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Abstract. The model checking problem for open systems (called mod-
ule checking) has been intensively studied in the literature, both for
finite–state and infinite–state systems. In this paper, we focus on push-
down module checking with respect to decidable fragments of the fully
enriched µ–calculus. We recall that finite–state module checking with re-
spect to fully enriched µ–calculus is undecidable and hence the extension
of this problem to pushdown systems remains undecidable as well. On the
contrary, for the fragments of the fully enriched µ–calculus we consider
here, we show that pushdown module checking is decidable and solvable
in double–exponential time in the size of the formula and in exponen-
tial time in the size of the system. This result is obtained by exploiting
a classical automata–theoretic approach via pushdown nondeterministic
parity tree automata. In particular, we reduce in exponential time our
problem to the emptiness problem for these automata, which is known
to be decidable in Exptime. As a key step of our algorithm, we show
an exponential improvement of the construction of a nondeterministic
parity tree automaton accepting all models of a formula of the consid-
ered logic. This result, does not only allow our algorithm to match the
known lower bound, but also to investigate decision problems related to
the fragments of the enriched µ-calculus in a greatly simplified manner.

1 Introduction

In system design, one of the most challenging problem is to check for system cor-
rectness. Model-checking is a very important development in the area of formal
design verification, which allows to automatically verify, in a suitable way, the
ongoing behaviors of reactive systems ([CE81,QS81]). In this verification method
(for a survey, see [CGP99]), the behavior of a system, formally described by a
mathematical model, is checked against a behavioral constraint, possibly speci-
fied by a formula in an appropriate temporal logic.

In system modeling, we distinguish between closed and open systems [HP85].
While the behavior of a closed system is completely determined by the state of
the system, the behavior of an open system depends on the ongoing interaction
with its environment [Hoa85]. Model checking algorithms used for the verifica-
tion of closed systems are not appropriate for open systems. In the latter case, we
should check the system with respect to arbitrary environments and take into ac-
count uncertainty regarding the environment. In [KVW01], model checking has
been extended from closed finite–state systems to open finite–state systems. In
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such a framework, the open finite–state system is described by a labeled state–
transition graph called module whose set of states is partitioned into system
states (where the system makes a transition) and environment states (where the
environment makes a transition). Given a module M, describing the system to
be verified, and a temporal logic formula ϕ, specifying the desired behavior of
the system, the problem of model checking a module, called module checking,
asks whether for all possible environments, M satisfies ϕ. Module checking thus
involves not only checking that the full computation tree 〈TM, VM〉 obtained by
unwinding M (which corresponds to the interaction of M with a maximal en-
vironment) satisfies ϕ (which corresponds to model checking M with respect to
ϕ), but also that all trees obtained from it, by pruning subtrees of environment
nodes (these trees correspond to all possible choices of the environment and are
collected in exec(M)) satisfy ϕ. To see an example, consider a two-drink dis-
penser machine that serves, upon request, tea or coffee. The machine is an open
system and an environment for the system is an infinite line of thirsty people.
Since each person in the line can prefer either both tea and coffee, or only tea,
or only coffee, each person suggests a different disabling of the external nonde-
terministic choices. Accordingly, there are many different possible environments
to consider. In [KVW01], it has been shown that while for linear logics model
and module checking coincide, module checking for specification given in CTL
and CTL∗ is exponentially harder than model checking. Indeed, CTL and CTL∗

module checking is, respectively, Exptime–complete and 2Exptime–complete,
in the size of the formula, and both Ptime–complete in the size of the system.

Recently, module checking has been also investigated with respect to formu-
las of the fully enriched µ–calculus and some of its fragments. The µ–calculus is
a propositional modal logic augmented with least and greatest fixpoint operators
[Koz83]. Fully enriched µ–calculus is the extension the µ–calculus with inverse
programs, graded modalities, and nominals. Intuitively, inverse programs allow
to travel backwards along accessibility relations [Var98], nominals are proposi-
tional variables interpreted as singleton sets [SV01], and graded modalities enable
statements about the number of successors and predecessors of a state [KSV02].
By dropping at least one of the additional constructs, we get a fragment of the
fully enriched µ-calculus. Here, we call all this fragments (not fully) enriched
µ–calculus, for simplicity. In [BP04], it has been shown that satisfiability is un-
decidable in the fully enriched µ–calculus. On the other hand, it has been shown
in [SV01,BLMV06] that satisfiability for enriched µ-calculus is decidable and
Exptime-complete. The upper bound result is based on an automata–theoretic
approach via two-way graded alternating parity tree automata ( 2GAPT). Intu-
itively, these automata generalize alternating automata on infinite trees in a
similar way as the fully enriched µ–calculus extends the standard µ–calculus:
2GAPT can move up to a node’s predecessor (by analogy with inverse pro-
grams), move down to at least n or all but n successors (by analogy with graded
modalities), and jump directly to the roots of the input forest (which are the
analogues of nominals). Using these automata, along with the fact that the en-
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riched µ-calculus enjoys the quasi-forest model property1, it has been shown in
[SV01,BLMV06] that it is possible to build a 2GAPT accepting all trees en-
coding of all quasi-forest models of any enriched µ-calculus formula. Then, the
exponential-upper bound follows from the fact that 2GAPT can be exponen-
tially translated in nondeterministic graded parity tree automata (GNPT), and
the emptiness problem for GNPT is solvable in Ptime [KPV02].

Coming back to the module checking problem for the fully enriched µ–
calculus and its fragments, in [FM07] this problem has been deeply investigated
with respect to finite–state systems. To see an example, consider the previous
two-drink dispenser machine with the extra ability of having (bounded) multiple
choice for coffee and tea. Suppose now that we want to check that whenever k
coffees are served it is because we choose them in the past. This can be performed
using a formula of the fully enriched µ–calculus, which truth value depends on
the past (using backward modality) and k identical coffee events in the future
(using graded modalities). In [FM07], it has been shown that module checking
is undecidable for formulas of the fully enriched µ–calculus, while it is decidable
and Exptime–complete if enriched µ–calculus formulas are considered.

In [BMP05], the module checking technique has been also extended to infinite-
state systems by considering open pushdown systems (OPD for short). These are
pushdown systems augmented with finite information that allow to partition the
set of configurations (in accordance with the control state and the symbol on
the top of the stack) into system configurations and environment configurations.
To see an example of an open pushdown system, consider an extension of the
above mentioned two drink–dispenser machine, with the additional constraint
that a coffee can be served only if the number of coffees served up to that time
is smaller than that of teas served. Such a machine can be clearly modeled as an
open pushdown system (the stack is used to guarantee the inequality between
served coffees and teas). In [BMP05], it has been shown that pushdown module
checking is 2Exptime–complete for CTL and 3Exptime–complete for CTL∗.

In this paper, we extend the pushdown module checking problem to the en-
riched µ-calculus and, by exploiting an automata-theoretic approach via push-
down tree automata, we show that this problem is decidable and solvable in
2Exptime. As for finite–state open systems dealing with backward modalities,
given an OPD S and a module M induced from S, we interpret the logic on the
unwinding of M by considering, for each configuration, the past configurations
as inverse next configurations. In this case, in order to use a pushdown tree
automaton we constraint the stack operations of the OPD in such a way that
whenever it reads the top symbol of the stack, it can only cancel it from the
stack, change it with another stack symbol, or add a new stack symbol on top of
it. Also note that the use of two-way pushdown tree automata would be useless
along with our approach since they recognize recursively-enumerable languages
[Sal96] and thus the emptiness problem is undecidable for them.

The algorithm we propose to solve the considered problem works as follows.
Given an OPD , a module M induced by the configurations of the OPD , and an

1 A quasi forest is a forest where nodes can have roots as successors
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enriched µ-calculus formula ϕ, we first build in a polynomial time a pushdown
Büchi tree automaton (PD–NBT ) AM, accepting exec(M). The construction of
AM we propose here extends that used in [BMP05] by also taking into account
that M requires to be unwound in a quasi-forest, rather than a tree, with both
nodes and edges labeled. Thus, the set exec(M) is a set of quasi-forests, and
the automaton AM we build will accept all trees encodings of all quasi-forests
of exec(M). From the formula side, accordingly to [BLMV06], we can build in a
polynomial time a 2GAPT A¬ϕ accepting all models of ¬ϕ, with the intent to
check that no models of ¬ϕ are in exec(M). Thus, we check that M |=r ϕ by
checking whether L(AM)∩L(A¬ϕ) is empty. To the best of our knowledge, the
latter problem can be only solved in triple-exponential time. For example, by
recalling that 2GAPT can be exponentially translated into GNPT [BLMV06],
that GNPT can be exponentially translated into nondeterministic parity tree
automata (NPT ) [KSV02], that intersecting a PD–NBT with an NPT gives a
pushdown parity tree automaton [BMP05], and that the emptiness problem for
the latter is solvable in Exptime [KPV02]. In this paper, by showing a non-trivial
exponential reduction of 2GAPT into NPT , we show a 2Exptime upper bound
for the addressed problem. Since the pushdown module checking problem for
CTL is 2Exptime-hard, we get that the problem is then 2Exptime-complete.

Let us stress that by using our exponential improvement on translating
2GAPT into NPT we can also get results concerning decision problems for
the enriched µ–calculus (such as the satisfiability and module checking problems
[SV01,BLMV06,FM07]) with more simplified proofs.

2 Preliminaries
Labeled Forests. For a finite set X, we denote the size of in X by |X|, the set
of words over X by X∗, the empty word by ε, and with X+ we denote X∗ \ {ε}.
Given a word w in X∗ and a symbol x of X, we use w · x to denote the word
wx. Let IN be the set of positive integers. For n ∈ IN, let N be denote the set
{1, 2, . . . , n}. A forest is a set F ⊆ N+ such that if x · c ∈ F where x ∈ N+

and c ∈ N, then also x ∈ F . The elements of F are called nodes, and words
consisting of a single natural number are roots of F . For each root r ∈ F , the set
T = {r ·x | x ∈ N∗ and r ·x ∈ F} is a tree of F (the tree rooted in r). For x ∈ F ,
the nodes x · c ∈ F where c ∈ N are the successors of x, denoted sc(x), and x is
their predecessor. The number of successors of a node x is called the degree of x
(deg(x)). The degree h of a forest F is the maximum of the degrees of all nodes
in F and the number of roots. A forest with degree k is a h-ary forest. A full
h-ary forest is a forest having h roots and all nodes with degree h.

Let F ⊆ N+ be a forest and x a node in F . As a convention, we take x · ε =
ε · x = x, (x · c) · −1 = x, and n · −1 as undefined, for n ∈ N. We call x a leaf
if it has no successors. A path π in F is a word π = a1a2 . . . of F such that
a1 is a root of F and for every ai ∈ π, either ai is a leaf (i.e., π ends in ai) or
ai is a predecessor of ai+1. Given two alphabets Σ1 and Σ2, a (Σ1, Σ2)–labeled
forest is a triple 〈F, V, E〉, where F is a forest, V : F → Σ1 maps each node
of F to a letter in Σ1, and E : F × F → Σ2 is a partial function that maps



Lecture Notes in Computer Science 5

each pair (x, y), with y ∈ children(x), to a letter in Σ2. As a particular case,
we consider a forest without labels on edges as a Σ1–labeled forest 〈F, V 〉, and
a tree as a forest containing exactly one tree. A quasi–forest is a forest where
each node may also have roots as successors. For a node x of a quasi–forest, we
set children(x) as sc(x) \ N. All the other definitions regarding forests easily
extend to quasi–forest. Notice that in a quasi–forest, a root can also have several
predecessors, while every other node has just one. Clearly, a quasi–forest can be
always transformed in a forest by removing root successors.

Fully Enriched µ–Calculus. Let AP , Var , Prog , and Nom be finite and
pairwise disjoint sets of atomic propositions, propositional variables, atomic pro-
grams, and nominals. A program is an atomic program a or its converse a−. The
set of formulas of the fully enriched µ–calculus is the smallest set such that (i)
true and false are formulas; (ii) p and ¬p, for p ∈ AP ∪ Nom, are formulas;
(iii) x ∈ Var is a formula; (iv) if ϕ1 and ϕ2 are formulas, α is a program, n is
a non–negative integer, and y is a propositional variable, then the following are
also formulas: ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, 〈n, α〉ϕ1, [n, α]ϕ1, µy.ϕ1(y), and νy.ϕ1(y).

Observe that we use positive normal form, i.e., negation is applied only to
atomic propositions. We call µ and ν fixpoint operators. A propositional variable
y occurs free in a formula if it is not in the scope of a fixpoint operator. A
sentence is a formula that contains no free variables.

We refer often to the graded modalities 〈n, α〉ϕ1 and [n, α]ϕ1 as respectively
atleast formulas and allbut formulas and assume that the integers in these op-
erators are given in binary coding: the contribution of n to the length of the
formulas 〈n, α〉ϕ and [n, α]ϕ is dlog ne rather than n. We refer to fragments of
the fully enriched µ–calculus as follows. We say that a formula ϕ of the fully
enriched µ–calculus is also a formula of the hybrid graded, full hybrid, or full
graded µ–calculus if ϕ does not have inverse programs, graded modalities, or
nominals, respectively. If at least one of the above holds, we also say that ϕ is
an enriched µ–calculus formula. To avoid confusion, we observe that enriched
formulas are also formulas of the full calculus, while the converse is not always
true. We recall that enriched formulas enjoy the quasi-forest model property (as
showed in [BLMV06] and [SV01]), while fully enriched formulas does not [BP04].

The semantics of the fully enriched µ–calculus is defined with respect to a
Kripke structure, i.e., a tuple K = 〈W,W0, R, L〉 where W is a non–empty set
of states, W0 ⊆ W is the set of initial states, R : Prog → 2W×W is a function
that assigns to each atomic program a transition relation over W , and L : AP ∪
Nom → 2W is a labeling function that assigns to each atomic proposition and
nominal a set of states such that the sets assigned to nominals are singletons
and subsets of W0. To deal with inverse programs, we extend R as follows: for
each a ∈ Prog , set R(a−) = {(v, u) : (u, v) ∈ R(a)}. If (w,w′) ∈ R(α), we say
that w′ is an α–successor of w. Informally, an atleast formula 〈n, α〉ϕ holds at
a state w of a Kripke structure K if ϕ holds at least in n + 1 α–successors of w.
Dually, the allbut formula [n, α]ϕ holds in a state w of a Kripke structure K if
ϕ holds in all but at most n α–successors of w. Note that ¬〈n, α〉ϕ is equivalent
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to [n, α]¬ϕ, and that the modalities 〈α〉ϕ and [α]ϕ of the standard µ–calculus
can be expressed as 〈0, α〉ϕ and [0, α]ϕ, respectively.

To formalize semantics, we introduce valuations. Given a Kripke structure
K = 〈W,W0, R, L〉 and a set {y1, . . . , yn} of variables in Var , a valuation V :
{y1, . . . , yn} → 2W is an assignment of subsets of W to the variables y1, . . . , yn.
For a valuation V, a variable y, and a set W ′ ⊆ W , we denote by V[y ← W ′]
the valuation obtained from V by assigning W ′ to y. A formula ϕ with free
variables among y1, . . . , yn is interpreted over the structure K as a mapping ϕK

from valuations to 2W , i.e., ϕK(V) denotes the set of points that satisfy ϕ under
valuation V. The mapping ϕK is defined inductively as follows:

– trueK(V) = W and falseK(V) = ∅;
– for p ∈ AP ∪Nom, we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);
– for y ∈ Var , we have yK(V) = V(y);
– (ϕ1 ∧ ϕ2)K(V) = ϕK1 (V) ∩ ϕK2 (V) and (ϕ1 ∨ ϕ2)K(V) = ϕK1 (V) ∪ ϕK2 (V);
– (〈n, α〉ϕ)K(V) = {w : |{w′ ∈ W : (w, w′) ∈ R(α) and w′ ∈ ϕK(V)}| ≥ n+1};
– ([n, α]ϕ)K(V) = {w : |{w′ ∈ W : (w,w′) ∈ R(α) and w′ 6∈ ϕK(V)}| ≤ n};
– (µy.ϕ(y))k(V) =

⋂{W ′ ⊆ W : ϕK([y ← W ′]) ⊆ W ′};
– (νy.ϕ(y))k(V) =

⋃{W ′ ⊆ W : W ′ ⊆ ϕK([y ← W ′])}.
For a state w of a Kripke structure K, we say that K satisfies ϕ at w if

w ∈ ϕK. In what follows, a formula ϕ counts up to b if the maximal integer in
atleast and allbut restrictions used in ϕ is b− 1.

Open Kripke Structures. In this paper we consider open systems, i.e., sys-
tems that interact with their environment and whose behavior depends on this
interaction. The (global) behavior of such a system is described by a module
M = 〈Ws,We,W0, R, L〉, which is a Kripke structure where the set of states
W = Ws ∪We is partitioned in system states Ws and environment states We.

Given a module M, we assume that its states are ordered and the number of
successors of each state w is finite. For each state w ∈ W , we denote by succ(w)
the ordered tuple (possibly empty) of w’s successors. When M is in a system
state ws, then all the states in succ(ws) are possible next states. On the other
hand, when M is in an environment state we, the possible next states (that
are in succ(we)) depend on the current environment. Since the behavior of the
environment is not predictable, we have to consider all the possible sub–tuples of
succ(we). The only constraint, since we consider environments that cannot block
the system, is that not all the transitions from we are disabled. In particular,
the environment can never disable the transition from which it comes. In more
details, suppose that we is reached from a node w via an a-labeled edge, then
the a−-successor w of we cannot be disabled. This is also intuitively consistent
with the fact that past environment choices cannot be changed.

The set of all (maximal) computations of M starting from W0 is described
by a (W,Prog)–labeled quasi–forest 〈FM, VM, EM〉, called computation quasi–
forest, which is obtained by unwinding M in the usual way. In particular, since
we are dealing with a logic based on inverse operators, the parent of each node is
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not be duplicated as its child using inverse programs. Notice that this is coherent
with the semantics of the logic we consider here. The problem of deciding, for
a given branching–time formula ϕ over AP ∪Nom, whether 〈FM, L ◦ VM, EM〉
satisfies ϕ at a root node, denoted M |= ϕ, is the usual model–checking problem
[CE81,QS81]. On the other hand, for an open system M, 〈FM, VM, EM〉 corre-
sponds to a very specific environment, i.e., a maximal environment that never
restricts the set of its next states. Therefore, when we examine a branching–time
formula ϕ w.r.t. M, the formula ϕ should hold not only in 〈FM, VM, EM〉, but
in all quasi-forests obtained by pruning from 〈FM, VM, EM〉 subtrees rooted at
children of environment nodes, as well as inhibiting some of their jumps to roots,
if there are any. The set of these quasi–forests, which collects all possible behav-
iors of the environment, is denoted by exec(M) and is formally defined as follows.
〈F, V,E〉 ∈ exec(M) iff for each wi ∈ W0, we have V (i) = wi, and for x = y · z ∈
F with z ∈ N, V (x) = w, succ(w) = 〈w1, . . . , wn, wn+1, . . . , wn+m〉, succ(w) ∩
W0 = 〈wn+1, . . . , wn+m〉, and T (x) = ∅ if y = ε and T (x) = {V (y)} otherwise,
there exists S = 〈wi1 , . . . , wip , wip+1 , . . . , wip+q 〉 sub-tuple of succ(w)\T (x) such
that p + q ≥ 1 if y = ε and the following hold:

– if w ∈ Ws, then S = succ(w)\T (x);
– children(x) = {x · 1, . . . , x · p} and for 1 ≤ j ≤ p, V (x · j) = wij , and

E(x, x · j) = α if (w, wij ) ∈ R(α);
– for 1 ≤ j ≤ q, let xj ∈ N such that V (xj) = wip+j , it holds that E(x, xj) = α

if (w,wip+j ) ∈ R(α);

In the following, we consider quasi–forests in exec(M) as labeled with (2AP∪Nom,
P rog), i.e., taking the label of a node x to be L(V (x)). For a module M and a
formula ϕ of the enriched µ–calculus we say thatM satisfies ϕ, denotedM |=r ϕ,
if all quasi-forests in exec(M) satisfy ϕ. The problem of deciding whether M
satisfies ϕ is called enriched µ–calculus module checking.

Open Pushdown Systems. An OPD over AP ∪Nom ∪ Prog is a tuple S =
〈Q,Γ, [, C0,∆, ρ1, ρ2, Env〉, where Q is a finite set of (control) states, Γ is a
finite stack alphabet, [ 6∈ Γ is the stack bottom symbol. We set Γ[ = Γ ∪ {[},
Conf = Q × (Γ ∗ · [) to be the set of (pushdown) configurations and for each
configuration (q,A · γ) we set top((q,A · γ)) = (q, A) to be a top configuration.
The function ∆ : Prog → 2(Q×Γ[)×(Q×{push,pop,sub}×Γ ) is a finite set of transition
rules. The set C0 ⊆ Conf is a finite set of initial configurations, ρ1 : AP → 2Q×Γ[

is a labeling function, which associates to each atomic proposition p a set of top
configurations in which p holds, ρ2 : Nom → C0 is a labeling function, which
associates to each nominal exactly one initial configuration, and Env ⊆ Q×Γ[ is
specifies the set of environment configurations. The size |S| of S is |Q|+|∆|+|Γ |.

The OPD moves in accordance with the transition relation ∆. Thus, ((q, A),
(q′, op, B)) ∈ ∆(α) implies that if the OPD is in state q and the top of the
pushdown store is A, it can move along with an α–transition to state q′, and
either delete A if op = pop, or insert B on the top of the stack if op = push, or
substitute A with B if op = sub. We assume that if [ is popped it gets pushed
right back, and that it only gets pushed in such cases. Thus, [ is always present
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at the bottom of the pushdown store and nowhere else. Note that we make
this assumption also about the various pushdown automata we use later. Also
note that the possible operations of the system, the labeling functions, and the
designation of configurations as environment configurations, are all dependent
only on the current control state and the top of the pushdown store.

An OPD S induces a module MS = 〈Ws, We, W0, R, L〉, where:

– Ws ∪We = Conf , i.e., the set of pushdown configurations, and W0 = C0;
– We = {c ∈ Conf | top(c) ∈ Env}.
– ((q, A · γ), (q′, γ′)) ∈ R(α) iff there exists ((q, A), (q′, op, B)) ∈ ∆(α) such

that either op = pop and γ′ = γ, or op = push and γ′ = BA · γ, or op = sub
and γ′ = B · γ;

– L(p) = {c ∈ Conf | top(c) ∈ ρ1(p)} for p ∈ AP ; L(o) = ρ2(o) for o ∈ Nom.

The enriched (µ-calculus) pushdown module checking problem is to decide,
for a given OPD S and an enriched µ–calculus formula ψ, whether MS |=r ψ.

3 Tree Automata

Two-way Graded Alternating Parity Tree Automata (2GAPT). These
automata are an extension of nondeterministic tree automata that can send
several copies of itself to the same successor (alternating), send copies of itself to
the predecessor (two-way), specify a number n of successors to which copies of
itself are sent without specifying which successors these exactly are (graded), and
accept trees along with a parity condition [BLMV06]. To give a formal definition,
let us start with some technicalities.

For a given set Y , let B+(Y ) be the set of positive Boolean formulas over Y
(i.e., Boolean formulas built from elements in Y using ∧ and ∨), where we also
allow the formulas true and false and ∧ has precedence over ∨. For a set X ⊆ Y
and a formula θ ∈ B+(Y ), we say that X satisfies θ iff assigning true to elements
in X and assigning false to elements in Y \ X makes θ true. For b > 0, let
〈[b]〉 = {〈0〉, 〈1〉, . . . , 〈b〉}, [[b]] = {[0], [1], . . . , [b]}, and Db = 〈[b]〉 ∪ [[b]]∪ {−1, ε}.

Formally, a 2GAPT on Σ-labeled trees is a tuple A = 〈Σ, b, Q, δ, q0, F〉,
where Σ is the input alphabet, b > 0 is a counting bound, Q is a finite set of
states, δ : Q × Σ → B+(Db × Q) is a transition function, q0 ∈ Q is an initial
state, and F is a parity acceptance condition (see below). Intuitively, an atom
(〈n〉, q) (resp. ([n], q)) means that A sends copies in state q to n + 1 (resp. all
but n) different successors of the current node, (ε, q) means that A sends a
copy (in state q) to the current node, and (−1, q) means that A sends a copy
to the predecessor of the current node. A run of A on an input Σ-labeled tree
〈T, V 〉 is a tree 〈Tr, r〉 in which each node is labeled by an element of T × Q.
Intuitively, a node in Tr labeled by (x, q) describes a copy of the automaton in
state q that reads the node x of T . Runs start in the initial state and satisfy the
transition relation. Thus, a run 〈Tr, r〉 with root z has to satisfy the following:
(i) r(z) = (1, q0) for the root 1 of T and (ii) for all y ∈ Tr with r(y) = (x, q) and
δ(q, V (x)) = θ, there is a (possibly empty) set S ⊆ Db×Q, such that S satisfies
θ, and for all (d, s) ∈ S, the following hold:
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– If d ∈ {−1, ε}, then x · d is defined, and there is j ∈ N such that y · j ∈ Tr

and r(y · j) = (x · d, s);
– If d = 〈n〉 (resp., d = [n]), there are distinct i1, . . . , it, with t = n + 1 (resp.,

t = deg(x)−n) such that for all 1 ≤ j ≤ t, there is j′ ∈ N such that y ·j′ ∈ Tr,
x · ij ∈ T , and r(y · j′) = (x · ij , s);
Note that if θ = true, then y does not need to have successors. This is the

reason why Tr may have leaves. Also, since there exists no set S as required for
θ = false, we cannot have a run that takes a transition with θ = false.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance con-
dition. In the parity acceptance condition, F is a set {F1, . . . , Fk} such that
F1 ⊆ . . . ⊆ Fk = Q and k is called the index of the automaton. An infinite path
π on Tr satisfies F if there is an even i such that π contains infinitely many
states from Fi and finitely many states from Fi−1. An automaton accepts a tree
iff there exists an accepting run of the automaton on the tree. We denote by
L(A) the set of all Σ-labeled tree that A accepts.

A 2GAPT is a 2APT if Db = {−1, ε, 1, . . . , h} [Var98]. Moreover, it is an
NPT if Db = {1, . . . , h} and the transition relation δ is in disjunctive normal
form, where in each conjunct each direction appears at most once [KVW00].

We now recall a result on 2GAPT and enriched µ-calculus formulas.

Lemma 1 ([BLMV06,SV01]). Given an enriched µ-calculus sentence ϕ that
has ` atleast subsentences and counts up to b, we can built a 2GAPT with O(|ϕ|2)
states, index |ϕ|, and counting bound b that accepts exactly the trees encodings
of the quasi-forest models of ϕ having degree at most max{|Nom|+ 1, `(b + 1)}.

Nondeterministic Pushdown Parity Tree Automata. A PD–NPT (with-
out ε-transitions), on Σ-labeled full h-ary trees, is a tuple P = 〈Σ,Γ, [, Q, q0, γ0,
ρ,F〉, where Σ is a finite input alphabet, Γ , [, Γ[, Q, q0, and γ0 are as in OPD ,
ρ : Q × Σ × Γ[ → 2(Q×{push,pop,sub}×Γ )h

is a transition function, and F is a
parity condition over Q. We define push(γ,B) = B · · · γ, pop(A · γ, B) = γ, and
sub(A · γ, B) = B · γ. Intuitively, when P is in state q, reading an input node x
labeled by σ ∈ Σ, and the stack contains a word A · γ in Γ ∗ · [, then P chooses
a tuple 〈(q1, op1, B1), . . . , (qh, oph, Bh)〉 ∈ ρ(q, σ,A) and splits in h copies such
that for each 1 ≤ i ≤ h, a copy in state qi, and stack content obtained by up-
grading the stack accordingly with opi and Bi (as for OPD) is sent to the node
x · i in the input tree. A run of P on a Σ-labeled full h-ary tree 〈T, V 〉 is a
(Q× Γ ∗ · [)-labeled tree 〈T, r〉 such that r(ε) = (q0, γ0) and for each x ∈ T with
r(x) = (q,A · γ), there is 〈(q1, op1, B1), . . . , (qh, oph, Bh)〉 ∈ ρ(q, V (x), A) where,
for all 1 ≤ i ≤ h, r(x · i) = (qi, opi(A · γ, Bi)). The notion of accepting path is
defined with respect to the control states that appear infinitely often in the path
(thus without taking into account any stack content). Then the notions given
for 2GAPT regarding accepting runs, accepted trees, and accepted languages,
along with the parity condition, easily extend to PD–NPT . We also consider
Büchi condition F ⊆ Q, which simply is a special parity condition {∅,F , Q}.
In the following, we denote with PD–NBT a PD–NPT with a Büchi condition.
The emptiness problem for an automaton P is to decide whether L(P) = ∅.
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We now recall two useful results on the introduced automata.

Proposition 1 ([KPV02]). The emptiness problem for a PD–NPT on Σ-
labeled full h-ary trees, having index m, n states, and transition function ρ,
can be solved in time exponential in n ·m · h · |ρ|.
Proposition 2 ([BMP05]). On Σ-labeled full h-ary trees, given a PD–NBT
P = 〈Σ,Γ, Q, q0, γ0, ρ, Q〉 and an NPT A = 〈Σ,Q′, q′0, δ,F ′〉, there is a PD–NPT
P ′ such that L(P ′) = L(P) ∩ L(A). Moreover, P ′ has |Q| · |Q′| states, the same
index as A, and the size of the transition relation is bounded by |ρ| · |δ| · h.

4 Deciding Enriched Pushdown Module Checking

In this section, we show that enriched pushdown module checking is decidable
and solvable in 2Exptime. Since CTL pushdown module checking is 2Exptime-
hard, we get that the addressed problem is 2Exptime-complete. For the upper
bound, the algorithm works as follows. Given an OPD S, and a module MS
induced by S, by combining and extending the constructions given in [BMP05]
and [FM07], we first build in polynomial-time a PD–NBT AS accepting all trees
encoding of all quasi-forests belonging to exec(MS). Then, given an enriched µ-
calculus formula ϕ, accordingly to [SV01,BLMV06], we can build in polynomial-
time a 2GAPT A¬ϕ (Lemma 1) accepting all models of ¬ϕ, with the intent to
check that no models of ¬ϕ are in2 exec(MS). Then, accordingly to the basic
idea of [KVW01], we check that M |=r ϕ by checking whether L(AS)∩L(A¬ϕ)
is empty. Finally, we get the result by using an Exptime translation of the
latter to the emptiness problem for PD–NPT . As a key step here, we show a
nontrivial Exptime reduction of 2GAPT into NPT . This exponentially improves
the translation algorithm known from the literature and it is turns to be also
useful to get simplified decision procedures regarding enriched µ-calculus, such
as satisfiability [BLMV06] and finite-state module checking [FM07].

Let us start dealing with AS . Before building the automaton, there are some
technical difficulties to overcome, which are also new with respect to [BMP05].
First note that AS , as being a PD–NBT , deals with trees having labels only
on nodes, while exec(M) contains quasi-forests with both edges and nodes la-
beled. To solve this problem, for each quasi-forest in exec(M), the automaton
AS accepts a corresponding encoding tree obtained by (i) adding a new root
connecting all roots of the quasi-forest, (ii) moving the label of each edge to the
target node of the edge (using a new atomic proposition pα, for each program α),
and (iii) substituting “jumps to roots” with new atomic propositions ↑α

o (repre-
senting an α-labeled edge from the current node to the unique root node labeled
by nominal o). Let AP ∗ = AP ∪{pα | α is a program}∪{↑α

o | α is a program and
o is a nominal}, we denote with 〈T, V ∗〉 the 2AP∗∪Nom-labeled tree encoding of
a quasi-forest 〈F, V, E〉 ∈ exec(M), obtained using the above transformations.

Another technical difficulty to handle with is related to the fact that quasi-
forests of exec(M) (and thus their encoding) may not be full h-ary, since the

2 For a better readability, in the rest of the paper we will use M instead of MS .
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OPD from which M is induced nodes may have different degrees. Moreover,
quasi-forests of exec(M) may not share the same structure, since they are ob-
tained by pruning some subtrees from the computation quasi-forest 〈FM, VM, EM〉
of M. Let 〈TM, V ∗

M〉 be the h-ary computation tree of M obtained from 〈FM,
VM, EM〉 using the above encoding. By extending an idea of [KVW01,BMP05],
we consider each tree 〈T, V ∗〉, encoding of a quasi-forest 〈F, V, E〉 of exec(M),
as a 2AP∗∪Nom∪{t} ∪ {⊥}-labeled full h-ary tree 〈TM, V ∗∗〉 (where ⊥ and t are
fresh proposition names not belonging to AP ∗ ∪ Nom) in the following way:
first we add proposition t to the label of all leaf nodes of the forest; second,
for each node x ∈ TM with p children x · 1, . . . , x · p (note that 0 ≤ p ≤ h),
we add the children x · (p + 1), . . . , x · h and label these new nodes with ⊥;
finally, for each node x labeled by ⊥ we add recursively h children labeled by
⊥. Thus, for each node x ∈ TM\{root(TM}, if x ∈ F then V ∗∗(x) = V ∗(x),
otherwise V ∗∗(x) = {⊥} and therefore the proposition ⊥ is used to denote
both “disabled” states and “completion” states. In this way, all trees encod-
ing quasi-forests of exec(M) are full h-ary trees, and they differ only in their
labeling. Moreover, the environment can also disable jumps to roots. This is per-
formed by removing from enabled environment nodes some of ↑α

o labels. Notice
that since we consider environments that do not block the system, each node,
which corresponds to a root in the quasi–forest and is associated with an en-
vironment state, has at least one successor not labeled by {⊥}, unless it has
↑α

o in its label. Putting in practice the construction proposed above, we obtain
the following result, where êxec(M) the set of all 2AP∗∪Nom∪{t} ∪ {⊥}-labeled
full h-ary trees obtained from TM, V ∗

M in the above described manner (the de-
tailed construction is reported in the full version which can be found at the url
http://people.na.infn.it/∼murano/pubblicazioni/EPD-full.pdf).

Lemma 2. Given an OPD S = 〈Q,Γ, [, C0,∆, ρ1, ρ2, Env〉 with branching de-
gree h, we can build a PD–NBT AS = 〈Σ,Γ, [, Q′, q′0, γ0, δ,Q〉, which accepts
exactly êxec(M), such that |Σ| = 2AP∗∪Nom, |Q′| = O(|Q|2 · |Γ |), and |δ| is
polynomially bounded by h · |∆|.

Let us now go back to the enriched µ-calculus formula ϕ. We recall by Lemma
1 that we can build in polynomial-time a 2GAPT A¬ϕ accepting all models of
¬ϕ. As we have pointed out before, if we show an exponential-time translation of
A¬ϕ into an NPT , we get the desired 2Exptime upper bound for the problem we
are investigating. Indeed, by Proposition 2, we have that L(AS)∩L(A¬ϕ) can be
accepted by a PD–NPT whose size is exponential in the size of ϕ and polynomial
in the size of S. Hence, we get the result by using the fact that the emptiness
problem for PD–NPT can be checked in exponential-time (Proposition 1). The
remaining part of this section is devoted to show how to translate in Exptime a
2GAPT into an NPT . The translation we propose uses the notions of strategies,
promises and annotations, which we now recall.

Let A = 〈Σ, b,Q, δ, q0,F〉 be a 2GAPT with F = 〈F1, . . . , Fk〉 and 〈T, V 〉
be a Σ-labeled tree. Recall that Db = 〈[b]〉 ∪ [[b]] ∪ {−1, ε} and δ : (Q × Σ) →
B+(Db × Q). For each control state q ∈ Q, let index(q) be the minimal i such
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that q ∈ Fi. A strategy tree for A on 〈T, V 〉 is a 2Q×Db×Q-labeled tree 〈T, str〉
such that, defined head(w) = {q : (q, d, q′) ∈ w} as the set of sources of w, it
holds that (i) q0 ∈ head(str(root(T ))) and (ii) for each node x ∈ T and state q,
the set {(q, q′) : (q, d, q′) ∈ str(x)} satisfies δ(q, V (x)).

A promise tree forA on 〈T, V 〉 is a 2Q×Q-labeled tree 〈T, pro〉. We say that pro
fulfills str for V if the states promised to be visited by pro satisfy the obligations
induced by str as it runs on V . Formally, pro fulfills str for V if for every node x ∈
T , the following hold: “for every (q, 〈n〉, q′) ∈ str(x) (resp. (q, [n], q′) ∈ str(x)),
at least n + 1 (resp. deg(x)− n)) successors x · j of x have (q, q′) ∈ pro(x · j)”.

An annotation tree for A on 〈T, str〉 and 〈T, pro〉 is a 2Q×{1,...,k}×Q-labeled
tree 〈T, ann〉 such that for every node x ∈ T and (q, d1, q1) ∈ str(x) the following
conditions hold:

– if d1 = ε then (q, index(q1), q1) ∈ ann(x);
– if d1 ∈ {1, . . . , k} then for all d2 ∈ {1, . . . , k} and q2 ∈ Q such that (q1, d2, q2) ∈

ann(x), we have (q, min(d1, d2), q2) ∈ ann(x);
– if d1 = −1 and x = y · i, then for all d2, d3 ∈ {1, . . . , k} and q2, q3 ∈ Q such

that (q1, d2, q2) ∈ ann(y), (q2, d3, q3) ∈ str(y) and (q2, q3) ∈ pro(x), holds
that (t, min(index(q1), d2, index(q3)), q3) ∈ ann(x);

– if d1 ∈ [[b]]∪ [〈b〉], y = x ·i and (q, q1) ∈ pro(y), then for all d2, d3 ∈ {1, . . . , k}
and q2, q3 ∈ Q such that (q1, d2, q2) ∈ ann(y) and (q2,−1, q3) ∈ str(y), holds
that (t, min(index(q1), d2, index(q3)), q3) ∈ ann(x).

A downward path induced by str, pro and ann on 〈T, V 〉 is a sequence
〈x0, q0, t0〉, 〈x1, q1, t1〉, . . . such that x0 = root(T ), q0 is the initial state of A and
for each i ≥ 0 holds that xi ∈ T , qi ∈ Q and ti = 〈qi, d, qi+1〉 ∈ str(xi) ∪ ann(xi)
is such that either (i) d ∈ {1, . . . , k} and xi+1 = xi, or (ii) d ∈ 〈[b]〉 ∪ [[b]]
and there exists c ∈ {1, . . . , deg(xi)} such that xi+1 = xi · c and (qi, qi+1) ∈
pro(xi+1). In the first case we set index(ti) = d and in the second case we set
index(ti) = min{j ∈ {1, . . . , k} | qi+1 ∈ Fj}. Moreover, for a downward path π
we set index(π) as the minimum index that appears infinitely often in π and we
say that π is accepting if index(π) is even.

The following lemma relates the language accepted by a 2GAPT with strate-
gies, promises and annotations.

Lemma 3 ([BLMV06]). Let A be a 2GAPT. A Σ-labeled tree 〈T, V 〉 is ac-
cepted by A iff there exist a strategy tree 〈T, str〉 and a promise tree 〈T, pro〉 for
A on 〈T, V 〉 such that pro fulfills str for V , and an annotation tree 〈T, ann〉 for
A on 〈T, V 〉, 〈T, str〉 and 〈T, pro〉 such that every downward path induced by str,
pro and ann on 〈T, V 〉 is accepting.

The above lemma has been used in [BLMV06] to show how to translate in
exponential-time a 2GAPT into a GNPT . In the next lemma, we improve this
result on by showing an exponential-time translation of a 2GAPT into an NPT .

Given an alphabet Σ for the input tree of a 2GAPT with transition function
δ, let Dδ

b be the subset containing only the elements of Db appearing in δ.
Then we denote by Σ′ the extended alphabet for the combined trees, i.e., Σ′ =
Σ × 2Q×Dδ

b×Q × 2Q×Q × 2Q×{1,...k}×Q.
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Lemma 4. Let A be a 2GAPT running on Σ–labeled trees with n states, index
k and counting bound b that accepts h-ary trees. We can build in Exptime an
NPT A′ running on Σ′–labeled h-ary trees that accepts a tree iff A accepts its
projection on Σ.

Proof. Let A = 〈Σ, b,Q, q0, δ,F〉 with F = 〈F1, . . . , Fk〉. By Lemma 3, we build
A′ as the intersection of three NPT s A′, A′′, and A′′′, each having size expo-
nential in the size of A, such that

– A′ accepts a Σ′-labeled tree 〈T, (V, str, pro, ann)〉 iff str is a strategy for A on
〈T, V 〉 and pro fulfills str for V ,

– A′′ accepts a Σ′-labeled tree 〈T, (V, str, pro, ann)〉 iff ann is an annotation for
A on 〈T, V 〉, 〈T, str〉 and 〈T, pro〉, and

– A′′′ accepts a Σ′-labeled tree 〈T, (V, str, pro, ann)〉 iff every downward path
induced by str, pro and ann on 〈T, V 〉 is accepting.

The automaton A′ = 〈Σ′, Q′, q′0, δ
′,F ′〉 works as follows: on reading a node

x labeled (σ, η, ρ, ω), then it locally checks whether η satisfies the definition
of strategy for A on 〈T, V 〉. In particular, when A′ is in its initial state, we
check that η contains a transition starting from the initial state of A. Moreover,
the automaton A′ sends to each child x · i the pairs of states that have to be
contained in pro(x · i), in order to verify that pro fulfills str. To obtain this, we
set Q′ = 2Q×Q ∪ {q′0} and F ′ = {∅, Q′}. To define δ′, we first give the following
definition. For each node x ∈ T labeled (σ, η, ρ, ω), we set

S(η) = {〈S1, . . . , Sdeg(x)〉 ∈ (2Q×Q)deg(x) such that
[for each (q, 〈m〉, p) ∈ η there exist distinct i1, . . . , im+1 such that
(q, p) ∈ Sij , for all j ∈ {1, . . . , m + 1}] and
[for each (q, [m], p) ∈ η there exist distinct i1, . . . , ideg(x)−m such that
(q, p) ∈ Sij , for all j ∈ {1, . . . , deg(x)−m}]}

to be the set of all tuples with size deg(x), each fulfilling all the graded modalities
in str(x). Notice that |S(η)| ≤ 2hn2

. Then we have

δ′(q, (σ, η, ρ, ω)) =





S(η) if ∀ p ∈ head(η), {(d, p′) | (p, d, p′) ∈ η} satisfies δ(p, σ)

and [(q = q1
0 and q0 ∈ head(η)) or (q 6= q1

0 and q ⊆ ρ)]

false otherwise,

Hence, in A′ we have |Q′| = 2n2
, |δ′| ≤ 2n2(k+1), and index 2.

A′′ = 〈Σ′, Q′′, q′′0 , δ′′,F ′′〉 works in a similar way to A′. That is, for each node
x, it first locally checks whether the constraints of the annotations are verified;
then it sends to the children of x the strategy and annotation associated with x,
in order to successively verify whether the promises associated with the children
nodes are consistent with the annotation of x. Therefore, in the automaton A′′

we have Q′′ = 2Q×Dδ
b×Q × 2Q×{1,...,k}×Q, q′′0 = (∅, ∅), F ′′ = {∅, Q′′}, and for a

state (ηprev, ωprev) and a letter (σ, η, ρ, ω) we have

δ′′((ηprev, ωprev), (σ, η, ρ, ω)) =





〈(η, ω), . . . , (η, ω)〉 if the local conditions for the

annotations are verified

false otherwise.
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Hence, in A′′ we have |Q′′| ≤ 2n2(|δ|+k), |δ′′| ≤ h · 2n2(|δ|+k), and index 2.
Finally, to define the automatonA′′′ we start by constructing a 2APT B poly-

nomial in the size of A that accepts 〈T, (V, str, pro, ann)〉 iff there is a downward
path induced by str, pro and ann on 〈T, V 〉 that is not accepting. The automa-
ton B = 〈Σ′, QB , qB

0 , δB ,FB〉 (which in particular does not need direction −1)
essentially chooses, in each state, the downward path to walk on, and uses an
integer to store the index of the state. We use a special state ] not belonging to
Q to indicate that B is proceeding in accordance with an annotation instead of a
strategy. Therefore the set of states is QB = ((Q∪{]})×{1, . . . , k}×Q)∪{qB

0 }.
To define the transition function on a node x, let us introduce a function f

that for each q ∈ Q, strategy η ∈ 2Q×Dδ
b×Q, and annotation ω ∈ 2Q×{1,...,k}×Q

gives a formula satisfied along downward paths consistent with η and ω. That is
in each node x, the function f either proceeds according to the annotation ω or
the strategy η (note that f does not check that the downward paths is consistent
with any promise). Formally, f is defined as follows:

f(q, η, ω) =
∨

(q,d,p)∈ω

d∈{1,...,k}

〈ε, (], d, p)〉 ∨
∨

(q,d,p)∈η

d∈〈[b]〉∪[[b]]

∨

c∈{1,...,deg(x)}
〈c, (q, index(p), p)〉

where index(p) is the minimum i such that p ∈ Fi. Then we have

δB(qB
0 , (σ, η, ρ, ω)) = f(q0, η, ω)

δB((q, d, p), (σ, η, ρ, ω)) =

{
false if q 6= ] and (q, p) 6∈ ρ

f(p, η, ω) otherwise.
.

A downward path is accepted if the minimum index that appears infinitely
often in the path is odd. Therefore, FB = 〈FB

1 , . . . , FB
k+1, Q

B〉 where FB
1 = ∅

and, for all i ∈ {2, . . . , k + 1}, FB
i = {(q, d, p) ∈ QB | d = i − 1}. Thus,

|QB | = kn(n+1)+1, |δB | = k · |δ| · |QB | and the index is k +2. Then, since B is
alternating, we easily complement it in polynomial time into a resulting 2APT
B accepting a tree iff all the downward paths induced by str, pro and ann on
〈T, V 〉 are accepting. Finally, following [Var98] we can build in exponential-time
the desired automaton A′′′. ut

Using the above lemma, along with Lemma 1, we get that given an enriched µ-
calculus formula ϕ, we can build in exponential-time an NPT A¬ϕ accepting all
models of ¬ϕ. Now, recall that given a module M induced by an OPD S and the
automatonAS accepting all trees encoding of quasi-forests belonging to exec(M)
(see Lemma 2), it is possible to check whether M |=r ϕ by checking whether
L(AS) ∩ L(A¬ϕ) is empty. Also, recall that by Proposition 2, L(AS) ∩ L(A¬ϕ)
can be accepted by a PD–NPT A whose size is exponential in the size of ϕ and
polynomial in the size of S. Finally, by recalling that the emptiness of A can be
checked in Exptime (Proposition 1) and that the pushdown module checking
problem for CTL is 2Exptime-hard with respect to the size of the formula and
Exptime-hard in the size of the system [BMP05], we get the following result.
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Theorem 1. The pushdown module checking problem for enriched µ–calculus is
2Exptime–complete w.r.t. the size of the formula and Exptime–complete w.r.t.
the size of the system.
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A Proof of Lemma 2

Let S = 〈Q,Γ, [, C0,∆, ρ1, ρ2, Env〉 be an OPD . We construct a parity PD–NBT
AS that accepts the trees in êxec(MS). As explained in section 4, êxec(MS)
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only contains full h-ary trees in which, if a node was a leaf of the original quasi–
forest, then its label contains the proposition t, and nodes both pruned and non
existing in the computation tree are labeled by ⊥. Moreover, since we consider
environments that do not block the system, for each node corresponding to a
root of the computation quasi–forest associated with an enabled non-terminal
environment state, at least one successor is not labeled by ⊥. The PD–NBT
AS essentially works in the following way: if it is reading a node x in the top
configuration, then:

– if x is either a node labeled by ⊥ or a leaf of the computation quasi–forest
(a node which label contains the proposition t), then the automaton checks
that x must have h children all labeled by ⊥;

– if x corresponds to a state node of the induced module MS with r successors
w1, . . . , wr, without considering the node from which the system is coming
and the jumps to roots, then the automaton checks that x must have r
children corresponding to w1, . . . , wr and h− r children labeled by ⊥;

– if x corresponds to an environment non initial node of MS with p successors
w1, . . . , wp, not considering the node from which the system is coming and
the jumps to roots, then the automaton checks that x must have 0 ≤ s ≤ r
children corresponding to nodes from w1, . . . , wr and h− s children labeled
by ⊥;

– if x corresponds to an environment initial node of MS with r successors
w1, . . . , wr, not considering the node from which the system is coming and
the jumps to roots, and s jumps to roots, then then the automaton checks
that x must have 0 ≤ t1 ≤ r children corresponding to nodes from w1, . . . , wr,
0 ≤ t2 ≤ s propositions ↑o

α in its label (with the clause that t1 + t2 ≥ 1), and
h− t1 children labeled by ⊥.

In order to calculate the configuration from which the automaton is coming, we
remember in each configuration the previous top configuration and the operation
that transformed the previous configuration into the actual one. Then, the PD–
NBT AS = 〈Σ,Γ, [, P, p0, α0, δ, P 〉 is defined as follows.

– Σ = 2AP∗∪Nom∪{t} ∪ {⊥};
– P = Q×Γ×{pop, push, sub}×Q×{⊥,>,`}. Intuitively, the initial pair Q×Γ

identifies the previous top configuration, the set {push, pop, sub} denotes the
operation that transformed the previous configuration in the actual one, and
the successive Q is the actual state. The last symbol is used to decide the
behavior of the automaton; in particular, if the symbol is ⊥ then AS can
read only the letter ⊥, if the symbol is > then AS can read only letters
in 2AP∗∪Nom∪{t}, and if the symbol is ` then AS can read both letters in
2AP∗∪Nom∪{t} and the letter ⊥. In this last case, it is left to the environment
to decide whether the transition to a configuration of the form ((q, A, l, q′,`
), α) is enabled. The three types of (control) states are used to ensure that
the environment enables all transitions from enabled system configurations,
enables at least one transition from each enabled non-terminal environment
configuration, and disables transitions from disabled configurations.
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– p0 = (q0, [, pop, q0,>) and α0 = [.
– Let us suppose that from the current configuration, the OPD allows r tran-

sitions (q1, op1, B1), . . . , (qr, opr, Br) that do not induce jumps to roots and s
transitions that induce jumps to roots (without considering one inverse tran-
sition that newly induce the configuration from which the OPD is coming,
if such a configuration exists).
Then, the transition function δ : P × Σ × Γ[ → 2(P×{push,pop,sub}×Γ )h

is
defined as follows.
• if the automaton is reading the letter σ = ⊥, then for m ∈ {⊥,`},

qprev, q ∈ Q, op ∈ {push, pop, sub} and Aprev ∈ Γ , we have

δ((qprev, Aprev , op, q, m),⊥, A) =

{ 〈 ((q, A, pop, q,⊥), pop, A), . . . , ((q, A, pop, q,⊥), pop, A)︸ ︷︷ ︸
h pairs

〉 }

that is, if AS is in a node labeled by ⊥, then it must have h children
labeled by ⊥;

• if the automaton is reading a letter σ ∈ 2AP∗∪Nom∪{t} such that t ∈ σ,
then for m ∈ {>,`}, qprev, q ∈ Q, op ∈ {push, pop, sub} and Aprev ∈ Γ ,
we have

δ((qprev, Aprev , op, q, m), σ, A) =

{ 〈 ((q, A, pop, q,⊥), pop, A), . . . , ((q, A, pop, q,⊥), pop, A)︸ ︷︷ ︸
h pairs

〉 }

that is, if AS is in a terminal node of the computation quasi–forest (a node
which label contains t), then it must have h children labeled by ⊥;

• if the automaton is reading a letter σ ∈ 2AP∗∪Nom∪{t} such that t 6∈ σ, and
it is in a top configuration (q, B) 6∈ Env, then for m ∈ {>,`}, qprev, q ∈ Q,
op ∈ {push, pop, sub} and Aprev ∈ Γ , we have

δ(( qprev , Aprev, op, q, m), σ, A) =

{ 〈 ((q, A, op1, q1,>), op1, B1), . . . , ((q, A, opr, qr,>), opr, Br),

((q, A, pop, q,⊥), pop, A), . . . , ((q, A, pop, q,⊥), pop, A)︸ ︷︷ ︸
h−r pairs

〉 }

that is, if AS is in a state node of MS , then it has r children labeled by >
and h− r children labeled by ⊥;

• if the automaton is reading a letter σ ∈ 2AP∗∪Nom∪{t} such that t 6∈ σ, and it
is in configuration (q, B ·γ) 6∈ C0 such that (q, B) ∈ Env, then for m ∈ {>,`},
qprev, q ∈ Q, op ∈ {push, pop, sub} and Aprev ∈ Γ , we have

δ(( qprev , Aprev, op, q, m), σ, A) =

{ 〈 ((q, A, op1, q1,`), op1, B1), . . . , ((q, A, opr, qr,`), opr, Br),

((q, A, pop, q,⊥), pop, A), . . . , ((q, A, pop, q,⊥), pop, A)︸ ︷︷ ︸
h−r pairs

〉 }

that is, if AS is in an environment non initial node of MS , then it has r
children labeled by ` and h− r children labeled by ⊥;
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• if the automaton is reading a letter σ ∈ 2AP∗∪Nom∪{t} such that t 6∈ σ and
σ contains t ≥ 1 propositions ↑o

α, and it is in top configuration (q, B) ∈ Env
then for m ∈ {>,`}, qprev, q ∈ Q, op ∈ {push, pop, sub} and Aprev ∈ Γ , we
have

δ(( qprev , Aprev, op, q, m), σ, A) =

{ 〈 ((q, A, op1, q1,`), op1, B1), . . . , ((q, A, opr, qr,`), opr, Br),

((q, A, pop, q,⊥), pop, A), . . . , ((q, A, pop, q,⊥), pop, A)︸ ︷︷ ︸
h−r pairs

〉 }

that is, if AS is in an environment initial node of MS with any jump to root
enabled, then it has r children labeled by ` and h− r children labeled by ⊥;

• if the automaton is reading a letter σ ∈ 2AP∗∪Nom∪{t} such that t 6∈ σ and σ
contains t = 0 propositions ↑o

α, and it is in configuration (q, B · γ) ∈ C0 such
that (q, B) ∈ Env then for m ∈ {>,`}, qprev, q ∈ Q, op ∈ {push, pop, sub}
and Aprev ∈ Γ , we have

δ(( qprev , Aprev, op, q, m), σ, A) =

{ 〈 ((q, A, op1, q1,>), op1, B1), . . . , ((q, A, opr, qr,`), opr, Br),

((q, A, pop, q,⊥), pop, A), . . . , ((q, A, pop, q,⊥), pop, A)︸ ︷︷ ︸
h−r pairs

〉

...

〈 ((q, A, op1, q1,`), op1, B1), . . . , ((q, A, opr, qr,>), opr, Br),

((q, A, pop, q,⊥), pop, A), . . . , ((q, A, pop, q,⊥), pop, A)︸ ︷︷ ︸
h−r pairs

〉 }

that is, if AS is in an environment initial node of MS with no jumps to root
enabled, then it has r−1 children labeled by `, one children labeled by ⊥ and
h− r children labeled by ⊥.

The number of states of AS is |P | = 9 · |Q|2 · |Γ | and the size of the transition
function is |δ| ≤ 9|Q|2|Γ |h2.


