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Abstract. Sequence logic is a parameterized logic where the formulas
are sequences of formulas of some arbitrary underlying logic. The se-
quence formulas are interpreted in certain linearly ordered sets of models
of the underlying logic. This interpretation induces an entailment relation
between sequence formulas which strongly depends on which orderings
one wishes to consider. Some important classes are: all linear orderings,
all dense linear orderings and all (or some specific) wellorderings.
For all these classes one can ask for a sound and complete proof system
for the entailment relation, as well as for its decidability. For the class of
dense linear orderings and all linear orderings we give sound and complete
proof systems which also yield decidability (assuming that the underlying
logic is sound, complete and decidable).
The entailment relation can be expressed in the first-order theory of the
ordering. Consequently, if the latter theory is decidable, then so is the
corresponding entailment relation. Even if the first-order theory of every
ordinal is known to be decidable, we did not find a natural proof system.
We formulate some open problems on the entailment relation in the case
of well-orderings.

1 Introduction

Sequence logic is a parameterized logic where the formulas are sequences of
formulas of some underlying logic. It can be viewed as a subsystem of linear
temporal logic where the temporal aspects are completely separated from other
logical aspects. This separation makes it easy to change the underlying logic
without having to rethink the temporal aspects. Sequence logic has recently been
proposed in [11] and its virtues for modelling dynamically changing knowledge
are studied in [9].

A simple example is the Muddy Children Puzzle in epistemic logic, see [5].
Here each child’s knowledge is dynamically extended every round, a process
which can be described by the sequence formula a1; . . . ; an, where events caus-
ing changes are modeled exclusively as changes in the states expressed by the



successive formulas. The problem is to prove that after m rounds, where m is
the number of children, each child knows that it is muddy. In sequence logic
this problem can be casted as the entailment a1; . . . ; am |= >; b, where >; b ex-
presses that eventually each child knows that it is muddy. The underlying logic
will, most naturally, be some epistemic logic. The example is simple in that the
children’s knowledge increases monotonically. As a consequence, the example is
valid with respect to any ordering. More interesting examples are exhibited later
the sequel to discriminate between various classes of orderings: after the proof
of Theorem 4, in Section 3 (p. 7) and after the proof of Lemma 12.

In this paper we give sound and complete proof systems for sequence logic
and draw some conclusions on decidability of entailment. We start by reviewing
some necessary preliminaries.

1.1 Orderings

An ordering (D,<) is an irreflexive and transitive relation < on a non-empty set
D. The non-strict variant (reflexive closure) of < is denoted by ≤. An ordering
is linear if, for any x, y ∈ D, either x < y or x = y or y < x. A least (greatest)
element is an x ∈ D such that x ≤ y (y ≤ x) for all y ∈ D. A linear ordering is
right-open if it has no greatest element. An ordering is dense if for any x, y ∈ D
with x < y, there exists a z ∈ D with x < z < y. A wellordering is a linear
ordering in which every non-empty subset has a least element. In a right-open
wellordering every element x ∈ D has a successor, that is, the least element
y ∈ D with x < y. Any element of a wellordering that is not the least element
of the ordering nor the successor of another element, is called a limit. Classes of
wellorderings modulo isomorphy are called ordinals. An important ordinal is ω,
the class of the natural numbers equipped with their natural ordering.

Unless explicitly stated otherwise, we assume all orderings to be linear, right-
open and to have a least element, and we will denote this class by LO. The
subclasses of dense orderings and of wellorderings are denoted by DLO and
WO, respectively.

Given an ordering < and d < d′, we use the common notation [d, d′) to denote
the left-closed, right-open interval from d to d′, that is, the set {x ∈ D | d ≤ x <
d′}. We use [d,∞) to denote the set of elements that are greater than or equal
to d. For a function s : D→X we use s(I) to denote the s-image of interval I.

1.2 Sequence Logic

The formulas of sequence logic are non-empty sequences a1; . . . ; an where each
ai is a formula of some underlying logic, ul, which is a fixed parameter.

Notation and Terminology 1

1. The language of ul consists of a set of formulas which are denoted by the ini-
tial lower case Latin letters, a, b, ... The formulas of sequence logic, sequence
formulas, are denoted by the initial lower case Greek letters α, β, ... We write
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α; β for the concatenation of sequence formulas α and β. Similarly for α; a; β
and α; a; b; β when a and b are ul formulas. hd(α) denotes the first formula
of the sequence formula α.

2. If A is a set of ul formulas, Al denotes the set of sequences of length l of
formulas from A. For any single formula a, al denotes the sequence of l
occurrences of a. For a formula b and sequence formula α = a1; . . . ; an we
write b ◦ α for the sequence formula b ∧ a1; . . . ; b ∧ an formed by conjoining
b to each member of α (whenever ul contains conjunction ∧).

3. We use |= both for satisfaction and for entailment, both in sequence logic
and in ul. To disambiguate this overloading, the types of the lhs and the rhs
are crucial: s |= a denotes satisfaction of a in a ul structure s; s |= α denotes
satisfaction of α in a structure s in sequence logic. For a set of ul structures
S, S |= a means s |= a for all s ∈ S. We let a |= b express entailment in ul.
In sequence logic, entailment will depend on a class of orderings C and this
will be expressed by α |=C β.

A structure of sequence logic is a tuple S = (d0, D, <, s) where (D,<) is
an ordering, d0 its least element and m a mapping from D to models of the
underlying logic. We identify the structure S with the mapping s when the
ordering is clear from the context.

A structure S satisfies a sequence formula α = a1; . . . ; an if there exist
d1, . . . , dn−1 ∈ D, d0 < d1 < · · · < dn−1, such that for all 1 ≤ i < n we have
s([di−1, di)) |= ai and s([dn−1,∞)) |= an. Satisfaction of α in S will also be
denoted by s |= α if the structure S is clear from the context.

The satisfaction relation defined in the previous paragraph gives rise to the
following entailment relation: Given a class C of orderings we define α |=C β if
for all structures S = (d0, D, <, s) with (d0, D,<) ∈ C we have s |= β whenever
s |= α.

The operator ; corresponds to the chop operator, e.g., [7, 6]. Sequence logic
can also be viewed as a fragment of linear-time temporal logic (LTL). For exam-
ple, a1; ...; an can be expressed in LTL as a1∧(a1U(a2∧(a2U . . . U(¬(>U¬an)) . . .))).
Here U is the until-operator and > is always true. We are not aware of the sep-
arate study of this fragment elsewhere. Complexity theoretic questions are not
considered in the present paper. However, it would be interesting to investigate
whether the restricted expressivity of sequence logic results in lower complexity.
To give a concrete example of such a question: in [8] it is proved that satisfiability
of LTL with U and based on ω is PSPACE-complete. This constitutes an upper
bound for the complexity of |=ω, with co-NP as an obvious lower bound, both
with classical propositional logic as ul. The interesting question is now: what is
the exact computational complexity of |=ω?

The main novelty and strength of sequence logic is its parameterization by the
underlying logic ul. The only general assumption about the derivability relation
` of ul is that it satisfies the classical closure properties, [10, 2], namely (X, Y
range over sets of formulas):

extension: X ` a if a ∈ X
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idempotence: X ` a if {b | X ` b} ` a
monotonicity: Y ` a if for some X ⊆ Y : X ` a

We will use classical propositional logic as the main example of ul, but soundness,
completeness and decidability results below only use the fact the underlying
logic is sound, complete (strongly, that is, Γ ` a if Γ |= a) and decidable,
respectively. Combinations with other underlying logics can be easily conceived
and some examples can be found in [11, 9]. In some cases, we assume that ul is
closed under propositional connectives with the usual semantics but even then
the results apply to an arbitrary logic extending the classical propositional one.

Table 1 gives some rules of inference for sequence logic based on a proof
system ` for the underlying logic. This minimal proof system, denoted 
min,
will be augmented with distinct rules depending on the class of orderings.

'

&

$

%

Ex Falso: a1; . . . ; an 
 β, if some ai ` ⊥ (1 ≤ i ≤ n)

Lift: a 
 b1; ...; bn, if n ≥ 1 and a ` bi for all bi (1 ≤ i ≤ n)

Double;-Intro:
α 
 β

a; α 
 b; β
, if a ` b

Left;-Intro:
α 
 β

a; α 
 β
, if a ` hd(β)

Table 1. Axioms and rules for 
min.

Theorem 2. The rules of 
min are sound for |=LO, provided that ` is sound for
|= in ul.

Proof. Soundness of Ex Falso and Lift is trivial.
For Double;-Intro, assume α |=LO β and a ` b and let s |= a; α. Then the

first interval which is used by s to satisfy a can also be used to satisfy b, relying
on the soundness of the ul. We can restrict s to the ordering starting with the
second interval and get a model s′ |= α, so s′ |= β. It follows that s |= b; β, and
hence a; α |=LO b; β.

For Left;-Intro, assume α |=LO β and a ` hd(β) and let s |= a; α. Then the
first interval which is used by s to satisfy a can also be used to satisfy hd(β),
relying on the soundness of the ul. We can restrict s to the ordering starting
with the second interval and get a model s′ |= α, so s′ |= β. It follows that s |= β
by joining the first two intervals.

As a corollary to the proof, we have soundness of the proof system 
min for any
subclass of LO.
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2 Dense Linear Orderings

In this section we give a proof system extending 
min which is sound and com-
plete for the class of dense linear orderings. Inspection of the proof rules imme-
diately gives the decidability of |=DLO.

Note that joining two intervals, as done in the proof of Theorem 2, can always
been done but that the dual operation, splitting an interval in two, cannot. For
example, we do not have a;¬a |=ω a; a;¬a since the first interval can have length
one. Consequently, the following rule Right;-Intro is not sound for all orderings,
but it is sound for the class of dense orderings.�

�
�

Right;-Intro:

α 
 β

α 
 b; β
provided hd(α) ` b

The system 
DLO is obtained by adding the rule Right;-Intro to 
min.

Theorem 3. The proof system 
DLO is sound for |=DLO, i.e., if α 
DLO β then
α |=DLO β.

Proof. In view of the proof of Theorem 2, which can be carried out with DLO
instead of LO, it suffices to show that the rule Right;-Intro is sound. Assume
α |=DLO β and hd(α) ` b and let s |= α. Then by density the first interval which
is used by s to satisfy hd(α) can be split in two, say [d0, x) and [x, d1). We can
use [d0, x) to satisfy b, since hd(α) ` b. We can use [x, d1) to satisfy hd(α), and
so s restricted to [x,∞) satisfies α and hence β. It follows that s |= b; β.

The following construction will play a central role in the proof of complete-
ness. Given two sequence formulas α, β, of respective lenghts n, m, the structures
of the underlying logic can be divided in at most 2n+m equivalence classes, with
two structures being in the same class iff they assign the same truth value to all
formulas in α and β. By S(α, β) we will denote some finite set of structures con-
taining a member of each equivalence class. For any formula c of the underlying
logic we let [[c]]S(α,β) = {S ∈ S(α, β) | S |= c}. For every pair of ul formulas a, b
from α and β, respectively, we then have

a |= b ⇐⇒ [[a]]S(α,β) |= b. (2.1)

Definition 2. Given a satisfiable α = a1; . . . ; an and β, a dense S(α, β)-
model of α, dS(α, β) for short, is a structure defined on an interval [q, q + n)
of rationals with the usual ordering, where for every 1 ≤ i ≤ n, all models from
[[ai]]S(α,β) are densely distributed on [q + i− 1, q + i).

The existence of dS(α, β)’s follows, for instance, by distributing for each 1 ≤
i ≤ n the models [[ai]]S(α,β) = {V0, . . . , Vk−1}, k > 1, in the following standard
way on [q + i − 1, q + i). We describe the construction only for q = 0, i = 1,
i.e., for [0, 1). Put s( j

k ) = Vj for all 0 ≤ j < k. Put s( j
k + j′

k2 ) = V(j+j′)mod k
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for all 0 ≤ j, j′ < k. Continue in this way, in the nth round all intervals of
length k−n are divided in intervals of length k−n−1 and the models are assigned
in a cyclic way. If s(q′) has not been defined in the above procedure then s(q′)
can be chosen arbitrarily from [[ai]]S(α,β). Note that every dense S(α, β)-model
of α is also a dense S(α, γ)-model of α, for every subsequence γ of β, assuming
S(α, γ) ⊆ S(α, β). Of course, dS(α, β)’s are not unique, but the arguments below
do not depend on the particular choice of one.

Lemma 1. If ul is complete and dS(α, β) |= β then α 
DLO β.

Proof. By induction on |α|+ |β|. Base case: Assume α = a, β = b and dS(a, b) |=
b. Then [[a]]S(a,b) |= b, which implies a |= b by (2.1) and hence a ` b by the
completeness of ul. Hence a 
DLO b by the Lift rule. For the induction step, let
|α| + |β| > 2 and assume the lemma has been proved for all smaller cases. Let
S = dS(α, β) |= β. If |α| = 1, that is, α = a for some ul formula a, then every bj

in β is true in [[a]]S(α,β), and hence a |= bi, by (2.1), and a ` bi by completeness
of ul. We then get a 
DLO β by one application of the rule Lift. The case in which
|β| = 1 is proved analogously, with repeated applications of the rule Left;-Intro
instead of Lift. Now assume α = a1; . . . ; an and β = b1; . . . ; bm with n, m > 1.
Without loss of generality we may assume that S has domain [0, n). Let [0, q)
be the interval S uses to satisfy b1. We distinguish the following three cases.

q < 1 Then the first interval that S uses to satisfy a1 overlaps with the first and
the second interval that S uses to satisfy b1; b2. Hence we have, by induction
hypothesis, a1 ` b1 and a1 ` b2. Consequently, S is a dense S(α, b2; . . . ; bm)-
model of a1; . . . ; an satisfying b2; . . . ; bm. By the induction hypothesis we get
a1; . . . ; an 
DLO b2; . . . ; bm and by the rule Right;-Intro we get α 
DLO β.

q = 1 Then a1 ` b1 and S restricted to [1, n) is a dense S(a2; . . . ; an, b2; . . . ; bm)-
model of a2; . . . ; an satisfying b2; . . . ; bm. Now we get α 
DLO β by the in-
duction hypothesis and an application of the rule Double;-Intro.

q > 1 Then a1 ` b1 and S restricted to [1, n) is a dense S(a2; . . . ; an, β)-model
of a2; . . . ; an satisfying β. Now we get α 
DLO β by the induction hypothesis
and an application of the rule Left;-Intro.

In all cases we have proved the conclusion of the lemma.

The completeness theorem follows directly from the above lemma.

Theorem 4. If α |=DLO β then α 
DLO β.

Proof. Assume α |=DLO β. If α is not satisfiable, then α 
DLO β by the Ex Falso
rule. Otherwise, dS(α, β) |= β by assumption, and so α 
DLO β by Lemma 1.

As an example, consider a; a∨ b; b 6|=DLO a; b; a∨ b. Semantically we can see that
the entailment doesn’t hold by distributing models of a ∧ b and a ∧ ¬b in a
dense way on the second interval. Using the completeness theorem we get the
same result from the observation that a ∨ b proves neither a nor b, so that all
applications of the ;-introduction rules are blocked.
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Since the base cases Ex Falso and Lift only use provability in the underly-
ing logic and the other rules decrease the length of the sequence when applied
bottom-up, we obtain the following corollary.

Corollary 1. If ul is decidable then so is |=DLO.

In particular, decidability of ul gives also decidability of 
min.

3 All Linear Orderings

As an appetizer, showing that even with classical propositional logic as ul the
relation |=LO is far from trivial, consider the following entailment

a; a ∧ b; c ∧ (a ∨ b); a ∧ b; b ∧ c |=LO a; b; c; c; b.

Intuitively, two consecutive c’s needed to validate the conclusion can be found
either in the interval for c ∧ (a ∨ b), provided that it is not a single point, or for
b ∧ c. But it is far from obvious that every ordering satisfying the assumption
can be chopped into intervals satisfying the conclusion.

In this section we give a sound, complete and decidable system 
LO for |=LO,
under the assumption that ul is closed under boolean operators. We start by
introducing a series of concepts and conventions which will be applied throughout
this section.

Notation and Terminology 5

1. A convex set A of natural numbers is such that i ∈ A whenever k ≤ i ≤ j
are natural numbers such that k, j ∈ A. Any finite, non-empty convex set of
natural numbers equals {k, . . . , k + j} for natural numbers k, j.

2. If R is a binary relation and A,B are any sets, then we write R[A] for the
set {j | ∃i ∈ A iRj} and R−1[B] for the set {i | ∃j ∈ B iRj}.

3. An n, m-coupling is a relation C ⊆ {1, . . . , n} × {1, . . . ,m} such that
– C[{1, ..., n}] = {1, ...,m} and C−1[{1, ...,m}] = {1, ..., n}, and
– i1Cj2 and i2Cj1 never both hold when i1 < i2 and j1 < j2.

An n, m-coupling C is said to be quasi-functional if it is functional on
{1, . . . , n− 1}, i.e., if C[{i}] is a singleton for every i ∈ {1, . . . , n− 1}.

4. Let α = a1; . . . ; an and β = b1; . . . ; bm be sequence formulas and let R ⊆
{1, . . . , n} × {1, . . . ,m} be a binary relation. We write α `R β if ai ` bj for
all i, j such that iRj.

An important consequence of the definition of coupling in point 3 is that for
any n, m and n, m-coupling C the images C[A] and C−1[B] are convex sets of
natural numbers whenever A and B are.

The characterisations below are proved by straightforward induction.

Lemma 2. Suppose all formulas of α are consistent. Then

(i) α 
DLO β iff α `C β for a |α|, |β|-coupling C.
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(ii) α 
min β iff α `C β for a quasi-functional |α|, |β|-coupling C.

Now, the inverse of Theorem 2 does not hold, i.e., 
min is not complete for |=LO.
It is, however, complete for pairs α, β in a certain normal form which we now
proceed to describe.

In the rest of this section we shall take particular interest in blocks of identical
formulas occurring consecutively in a sequence formula. For this purpose we de-
fine ≡α, for any sequence formula α = a1; . . . ; an, to be the smallest equivalence
relation on {1, . . . , n} such that i ≡α i + 1 whenever 1 ≤ i < n and ai = ai+1.
The equivalence class of i relative to ≡α is written [i]≡α

, and is always a convex
set. We refer to the cardinality of [i]≡α

as the padding of i. Hence the padding
of i is the size of the (maximal) block of consecutive, identical formulas in which
ai occurs:

Definition 3. The n, m-coupling C is said to be sparse if C[{i}] is a singleton
set for every i ∈ {1, . . . , n− 1} with padding less than m.

We can now state the following Redistribution Lemma which will lead to the
restricted completeness of 
min.

Lemma 3 (Redistribution). If α `C β for some sparse |α|, |β|-coupling C,
then also α `C′ β for some quasi-functional |α|, |β|-coupling C ′.

Proof. Suppose α `C β for the sequence formulas α = a1; . . . ; an and β =
b1; . . . ; bm and the sparse n, m-coupling C. The first step is to define the (possibly
partial) function F on numbers i ∈ {1, . . . , n} by the following clauses.

– if i 6= n and i has padding less than m, then F (i) is the unique member of
C[{i}].

– if i has padding at least m, then [i]≡α
= {j, . . . , j + k} for some j ≤ i and

k ≥ (m − 1). Being the image of a convex set, C[[i]≡α
] is also convex and

hence equals {j′, . . . , j′ + k′} for some j′ and k′. As 1 ≤ j′ and j′ + k′ ≤ m,
it follows that k′ ≤ (m− 1) ≤ k. Now define

F (j + r) =
{

j′ + r for 0 ≤ r ≤ k′

j′ + k′ for k′ < r ≤ k

If n itself has padding at least m, then F is total on {1, . . . , n}. Then let C ′ be
F itself, considered as a binary relation, i.e., let C ′ be the graph of F . If n has
padding less than m, then F is defined only on {1, . . . , n − 1}. In that case let
C ′ be the union of F and {(n, j) | nCj}.

It is seen that C ′[[i]≡α ] = C[[i]≡α ] for any i with padding at least m, and
that C ′[{i}] and C[{i}] are the same singleton set for i < n with padding less
than m, and it follows that C ′ is a quasi-functional coupling.

Since iC ′j only if i′Cj for some i′ ∈ [i]≡α
, the assumption α `C β directly

implies α `C′ β.

Definition 4. Let α = a1; . . . ; an and β = b1; . . . ; bm be sequence formulas. We
say that ai is β-definite if ai ` bj or ai ` ¬bj for every j ∈ {1, . . . ,m}.

α is β-expanded if ai is β-definite for every i ∈ {1, . . . , n− 1} with padding
less than m.
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Lemma 4. If ul is complete, α |=LO β and α is β-expanded, then α 
min β.

Proof. By the Ex Falso rule, we may assume that each member of α is satisfiable.
Let D =

⋃i=n
i=1 Di, where each Di is

– {i− 1} if ai is β-definite and i 6= n,
– the rationals in [i− 1, i) otherwise.

Now consider the structure S = (d0, D, <, s), where d0 = 0 and < is the standard
ordering and s is such that for each i ∈ {1, . . . , n},

– s(i) ∈ [[ai]]S(α,β) if ai is β-definite and i 6= n,
– otherwise, s distributes the members of [[ai]]S(α,β) densely over Di (cf. con-

struction following Definition 2).

Since S |= α so, by assumption, S |= β. Define C ⊆ {1, . . . , n} × {1, . . . ,m}
to be such that iCj iff Di intersects with the interval for bj . C is clearly an
n, m-coupling, and the construction also guarantees that it is sparse: if i < n has
padding less than m, then by assumption ai is β-definite. Hence Di is a singleton
and can only intersect with the interval for one bj .

Finally α `C β, i.e., iCj implies ai ` bj . We argue for this in cases:

– If Di = {i− 1} then ai is β-definite. Then ai ` bj follows from the fact that
the two have a common model.

– If Di = [i − 1, i), and this interval intersects with the interval for bj , then
bj is true in all members of [[ai]]S(α,β). Hence ai |= bj by (1) and ai ` bj by
completeness of ul.

α 
min β follows now by the Redistribution Lemma 3 and Lemma 2.

The above Lemma is the restricted completeness referred to previously: when
α is β-expanded then the pair α, β is in a normal form for which |=LO and

min coincide. To obtain a general procedure for proving (and, in fact, deciding)
whether α |=LO β holds, we show how to compute, given the pair (α, β) a finite set
{(ρ1, ρ

′
1), . . . , (ρk, ρ′k)} of pairs in normal form, such that α |=LO β iff ρi |=LO ρ′i,

and hence ρi 
min ρ′i, for every i. For this purpose, we introduce the following
Definition.

Definition 5. The proof system 
LO is obtained by adding the following Cut
rule to 
min:�

�
�

Cut

α1; a; a; α2 
 β α1; a ∧ c; α2 
 β α1; a ∧ ¬c; α2 
 β

α1; a; α2 
 β

In an application of the Cut rule, the formula occurrence displayed as a is referred
to as the expansion formula.

In the view of Theorem 2, the following lemma is established by an easy verifi-
cation of soundness of the Cut rule.
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Lemma 5. 
LO is sound for |=LO.

To show completeness (and decidability) of 
LO, we first consider the following
generalizations of Cut.

Definition 6. For any sequence formula δ = d1; . . . ; dl let vals(δ) be the set of
all conjunctions c1 ∧ . . . ∧ cl, where each cj is dj or ¬dj. Now let the i-, ii- and
iii-Cut rules be the following where l ≥ 1 (recall notational conventions al and
a ◦ ρ from Notation and Terminology 1):

i-Cut
α1; a; a; α2 
 β α1; a ∧ ρ; α2 
 β for all ρ ∈ vals(δ)

α1; a; α2 
 β

ii-Cut
α1; al+1; α2 
 β α1; a ◦ ρ; α2 
 β for all ρ ∈ vals(δ)l

α1; al; α2 
 β

iii-Cut
α1; al+1; α2 
 β α1; a ◦ ρ; α2 
 β for all ρ ∈ vals(δ)≤l

α1; a; α2 
 β

The four cut rules are closely related. Cut is the special case of i-Cut correspond-
ing to δ being a single ul formula c, while i-Cut is the special case of ii-Cut, as
well as of iii-Cut, corresponding to l = 1. The following Lemma is easy to verify
and is stated without a proof.

Lemma 6. All four cut rules are sound and invertible (i.e., sound when applied
bottom-up) for |=LO.

Corollary 2. If ul is decidable then so is |=LO.

Proof. For any candidate entailment a1; . . . ; an |=LO β apply iii-Cut bottom-up,
with the first ai which is not β-definite as expansion formula and with δ = β and
l = |β|, to obtain 1 + 2l + 22l + . . . + 2l2 < 2(l+1)2 new items, which by Lemma 6
are all valid iff the original item was valid. Then proceed, for each of the new
items, with a new bottom-up application of iii-Cut, this time using the next ai′

which is not β-definite as the expansion formula, etc., to obtain eventually less
than 2n(l+1)2 items in normal form which are all valid iff the original item was.
Validity of each of these items is decidable, provided that ul is, by Corollary 1.

From this proof we see that the system obtained by adding iii-Cut to 
min is
complete and decidable with respect to |=LO. However, already 
LO, i.e., 
min

extended with Cut, has these properties and the rest of this Section is devoted to
proving this fact by showing admissibility of iii-Cut in 
LO. The proof proceeds
stepwise by showing first admissibility of i-Cut and then of ii-Cut. First, we need
the following auxiliary result.

Lemma 7. If c ` a and α1; a; α2 
LO β, then α1; c; α2 
LO β.

Proof. Proceeding by induction on proofs, we skip the trivial cases of the rules
of 
min and consider only the final step being an application of the Cut rule.
This gives three cases to consider, corresponding to whether the a mentioned

10



in the lemma is the expansion formula itself, or it occurs to its left or to its
right. In the two latter cases, the induction hypothesis is applied once to each
of the three premises, always strengthening a to c, while in the former case the
induction hypothesis is applied twice to the first premise, strengthening a to c,
and once to each of the other premises, strengthening a ∧ b and a ∧ ¬b to c ∧ b
and c ∧ ¬b respectively.

Lemma 8. i-Cut is admissible in 
LO.

Proof. We prove this by induction on the length of δ, which is always positive.
The base case is just Cut itself; now suppose the result holds for δ, and that

(1) α1; a; a; α2 
LO β, and
(2) α1; a ∧ ρ; α2 
LO β for all ρ in vals(δ; b).

Now let κ be an arbitrary member of vals(δ), then from (1) we obtain α1; a ∧
κ; a∧κ; α2 
LO β by Lemma 7, and from (2) α1; a∧κ∧b; α2 
LO β and α1; a∧κ∧
¬b; α2 
LO β by definition. Hence by Cut we also obtain (3) α1; a∧ κ; α2 
LO β.
Since κ was arbitrary, we can now apply the induction hypothesis to (1) and (3),
to obtain α1; a; α2 
LO β.

Lemma 9. ii-Cut is admissible in 
LO.

Proof. We prove this by induction on l. The base case, for l = 1, is just an
instance of i-Cut and was shown in the previous Lemma 8. Now suppose the
result holds for l ≥ 1, and that

(1) α1; al+2; α2 
LO β, and
(2) α1; a ◦ ρ; α2 
LO β for all ρ ∈ vals(δ)l+1.

For an arbitrary κ ∈ vals(δ)l we obtain from (1) α1; a; a; a ◦ κ; α2 
LO β by
Lemma 7, and from (2) α1; a∧ ρ; a ◦κ; α2 
LO β for all ρ ∈ vals(δ) by definition.
Hence we also obtain (3) α1; a; a ◦ κ; α2 
LO β by i-Cut. Since κ was arbitrary,
we are now in a position to apply the induction hypothesis to (1) and (3),
treating the first occurrence of a in all the involved items as “passive”, to obtain
α1; al+1; α2 
LO β.

Lemma 10. iii-Cut is admissible in 
LO.

Proof. We prove this by induction on l. The base case (l = 1) is an instance of
i-Cut shown in Lemma 8. So suppose the result holds for l ≥ 1, and that

(1) α1; al+2; α2 
LO β, and
(2) α1; a ◦ ρ; α2 
LO β for all ρ in vals(τ)≤l+1.

In particular α1; a◦ρ; α2 
LO β then holds for all ρ in vals(τ)l+1, hence α1; al+1; α2 
LO

β by ii-Cut. Combining this with ”the rest of (2)” we then obtain α1; a; α2 
LO β
by the induction hypothesis.

Theorem 6. 
LO is sound and complete for |=LO.

The proof is immediate from the previous results. From the proofs it can also
be seen that 
LO remains complete when the use of Cut is restricted to cases in
which the cut formula is chosen from formulas occurring in β.

11



4 Wellorderings

For reasons of simplicity we focus in this section on classical propositional logic as
ul. Recall that α |=λ β denotes entailment with respect to structures (0, λ,<, s)
with < the ordering on limit ordinal λ and s mapping ordinals < λ to valuations.
Using the standard translation of modal logic into first-order logic (see for ex-
ample [1]) one can express the entailment relation in the first-order theory of the
ordering. It is known that the first-order theory of every ordinal is decidable, see
for example [3]. As a consequence, every entailment relation α |=λ β is decidable.

The decidability of α |=ω β also follows from the (much stronger) result from
[8] that ω-based linear-time temporal logic is PSPACE-complete. This complex-
ity theoretic result is extended to all countable ordinals in [4]. In the next section
we give a simple argument for decidability of |=ω based on a form of finite model
property, Lemma 11, which may be of independent interest. In the concluding
Section 4.2, we discuss some results concerning the entailment relation in the
case of wellorderings and list some open problems.

4.1 Decidability of |=ω

The first step in our decidability proof is a simplification of the definition of |=ω.
For this we use models s defined on finite initial segments of ω, the only place
in this paper where we use orderings with a greatest element.

Definition 7. For α = a1; . . . ; an and β = b1; . . . ; bm we define

k(α, β) =
{

m if an |= b1 ∧ · · · ∧ bm

m− j if an 6|= bj and an |= bj+1 ∧ · · · ∧ bm

In words, the function k computes the maximal length of a suffix of β which is
entailed by the last formula of α.3

Lemma 11. Let α = a1; . . . ; an be satisfiable and let β = b1; . . . ; bm. Then we
have α |=ω β if and only if an |= bm and s |= β for every s defined on an initial
segment of ω and satisfying s |= α where the last interval (used to satisfy an) is
of length k(α, β).

Proof. Let α, β be as above. In the equivalence we have to prove, the implication
from right to left is the easiest. Assume the rhs and let s |= α with s defined on
ω. The last interval of s is infinite, let s− be s with the last interval cut down
to length k(α, β). Then s− satisfies the condition of the rhs and hence s− |= β.
By an |= bm it follows that s |= β.

For the converse, assume α |=ω β. Then in particular an |= bm. Let s |= α
be as assumed in the rhs, that is, defined on [0, . . . , i + k − 1) ⊆ ω and with the
last interval [i, i + k) of length k = k(α, β). In proving s |= β we distinguish two
cases.
3 In this Subsection, we use propositional conjunction, as in an |= b1 ∧ ...∧ bm, only as

an abbreviation for an |= b1 and . . . and an |= bm. That is, the ul need not contain
propositional logic.
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k = m Then an |= b1∧· · ·∧ bm. Let s+ be s extended with ω (arbitrary) models
of an. Then s+ |= α, so by the lhs we get s+ |= β. Since an |= b1 ∧ · · · ∧ bm

we can shift intervals that (possibly) occur to the right of i to the left and
shorten them to length 1. In this way they all fit within the last interval of
s. It follows that s |= β.

k < m Then an 6|= bj with j = m− k and an |= bj+1 ∧ · · · ∧ bm. In the argument
we will use a propositional model V satisfying an ∧ ¬bj . Let s′ be s with
the last interval replaced by ω copies of V . Then we still have s′ |= α, so by
the lhs we get s′ |= β. Since bj is false in V , the jth interval of s′ must be
to the left of i. Intervals used to satisfy the remaining formulas bj+1, . . . , bm

and (possibly) occurring to the right of i can be shortened and shifted to the
left as in the previous case. With this new interval structure we still have
s′ |=ω β. Restoring the last interval of s, that is, replacing the ω copies of V
by the models in the last interval of s, we get s |= β.

The last step in the last case relies on an |= bj+1 ∧ · · · ∧ bm.

Now that we have expressed |=ω in terms of finite sequences of models we use
the fact these can be viewed as words over an alphabet, where the symbols
are valuations. Model classes then become languages. Let α = a1; . . . ; an and
β = b1; . . . ; bm and k = k(α, β). Let V1, . . . , Vp be all possible valuations of
the atoms occurring in α, β. For any proposition a, define L(a) = {Vi | Vi |=
a}. Being a finite language consisting of one-letter words, L(a) is regular. The
finite models m |= α correspond one-to-one to words in the regular language
L(α) = L(a1)+ · · ·L(an)+, where juxtaposition stands for concatenation and
+ for one or more iterations (Kleene +). The finite models s |= α with last
interval of length k correspond one-to-one to words in the regular language
L(α, k) = L(a1)+ · · ·L(an−1)+L(an)k. In this way we can rephrase the rhs of
Lemma 11 as: an |= bm and L(α, k) ⊆ L(β). Since inclusion between regular
languages is decidable we get the following result.

Theorem 7. If ul is decidable then so is the entailment relation |=ω.

Proof. We have α |=ω β if and only if either α is unsatisfiable, or k(α, β) > 0
and L(α, k(α, β)) ⊆ L(β). All ingredients of the rhs are computable/decidable.

As an example, consider a; a∨b; b |=ω a; b; a∨b. Semantically, given m |= a; a∨b; b
we can see this by looking at the second interval of m. If all models in this interval
satisfy a we are done. Otherwise, use the first model in the second interval that
satisfies b as second interval (of length 1) for a; b; a∨b. The more general method
would be to apply the above theorem. We can actually take two-bit sequences
as symbols representing valuations: 11 represents the valuation which makes
both a and b true, 10 makes only a true, 01 only b, and 00 neither a nor b.
Then L(a) is the regular language {10, 11}, L(b) is {01, 11} and L(a ∨ b) is
{01, 10, 11}. Obviously, k(a; a ∨ b; b , a; b; a ∨ b) = 2. So by Lemma 11 we have
a; a∨b; b |=ω a; b; a∨b if and only if L(a)+L(a∨b)+L(b)2 ⊆ L(a)+L(b)+L(a∨b)+.
The latter can be verified by a decision procedure for inclusion between regular
languages.
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4.2 Wellorderings and Open Problems

The following lemma states that |=λ is weakly decreasing in λ.

Lemma 12. For limit ordinals λ < λ′ : if α |=λ′ β then α |=λ β.

Proof. Let α = a1; . . . ; an, β = b1; . . . ; bm and k = k(α, β). Let λ < λ′ be limit
ordinals and assume α |=λ′ β. Let s |= α for some λ model s. Let V be a model
of an that, in case k < m, also satisfies ¬bm−k. Let [o, λ) be the last interval
used by s to satisfy an. Define sV

o (o′) = s(o′) if o′ < o and sV
o (o′) = V for all

o ≤ o′ < λ′. In other words, sV
o is s with the last interval replaced by sufficiently

many copies of V in order to be a λ′ model of α. As a consequence, sV
o |= β.

By the particular choice of V we have V |= bm−k+1 ∧ · · · ∧ bm. Since λ > o is a
limit ordinal we have o + ω ≤ λ. Consequently, like in the proof of Lemma 11,
we can shorten and shift to the left , i.e., into the interval [o, λ), those of the last
k intervals that occur in sV

o to the right of o, obtaining a λ model which still
satisfies β. But since an |= bm−k+1 ∧ · · · ∧ bm, restoring now back the original
[o, λ) interval from s, we obtain that s |= β.

The implication cannot be reversed: we have a; a∧¬b; a; a∧ b |=ω a; a∧¬b; a∧ b
(look at the third interval satisfying a!), but not a; a ∧ ¬b; a; a ∧ b |=ω+ω a; a ∧
¬b; a∧b. A counterexample to the latter is (11 10)ω(11)ω, where we use the same
representation of valuations by two-bit sequences as in the previous section. A
trivial corollary of the previous theorem is: α |=ω β if and only if there exists
λ ∈ WO such that α |=λ β.

Since the wellorderings form a class, and |=ω is a set, it can be expected that
|=λ in Lemma 12 stabilizes. This can be made precise by the following argument.
Assume by contradiction that for all λ there exists a λ′ > λ such that |=λ′ ⊂ |=λ.
Define a function f from ordinals to limit ordinals by f(0) = ω, f(o + 1) = the
smallest λ such that |=λ ⊂ |=f(o), and in the limit case f(λ) = the smallest λ′

such that |=λ′ ⊂ |=λ′′ , where λ′′ is the supremum of all f(o), o < λ. Then we
have that o 7→ |=f(o) is a strictly decreasing mapping from the class of ordinals
into the power set of |=ω, which is impossible. Surprisingly, it follows from known
results (see [3]) that |=λ stabilizes in some λ ≤ ωω and then coincides with |=WO.
We finish by formulating some open problems.

Open Problem 8 For which λ < λ′ < ωω do |=λ and |=λ′ coincide? Even the
case λ = ω ∗ 2, λ′ = ω ∗ 3 is open.

Open Problem 9 Are there natural sound and complete proof systems for |=λ

with λ ≥ ω?
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We are indebted to Stéphane Demri for pointing out the relevance of [3] to us.

14



References

1. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.

2. D. J. Brown and R. Suszko. Abstract logics. Dissertationes Mathematicae, 102:9–
42, 1973.
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