Skip to main content

How Does the Brain Arrive at a Color Constant Descriptor?

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4729))

Abstract

Color is not a physical quantity which can be measured. Yet we attach it to the objects around us. Colors appear to be approximately constant to a human observer. They are an important cue in everyday life. Today, it is known that the corpus callosum plays an important role in color perception. Area V4 contains cells which seem to respond to the reflectance of an object irrespective of the wavelength composition of the light reflected by the object. What is not known is how the brain arrives at a color constant or approximately color constant descriptor. A number of theories about color perception have been put forward. Most theories are phenomenological descriptions of color vision. However, what is needed in order to understand how the visual system works is a computational theory. With this contribution we describe a computational theory for color perception which is much simpler in comparison to previously published theories yet effective at computing a color constant descriptor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hedgecoe, J.: Fotografieren: die neue große Fotoschule. Dorling Kindersley Verlag GmbH, Starnberg (2004)

    Google Scholar 

  2. Jacobsen, R.E., Ray, S.F., Attridge, G.G., Axford, N.R.: The Manual of Photography. Photographic and Digital Imaging. Focal Press, Oxford (2000)

    Google Scholar 

  3. Zeki, S.: A Vision of the Brain. Blackwell Science, Oxford (1993)

    Google Scholar 

  4. Land, E.H.: The retinex. American Scientist 52, 247–264 (1964)

    Google Scholar 

  5. Land, E.H.: The retinex theory of colour vision. Proc. Royal Inst. Great Britain 47, 23–58 (1974)

    Google Scholar 

  6. Marr, D.: Vision. W. H. Freeman and Company, New York (1982)

    Google Scholar 

  7. Land, E.H., McCann, J.J.: Lightness and retinex theory. Journal of the Optical Society of America 61(1), 1–11 (1974)

    Google Scholar 

  8. Horn, B.K.P.: Determining lightness from an image. Computer Graphics and Image Processing 3, 277–299 (1974)

    Google Scholar 

  9. Land, E.H.: An alternative technique for the computation of the designator in the retinex theory of color vision. Proc. Natl. Acad. Sci. USA 83, 3078–3080 (1986)

    Article  Google Scholar 

  10. Hurlbert, A.: Formal connections between lightness algorithms. J. Opt. Soc. Am. A 3(10), 1684–1693 (1986)

    Google Scholar 

  11. Blake, A.: Boundary conditions for lightness computation in mondrian world. Computer Vision, Graphics, and Image Processing 32, 314–327 (1985)

    Article  Google Scholar 

  12. Rahman, Z., Jobson, D.J., Woodell, G.A.: Method of improving a digital image. United States Patent No. 5,991,456 (1999)

    Google Scholar 

  13. Buchsbaum, G.: A spatial processor model for object colour perception. Journal of the Franklin Institute 310(1), 337–350 (1980)

    Article  Google Scholar 

  14. Forsyth, D.A.: A novel approach to colour constancy. In: Second International Conference on Computer Vision, Tampa, FL, December 5-8, 1988, pp. 9–18. IEEE Press, Los Alamitos (1988)

    Chapter  Google Scholar 

  15. Finlayson, G.D.: Color in perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(10), 1034–1038 (1996)

    Article  Google Scholar 

  16. Barnard, K., Finlayson, G., Funt, B.: Color constancy for scenes with varying illumination. Computer Vision and Image Understanding 65(2), 311–321 (1997)

    Article  Google Scholar 

  17. Paulus, D., Csink, L., Niemann, H.: Color cluster rotation. In: ICIP. Proc. of the Int. Conf. on Image Processing, pp. 161–165. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  18. Finlayson, G.D., Schiele, B., Crowley, J.L.: Comprehensive colour image normalization. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 475–490. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Ebner, M.: Color constancy using local color shifts. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 276–287. Springer, Heidelberg (2004)

    Google Scholar 

  20. Ebner, M.: A parallel algorithm for color constancy. Journal of Parallel and Distributed Computing 64(1), 79–88 (2004)

    Article  Google Scholar 

  21. Ebner, M.: Evolving color constancy. Special Issue on Evolutionary Computer Vision and Image Understanding of Pattern Recognition Letters 27(11), 1220–1229 (2006)

    Google Scholar 

  22. Helson, H.: Fundamental problems in color vision. I. the principle governing changes in hue, saturation, and lightness of non-selective samples in chromatic illumination. Journal of Experimental Psychology 23(5), 439–476 (1938)

    Article  Google Scholar 

  23. Horn, B.K.P.: Robot Vision. MIT Press, Cambridge, Massachusetts (1986)

    Google Scholar 

  24. Moore, A., Allman, J., Goodman, R.M.: A real-time neural system for color constancy. IEEE Transactions on Neural Networks 2(2), 237–247 (1991)

    Article  Google Scholar 

  25. Ebner, M.: Color Constancy. John Wiley & Sons, England (2007)

    Google Scholar 

  26. Judd, D.B.: Hue saturation and lightness of surface colors with chromatic illumination. Journal of the Optical Society of America 30, 2–32 (1940)

    Google Scholar 

  27. Richards, W., Parks, E.A.: Model for color conversion. Journal of the Optical Society of America 61(7), 971–976 (1971)

    Google Scholar 

  28. Zeki, S., Marini, L.: Three cortical stages of colour processing in the human brain. Brain 121, 1669–1685 (1998)

    Article  Google Scholar 

  29. Zeki, S., Bartels, A.: The clinical and functional measurement of cortical (in)activity in the visual brain, with special reference to the two subdivisions (V4 and V4α) of the human colour centre. Proc. R. Soc. Lond. B 354, 1371–1382 (1999)

    Google Scholar 

  30. Land, E.H., Hubel, D.H., Livingstone, M.S., Perry, S.H., Burns, M.M.: Colour-generating interactions across the corpus callosum. Nature 303, 616–618 (1983)

    Article  Google Scholar 

  31. D’Zmura, M., Lennie, P.: Mechanisms of color constancy. In: Healey, G.E., Shafer, S.A., Wolff, L.B. (eds.) Color, pp. 224–234. Jones and Bartlett Publishers, Boston (1992)

    Google Scholar 

  32. Herault, J.: A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing 12, 113–129 (1996)

    Article  MATH  Google Scholar 

  33. Livingstone, M.S., Hubel, D.H.: Anatomy and physiology of a color system in the primate visual cortex. The Journal of Neuroscience 4(1), 309–356 (1984)

    Google Scholar 

  34. Faugeras, O.D.: Digital color image processing within the framework of a human visual model. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-27(4), 380–393 (1979)

    Article  Google Scholar 

  35. Hunt, R.W.G.: Light energy and brightness sensation. Nature 179, 1026–1027 (1957)

    Article  Google Scholar 

  36. Glasser, L.G., McKinney, A.H., Reilly, C.D., Schnelle, P.D.: Cube-root color coordinate system. Journal of the Optical Society of America 48(10), 736–740 (1958)

    Article  Google Scholar 

  37. International Commission on Illumination: Colorimetry, 2nd edn., corrected reprint. Technical Report 15.2, International Commission on Illumination (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Mele Giuliana Ramella Silvia Santillo Francesco Ventriglia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ebner, M. (2007). How Does the Brain Arrive at a Color Constant Descriptor?. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds) Advances in Brain, Vision, and Artificial Intelligence. BVAI 2007. Lecture Notes in Computer Science, vol 4729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75555-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75555-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75554-8

  • Online ISBN: 978-3-540-75555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics