but by mere “thinking” 
(i.e., the brain activity of human subjects) has fascinated humankind since ever, and 
researchers working at the crossroads of computer science, neurosciences, and 
biomedical engineering have started to develop the first prototypes of brain-computer 
interfaces (BCI) over the last decade or so [1], [2], [3], [4], [5]. A BCI monitors the 
user’s brain activity and translates their intentions into actions—such as moving a 
wheelchair [6], [7] or selecting a letter from a virtual keyboard [8], [9]—without using 
activity of any muscle or peripheral nerve. The central tenet of a BCI is the capability 
to distinguish different patterns of brain activity, each being associated to a particular 
intention or mental task. 
Such a kind of BCI is a natural way to augment human capabilities by providing a 
new interaction link with the outside world and is particularly relevant as an aid for 
paralyzed humans, although it also opens up new possibilities in natural and direct 



interaction for able-bodied people. Figure 1 shows the general architecture of a BCI. 
Brain electrical activity is recorded with a portable device. These raw signals are first 
processed and transformed in order to extract some relevant features that are then 
passed on to some mathematical models (e.g., statistical classifiers or neural 
networks). This model computes, after some training process, the appropriate mental 
commands to control the device. Finally, visual feedback, and maybe other kinds such 
as tactile stimulation, informs the subject about the performance of the brain-actuated 
device so that they can learn appropriate mental control strategies and make rapid 
changes to achieve the task. 
 

 

Fig. 1. General architecture of a brain-computer interface (BCI) for controlling devices such as 
a cursor, a robotic arm, or a motorized wheelchair. In this case the BCI measures 
electroencephalogram (EEG) signals recorded non-invasively from electrodes placed on the 
subject’s scalp. 

A BCI may monitor brain activity via a variety of methods, which can be coarsely 
classified as invasive and non-invasive. In invasive BCI systems the activity of single 
neurons (their spiking rate) is recorded from microelectrodes implanted in the brain. 
Less invasive approaches are based on the analysis of electrocorticogram (ECoG) 
signals from electrodes implanted under the skull. For humans, however, it is 
preferable to use non-invasive approaches to avoid the risks generated by permanent 
surgically implanted devices in the brain, and the associated ethical concerns. Most 
non-invasive BCI systems use electroencephalogram (EEG) signals; i.e., the electrical 
brain activity recorded from electrodes placed on the scalp. The main source of the 
EEG is the synchronous activity of thousands of cortical neurons. Measuring the EEG 
is a simple noninvasive way to monitor electrical brain activity, but it does not 
provide detailed information on the activity of single neurons (or small brain areas). 
Moreover, it is characterized by small signal amplitudes (a few μVolts) and noisy 
measurements (especially if recording outside shield rooms). 

Besides electrical activity, neural activity also produces other types of signals, such 
as magnetic and metabolic, that could be used in a BCI. Magnetic fields can be 
recorded with magnetoencephalography (MEG), while brain metabolic activity—
reflected in changes in blood flow—can be observed with positron emission 



tomography (PET), functional magnetic resonance imaging (fMRI), and optical 
imaging. Unfortunately, such alternative techniques require sophisticated devices that 
can be operated only in special facilities. Moreover, techniques for measuring blood 
flow have long latencies and thus are less appropriate for interaction. 

From this short review it follows that, because of its low cost, portability and lack 
of risk, EEG is the ideal modality if we want to bring BCI technology to a large 
population. 

In the next sections we review the main components of our BCI system, which is 
based on the online analysis of spontaneous EEG signals and recognizes 3 mental 
tasks. Our approach relies on three principles. The first one is an asynchronous 
protocol where subjects decide voluntarily when to switch between mental tasks and 
perform those mental tasks at their own pace. The second principle is mutual learning, 
where the user and the BCI are coupled together and adapt to each other. In other 
words, we use machine learning approaches to discover the individual EEG patterns 
characterizing the mental tasks executed by the user while users learn to modulate 
their brainwaves so as to improve the recognition of the EEG patterns. Finally, the 
third principle is the combination of the user’s intelligence with the design of 
intelligent devices that facilitate interaction and reduce the user’s cognitive workload. 
This is particularly useful for mental control of robots. We also describe the three 
brain-actuated applications we have developed. Finally, we discuss current research 
directions we are pursuing in order to improve the performance and robustness of our 
BCI system, especially for real-time control of brain-actuated robots. 

2   Spontaneous EEG and Asynchronous Operation 

Non-invasive EEG-based BCIs can be classified as “evoked” or “spontaneous”. An 
evoked BCI exploits a strong characteristic of the EEG, the so-called evoked 
potential, which reflects the immediate automatic responses of the brain to some 
external stimuli. Evoked potentials are, in principle, easy to pick up with scalp 
electrodes. The necessity of external stimulation does, however, restrict the 
applicability of evoked potentials to a limited range of tasks. In our view, a more 
natural and suitable alternative for interaction is to analyze components associated 
with spontaneous “intentional” mental activity. This is particularly the case when 
controlling robotics devices. Spontaneous BCIs are based on the analysis of EEG 
phenomena associated with various aspects of brain function related to mental tasks 
carried out by the subject at his/her own will. Such a kind of BCI can exploit two 
kinds of spontaneous, or endogenous, brain signals, namely slow potential shifts [10] 
or variations of rhythmic activity [6], [8], [11], [12], [13], [14]. We will focus on the 
latter that are the most common. 

EEG-based BCIs are limited by a low channel capacity1. Most of the current 
systems have a channel capacity below 0.5 bits/s [3]. One of the main reasons for 
such a low bandwidth is that they are based on synchronous protocols where EEG is 
time-locked to externally paced cues repeated every 4-10 s and the response of the 

                                                           
1 Channel capacity is the maximum possible information transfer rate, or bit rate, through a 

channel. 



BCI is the overall decision over this period [10], [12], [13]. Such synchronous 
protocols facilitate EEG analysis since the starting time of mental states are precisely 
known and differences with respect to background EEG activity can be amplified. 
Unfortunately, they are slow and BCI systems that use them normally recognize only 
2 mental states. 

On the contrary, we utilize more flexible asynchronous protocols where the subject 
makes self-paced decisions on when to stop doing a mental task and start immediately 
the next one [6], [8], [15]. In such asynchronous protocols the subject can voluntarily 
change the mental task being executed at any moment without waiting for external 
cues. The time of response of an asynchronous BCI can be below 1 second. For 
instance, in our approach the system responds every 1/2 second. The rapid responses 
of our asynchronous BCI, together with its performance (see Section 3), give a 
theoretical channel capacity between 1 and 1.5 bits/s. 

3   The Machine Learning Way to BCI 

A critical issue for the development of a BCI is training—i.e., how users learn to 
operate the BCI. Some groups have demonstrated that some subjects can learn to 
control their brain activity through appropriate, but lengthy, training in order to 
generate fixed EEG patterns that the BCI transforms into external actions [10], [13]. 
In this case the subject is trained over several months to modify the amplitude of their 
EEG signals. We follow a mutual learning process to facilitate and accelerate the 
user’s training period. Indeed, our approach allows subjects to achieve good 
performances in just a few hours of training in the presence of feedback [8]. 

Most BCI systems deal with the recognition of just 2 mental tasks [11], [12], [14], 
[15]. Our approach achieves error rates below 5% for 3 mental tasks, but correct 
recognition is 70%. In the remaining cases (around 20-25%), the classifier doesn’t 
respond, since it considers the EEG samples as uncertain. The incorporation of 
rejection criteria (see below) to avoid making risky decisions is an important concern 
in BCI. From a practical point of view, a low classification error is a critical 
performance criterion for a BCI; otherwise users can become frustrated and stop 
utilizing it. 

We use machine learning techniques at two levels, namely feature selection and 
training the classifier embedded into the BCI. The approach aims at discovering 
subject-specific spatio-frequency patterns embedded in the continuous EEG signal—
i.e., EEG rhythms over local cortical areas that differentiate the mental tasks. At the 
first level, we select those features that are more relevant for discriminating among 
the mental tasks. The selected features are those that satisfy two criteria: 
maximization of the separability of the mental tasks and stability over time. Indeed, 
EEG signals are non-stationary and, so, change over time. Feature selection is based 
on canonical variates analysis [16]. This procedure yields a sample, or input vector, x 
composed of the power of some frequency components from some electrodes. 

We use a statistical Gaussian classifier (see [6] for more details). The output of this 
statistical classifier is an estimation of the posterior class probability distribution for a 
sample; i.e., the probability that a given single trial belongs to each mental task (or 



class). Each class is represented by a number of Gaussian prototypes, typically less 
than four. That is, we assume that the class-conditional probability function of class 
Ck is a superposition of Nk Gaussian prototypes. We also assume that all classes have 
equal prior probability. All classes have the same number of prototypes Np, and for 
each class each prototype has equal weight 1/Nk. Then, dropping constant terms, the 
activity i

ka  of the ith prototype of class Ck for a given sample x is the value of the 

Gaussian with centre i
kμ  and covariance matrix i

kΣ . From this we calculate the 
posterior probability yk of the class Ck. The posterior probability yk of the class Ck is 
now the sum of the activities of all the prototypes of class k divided by the sum of the 
activities of all the prototypes of all the classes. 

The classifier output for input vector x is now the class with the highest 
probability, provided that the probability is above a given threshold, otherwise the 
result is “unknown”. 

Usually each prototype of each class would have an individual covariance matrix 
i
kΣ , but to reduce the number of parameters the model has a single diagonal 

covariance matrix common to all the prototypes of the same class. During offline 
training of the classifier, the prototype centers are initialized by any clustering 
algorithm or generative approach. This initial estimate is then improved by stochastic 

gradient descent to minimize the mean square error 21 ( )2 k kk
E y t= −∑ , where t 

is the target vector in the form 1-of-C; that is, if the second of three classes was the 
desired output, the target vector is (0,1,0). The covariance matrices are computed 
individually and are then averaged over the prototypes of each class to give Σk. 

4   Hardware and Signal Acquisition 

We acquire EEG potentials with a portable BioSemi system using a cap with either 32 
or 64 integrated electrodes arranged in the modified 10/20 International System. The 
EEG recordings are monopolar and taken at 512Hz. 

EEG signals are characterized by a poor signal-to-noise ratio and spatial resolution. 
Their quality is greatly improved by means of spatial filtering techniques. We use the 
common average reference (CAR) procedure, where at each time step the average 
potential over all the channels is subtracted from each channel. This re-referencing 
procedure removes the background activity, leaving activity from local sources 
beneath the electrodes. Alternatively, raw EEG potentials can be transformed by 
means of a Surface Laplacian (SL) derivation. The SL estimate yields new potentials 
that represent better the cortical activity originated in radial sources immediately 
below the electrodes. The superiority of SL- and/or CAR-transformed signals over 
raw potentials for the operation of a BCI has been demonstrated in different studies 
[11], [17]. 



5   Brain-Actuated Devices 

BCI systems are being used to operate a number of brain-actuated applications that 
augment people’s communication capabilities, provide new forms of entertainment, 
and also enable the operation of physical devices. In this section we briefly describe 
some of the brain-actuated devices we have developed over the years. All these 
systems have been largely demonstrated publicly. 

Our asynchronous BCI can be used to select letters from a virtual keyboard on a 
computer screen and to write a message [8], [9]. Initially, the whole keyboard (26 
English letters plus the space to separate words, for a total of 27 symbols organized in 
a matrix of 3 rows by 9 columns) is divided in three blocks, each associated to one of 
the mental tasks. The association between blocks and mental tasks is indicated by the 
same colors as during the training phase. Each block contains an equal number of 
symbols, namely 9 at this first level (3 rows by 3 columns). Then, once the statistical 
classifier recognizes the block on which the subject is concentrating, this block is split 
in 3 smaller blocks, each having 3 symbols this time (1 row). As one of this second-
level blocks is selected, it is again split in 3 parts. At this third and final level, each 
block contains 1 single symbol. Finally, to select the desired symbol, the user 
concentrates in its associated mental task as indicated by the color of the symbol. This 
symbol goes to the message and the whole process starts over again. Thus, the process 
of writing a single letter requires three decision steps. 

The second brain-actuated device is a simple computer game [9], or “brain game”, 
but other educational software could have been selected instead. It is the classical 
Pacman. For the control of Pacman, two mental tasks are enough to make it turn left 
of right. Pacman changes direction of movement whenever one of the mental tasks is 
recognized twice in a row. In the absence of further mental commands, Pacman 
moves forward until it reaches a wall, where it stops and waits for instructions. 

Finally, it is also possible to control mentally robots and prosthesis. Until recently, 
EEG-based BCIs have been considered too slow for controlling rapid and complex 
sequences of movements. But we have shown for the first time [6], [8] that 
asynchronous analysis of EEG signals is sufficient for humans to continuously control 
a mobile robot—emulating a motorized wheelchair—along non-trivial trajectories 
requiring fast and frequent switches between mental tasks (see Fig. 2). Two human 
subjects learned to mentally drive the robot between rooms in a house-like 
environment visiting 3 or 4 rooms in the desired order. Furthermore, mental control 
was only marginally worse than manual control on the same task. A key element of 
this brain-actuated robot is shared control between two intelligent agents—the human 
user and the robot—so that the user only gives high-level mental commands that the 
robot performs autonomously. In particular, the user’s mental states are associated 
with high-level commands (e.g., “turn right at the next occasion”) and that the robot 
executes these commands autonomously using the readings of its on-board sensors. 
Another critical feature is that a subject can issue high-level commands at any 
moment. This is possible because the operation of the BCI is asynchronous and, 
unlike synchronous approaches, does not require waiting for external cues. The robot 
relies on a behaviour-based controller to implement the high-level commands to 
guarantee obstacle avoidance and smooth turns. In this kind of controller, on-board 
sensors are read constantly and determine the next action to take. 



 

Fig. 2. One of the users while driving mentally the robot through the different rooms of the 
environment, making it turn right, turn left, or move forward. The robot has 3 lights on top to 
provide feedback to the user and 8 infrared sensors around its diameter to detect obstacles. 

 

Fig. 3. .Subject driving the wheelchair in a natural environment from non-invasive EEG. Note 
the laser scanner in front of the wheelchair, in between the subject’s legs. 



More recently, we have extended this work to the mental control of both a 
simulated and a real wheelchair (see Fig. 3). This has been done in the framework of 
the European project MAIA (http://www.maia-project.org) and in cooperation with 
the KU Leuven. In this case, we have incorporated shared control principles into the 
BCI [18], [19]. In shared control, the intelligent controller relieves the human from 
low level tasks without sacrificing the cognitive superiority and adaptability of human 
beings that are capable of acting in unforeseen situations. In other words, in shared 
control there are two intelligent agents—the human user and the robot—so that the 
user only conveys intents that the robot performs autonomously. Although our first 
brain-actuated robot had already some form of cooperative control, shared autonomy 
is a more principled and flexible framework. Shared autonomy is also an essential 
component of any high-performance brain-actuated space device of the future. 

6   Current Directions of Research 

For brain-actuated robots, contrarily to augmented communication through BCI, fast 
decision-making is critical. In this sense, real-time control of brain-actuated devices, 
especially robots and neuroprostheses, is the most challenging application for BCI. 
While brain-actuated robots have been demonstrated in the laboratory, this technology 
is not yet ready to be taken out and used in real-world situations. A critical issue is 
how to improve the robustness of BCIs with the goal of making it a more practical 
and reliable technology. A first avenue of research is online adaptation of the 
interface to the user to keep the BCI constantly tuned to its owner [20], [21]. The 
point here is that, as subjects gain experience, they develop new capabilities and 
change their brain activity patterns. In addition, brain signals change naturally over 
time. In particular, this is the case from a session (with which data the classifier is 
trained) to the next (where the classifier is applied). Thus, online learning can be used 
to adapt the classifier throughout its use and keep it tuned to drifts in the signals it is 
receiving in each session. Preliminary work shows the feasibility and benefits of this 
approach. 

The second line is the analysis of neural correlates of high-level cognitive and 
affective states such as errors, alarms, attention, frustration, confusion, etc. 
Information about these states is embedded in the EEG together with the mental 
commands intentionally generated by the user. The ability to detect and adapt to these 
states would enable the BCI to interact with the user in a much more meaningful way. 
One of these high-level states is the awareness of erroneous responses, whose neural 
correlate arises in the millisecond range. Thus, user’s commands are executed only if 
no error is detected in this short time. Recent results have shown satisfactory single-
trial recognition of errors that leads to significant improvement of the BCI 
performance [22], [23]. In addition, this new type of error potential—which is 
generated in response to errors made by the BCI rather than by the user—can provide 
with performance feedback that, in combination with online adaptation, allows 
improving the BCI while it is being used [24]. 
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