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Abstract. We consider the termination problem of programs manipulating tree-
like dynamic data structures. Our approach is based on a counter-example guided
abstraction refinement loop. We use abstract regular tree model-checking to infer
invariants of the program. Then, we translate the program toa counter automaton
(CA) which simulates it. If the CA can be shown to terminate using existing tech-
niques, the program terminates. If not, we analyse the possible counterexample
given by a CA termination checker and either conclude that the program does not
terminate, or else refine the abstraction and repeat. We showthat the spuriousness
problem for lasso-shaped counterexamples is decidable in some non-trivial cases.
We applied the method successfully on several interesting case studies.

1 Introduction

Verification of programs with dynamic linked data structures is a difficult task, among
other reasons, due to the use of unbounded memory, and the intricate nature of pointer
manipulations. Most of the approaches existing in this areaconcentrate on checking
safety properties such as, e.g., absence of null pointer dereferences, preservation of
shape invariants, etc. In this paper, we go further and tackle the universal termination
problem of programs manipulating tree data structures. Namely, we are interested in
proving that such a program terminates for any input tree outof a given set described
as an infinite regular tree language over a finite alphabet.

We handle sequential, non-recursive programs working on trees with parent point-
ers and data values from a finite domain. The basic statementswe consider are data
assignments, non-destructive pointer assignments, and tree rotations. This is sufficient
for verifying termination of many practical programs over tree-shaped data structures
(e.g., AVL trees or red-black trees) used, in general, for storage and a fast retrieval of
data. Moreover, many programs working on singly- and doubly-linked lists fit into our
framework as well. We do not consider dynamic allocation in this version of the pa-
per, but insertion/removal of leaf nodes, common in many practical tree manipulating
programs, can be easily added, if not used in a loop.

We build onAbstract Regular Tree Model Checking(ARTMC) [5], a generic frame-
work for symbolic verification of infinite-state systems, based on representing regular
sets of configurations by finite tree automata, and program statements as operations
on tree automata. We represent a given program as a control flow graph whose nodes
are annotated with (overapproximations of) sets of reachable configurations computed
using ARTMC. From the annotated control flow graph, we build acounter automaton
(CA) that simulates the program. The counters of the CA keep track of different mea-
sures within the working tree: the distances from the root tonodes pointed to by certain
variables, the sizes of the subtrees below such nodes, and the numbers of nodes with a
certain data value. Termination of the CA is analysed by existing tools, e.g., [8, 12, 23].



Our analysis uses aCounter-example Guided Abstraction Refinement(CEGAR)
loop [10]. If the tool we use to prove termination of the CA succeeds, this implies
that the program terminates on any input from the given set. Otherwise, the CA checker
tool outputs a lasso-shaped counterexample. For the class of CA generated by our trans-
lation scheme, we prove that it is decidable whether there exists a non-terminating run
of the CA over the given lasso4.

However, even if we are given a real lasso in the generated CA,due to the ab-
straction involved in its construction, we still do not knowwhether this implies also
non-termination of the program. We then map the lasso over the generated CA back
into a lasso in the control of the program, and distinguish two cases. If (1) the program
lasso does not contain tree rotations, termination of all computations along this path is
decidable. Otherwise, (2) if the lasso contains tree rotations, we can decide termination
under the additional assumption that there exists a CA (not necessarily known to us)
that witnesses termination of the program (i.e., intuitively, in the case when the tree
measures we use are strong enough to show termination). In both cases, if the program
lasso is found to be spurious, we refine the abstraction and generate a new CA from
which an entire family of counterexamples (including this particular one) is excluded.

The analysis loop is not guaranteed to terminate even if the given program termi-
nates due to the fact that our problem is not recursively enumerable. However, experi-
ence with our implementation of a prototype tool shows that the method is successfully
applicable to proving termination of various real-life programs.

All proofs and more details can be found in the full version [18] of the paper.

Contributions of the Paper: (1) We have developed a systematic translation of pro-
grams working on trees into counter automata; the translation is based on an adequate
choice of measures that map parts of the memory structures into positive integers.
(2) We provide a new CEGAR loop for refining the translation ofprograms into counter
automata on demand. (3) We present new decidability resultsfor the spuriousness prob-
lem of lasso-shaped counterexamples for both counter automata and programs with
trees. (4) We have implemented our techniques on top of the existing framework ofAb-
stract Regular Tree Model Checking; our tool can handle examples of tree manipulating
programs that, to the best of our knowledge, are not handled by any existing tool.

Related Work. The area of research on automated verification of programs manipu-
lating dynamic linked data structures is recently quite live. Various approaches to veri-
fication of such programs differing in their principles, degree of automation, generality,
and scalability have been proposed. They are based on, e.g.,monadic second order logic
[21], 3-valued predicate logic with transitive closure [24], separation logic [22, 17], or
finite automata [16, 6].

With few exceptions, all existing verification methods for programs with recursive
data structures tackle verification of safety properties. In [1, 25], specialised ranking
functions over the number of nodes reachable from pointer variables are used to verify
termination of programs manipulating linked lists. Termination of programs manipulat-
ing lists has further been considered in [17, 4] using constraints on the lengths of the
list segments not having internal nodes pointed from outside. To the best of our knowl-
edge, automated checking of termination of programs manipulating trees has so-far
been considered in [20] only, where the Deutsch-Schorr-Waite tree traversal algorithm

4 If the analyser used returns a spurious lasso-shaped counterexample for the termination of the
CA, we suggest choosing another tool.
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was proved to terminate using a manually created progress monitor, encoded in first-
order logic.

In the past several years, a number of industrial-scale software model checkers such
as SLAM [2], BLAST [19], or MAGIC [9] were built using the CEGAR approach [10].
However, these tools consider verification of safety properties only. On what concerns
termination, CEGAR was applied in [12, 13], and implementedin the TERMINATOR
[14] and ARMC [23] tools. Both of these tools are designed to prove termination of
integer programs without recursive data structures.

Concerning termination of programs with recursive data structures, the available
termination checkers for integer programs can be usedprovidedthat there is a suitable
abstraction of such programs into programs over integers, i.e., counter automata. Such
abstraction can be obtained by recording some numerical characteristics of the heap in
the counters, while keeping the qualitative properties of the heap in the control of the
CA. Indeed, this is the approach taken in [4] for checking termination of programs over
singly-linked lists. The abstraction used in [4] is based oncompacting each list segment
into a single abstract node and recording its length in the counters of the generated
CA. The number of abstract heap graphs that one obtains this way is finite (modulo
the absence of garbage)—therefore they can be encoded in thecontrol of the CA. The
translation produces a CA that isbisimilar to the original program, and therefore any
(positive or negative) result obtained by analysing the CA holds for the program.

However, in the case of programs over trees, one cannot use the idea of [4] to obtain
a bisimilar CA since the number of branching nodes in a tree isunbounded. Therefore,
the translation to CA that we propose here loses some information about the behaviour
of the program, i.e., the semantics of the CA overapproximates the semantics of the
original program. Then, if a spurious non-termination counterexample is detected over
the generated CA, the translation is to be refined. This refinement is done by a spe-
cialised CEGAR loop that considers also structural information about the heaps. To the
best of our knowledge, no such CEGAR loop was proposed beforein the literature.

As said already above, the approach of [17] is similar to [4] in that it tracks the
length of the list segments. However, it does not generate a CA simulating the original
program. Instead, it first obtains invariants of the program(using separation logic) and
then computes the so-called variance relations that say howthe invariants change within
each loop when the loop is fired once more. When the computed variance relations are
well-founded, termination of the program is guaranteed. Unlike the approach of [4]
(bisimulation preserving) and the approach we present here(based on CEGAR), the
analysis of [17] fails if the initial abstraction is not precise enough.

The approach of [17] was recently generalised in [3] to a general framework that
one can use to extend existing invariance analyses to variance analyses that can in turn
be used for checking termination. Up to now, this framework has not been instantiated
for programs with trees (by providing the appropriate measures and their abstract se-
mantics). Moreover, it is not clear how the variance analysis framework fits with the
CEGAR approach.

2 Preliminaries
Programs with Trees. We consider sequential, non-recursive C-like programs working
over tree-shaped data structures with a finite set of pointervariablesPVar. Each node
in a tree contains a data value from a finite setData and three next pointers, denoted
left , right , andup.5 Forx,y∈PVarandd∈Data, we allow the following statements:

5 A generalisation of our approach to trees with another arityis straightforward.
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(1) assignmentsx = null, x = y, x = y.{left|right|up}, x.data = d, (2) conditional
statements and loops based on the testsx == null, x == y, x.data== d, and (3) the
standard left and right tree rotations [15] (cf. Figure 1). This syntax covers a large set of
practical tree-manipulating procedures. For technical reasons, we require w.l.o.g. that
no statements take the control back to the initial line.

Memory configurations of the considered programs can be represented as trees with
nodes labelled by elements of the setC = Data×2PVar∪{2}—a node is either null
and represented by2 or it contains a data value and a set of pointer variables pointing
to it. Each pointer variable can point to at most one tree node(if it is null, it does not
appear in the tree). LetT (C ) be the set of all such trees andLab the set of all program
lines. A configuration of a program is a pair〈l ,t〉 ∈ Lab×T (C ). For space reasons, the
semantics of the program statements considered is given in [18].

Some program statements may influence the counters of the CA that we build to
simulate programs in several different ways. For instance,after x = x.left, the dis-
tance ofx from the root may increase by one, but it may also become undefined (which
we represent by the special value−1) if x.left is null. Similarly, a single rotation
statement may change the distance of a node pointed by some variable from the root in
several different ways according to where the node is located in a particular input tree.
For technical reasons related to our abstraction refinementscheme, we need a one-to-
one mapping between actions of a program and the counter manipulations simulating
them. In order to ensure the existence of such a mapping, we decompose each program
statement into severalinstructions. The semantics of a statement is the union of the se-
mantics of its composing instructions, and exactly one instruction is always executable
in each program configuration.

In particular, the assignmentsx= null andx= y are instructions. Conditional state-
ments of the formx == null andx == y are decomposed into two instructions each,
corresponding to their true and false branches. A conditional statementx.data== d is
decomposed into three instructions, corresponding to its true and false branches, and an
error branch for the casex== null. Each statementx= y.left is decomposed into in-
structionsgoLeftNull(x,y) for the case wheny.left== null, goLeftNonNull(x,y)
for the casey.left! = null, andgoLeftErr(x,y) for the case of a null pointer deref-
erence. The statementsx= y.right andx= y.up are treated in a similar way. The state-
mentsx.data = d are decomposed into a set of instructionschangeData(x,d′,d) for
all d′ ∈ Data. A special instructionchangeDataErr(x) for the null pointer dereference
is also introduced.

Y

x,X

x,X

Y
A

B A

B

leftRotate

Fig. 1.leftRotate(x,X,Y,A,B)

Finally, a left rotation on a node
pointed by a variablex ∈ PVar is de-
composed into a set of instructions
leftRotate(x,X,Y,A,B) where X con-
tains variables aliased tox, Y variables
pointing to the right son ofx, A variables
pointing inside the left subtree ofx, andB
variables pointing into the right subtree of
the right son ofx (Figure 1). The instruc-
tion leftRotateErr(x) is introduced for the case of a null dereference within the
rotation. Right rotations are decomposed analogously.

Given a programP, we denote byInstr the set of instructions that appear inP

and by〈l , t〉
i
−→
P

〈l ′, t ′〉 the fact thatP has a transition from〈l ,t〉 to 〈l ′,t ′〉 caused by
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firing an instructioni ∈ Instr. By i(t) we denote the effect ofi on a treet ∈ T (C ). We
denote by−→P the union

S

i∈Instr
i
−→P , and by

∗
−→P the reflexive and transitive closure of−→P .

For i ∈ Instr and I ⊆ T (C ), let post(i, I) = {i(t) | t ∈ I}. We also generalisepost to
sequences of instructions.

Counter Automata. For an arithmetic formulaϕ, let FV(ϕ) denote the set of free
variables ofϕ. For a set of variablesX, let Φ(X) denote the set of arithmetic formulae
with free variables fromX∪X′ whereX′ = {x′ | x∈ X}. If ν : X → Z is an assignment
of FV(ϕ) ⊆ X, we denote byν |= ϕ the fact thatν is a satisfying assignment ofϕ.

A counter automaton (CA) is a tupleA = 〈X,Q,q0,ϕ0,→〉 whereX is the set of
counters,Q is a finite set of control locations,q0 ∈ Q is a designated initial location,
ϕ0 is an arithmetic formula such thatFV(ϕ0)⊆ X, describing the initial assignments of
the counters, and→∈ Q×Φ(X)×Q is the set of transition rules.

A configuration of a CA is a pair〈q,ν〉 ∈ Q×(X →Z). The set of all configurations
is denoted byC. The transition relation

ϕ
−→A ⊆ C×C is defined by(q,ν)

ϕ
−→A (q′,ν′) iff there

exists a transitionq
ϕ
−→ q′ such that ifσ is an assignment ofFV(ϕ), whereσ(x) = ν(x)

andσ(x′) = ν′(x), we have thatσ |= ϕ andν(x) = ν′(x) for all variablesx with x′ 6∈
FV(ϕ). We denote by−→A the union

S

ϕ∈Φ
ϕ
−→A , and by

∗
−→A the reflexive and transitive clo-

sure of−→A . A run of A is a sequence of configurations(q0,ν0),(q1,ν1),(q2,ν2) . . . such

that(qi ,νi) −→A (qi+1,νi+1) for eachi ≥ 0 andν0 |= ϕ0. We denote byRA the set of all

configurations reachable byA, i.e.,RA = {(q,ν) | (q0,ν0)
∗
−→A (q,ν) for someν0 |= ϕ0}.

3 The Termination Analysis Loop

Our termination analysis procedure based on abstraction refinement is depicted in Fig. 2.
We start with the control flow graph (CFG) of the given programand use ARTMC to
generate invariants for its control points. Then, the CFG annotated with the invariants
(an abstract CFG, see Section 4) is converted into a CA6, which is checked for termina-
tion using an existing tool (e.g., [23]). If the CA is proved to terminate, termination of
the program is proved too. Otherwise, the termination analyser outputs a lasso-shaped
counterexample. We check whether this counterexample is real in the CA—if not, we
suggest the use of another CA termination checker (for brevity, we skip this in Fig. 2).
If the counterexample is real on the CA, it is translated backinto a sequence of program
instructions and analysed for spuriousness on the program.If the counterexample is
found to be real even there, the procedure reports non-termination. Otherwise, the pro-
gram CFG is refined by splitting some of its nodes (actually, the sets of program config-
urations associated with certain control locations), and the loop is reiterated. Moreover,
ARTMC may also be re-run to refine the invariants used (as briefly discussed in Sec-
tion 6).

If our termination analysis stops with either a positive or anegative answer, the an-
swer is exact. However, we do not guarantee termination for any of these cases. Indeed,
this is the best we can achieve as the problem we handle is not recursively enumerable
even when destructive updates (i.e., tree rotations) are not allowed. This can be proved
by a reduction from the complement of the halting problem for2-counter automata.

6 The use of invariants in the abstract CFGs allows us to removeimpossible transitions and
therefore improves the accuracy of the translation to CA.
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Counter
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Lasso−shaped
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Report "non−termination"
no

yes

Translation

Fig. 2. The proposed abstract-check-refine loop

Theorem 1. The problem whether a program with trees without destructive updates
terminates on any input tree is not recursively enumerable.

Therefore we do not further discuss termination guaranteesfor our analysis proce-
dure in this paper, and postpone the research on potential partial guarantees, in some
restricted cases, for the future. However, despite the theoretical limits, the experimental
results reported in Section 7 indicate a practical usefulness of our approach.

ARTMC. We useabstract regular tree model checkingto overapproximate the sets of
configurations reachable at each line of a program (i.e., to computeabstract invariants
for these lines) and also to check that the program isfree of basic memory inconsisten-
cieslike null pointer dereferences. Due to space limitations, we only give a very brief
overview of ARTMC here—more details can be found in [6, 18]. The idea is to represent
each program configuration as a tree over a finite alphabet, regular sets of such configu-
rations by finite tree automata, and program instructions asoperations on tree automata.
Starting from a regular set of initial configurations, theseoperations are then iteratively
applied until a fixpoint is reached. In order to make the computation stop, the sets of
reachable configurations (i.e., finite tree automata) are abstracted at each step. Several
abstraction schemes based on collapsing states of the encountered tree automata may
be used. For example, thefinite-height abstractioncollapses the automata states that
accept exactly the same trees up to some height. All the abstractions are finite-range,
guaranteeing termination of the abstract fixpoint computation, and can be automatically
refined (e.g., in the mentioned case, by increasing the abstraction height).

For the needs of ARTMC, we encode configurations of the considered programs
simply as trees over the alphabetC = Data×2PVar∪{2}. Most of the instructions can
be encoded as structure-preserving tree transducers. A transducer can check conditions
like x == y or x.data == d by checking node labels. Transducers can also be used
to move symbols representing the variables to nodes marked by some other variable
(x = y), remove a symbol representing a variable from the tree (x = null ), move it
one level up or down (x = y.{left |right |up}), or change the data element in the node
marked by some variable (x.data = d). The rotations are a bit more complex. They
cannot be implemented as tree transducers. However, they can still be implemented as
special operations on tree automata. First, a test of the mutual positioning of the vari-
ables in the tree required by their distribution in the setsX,Y,A,B is implemented as
an intersection with a tree automaton that remembers which variables were seen, and in
which branches. Then, we locate the automata states that accept the tree node represent-
ing the root of the rotation (cf. Figure 1), their children, and their right grandchildren.
Finally, we reconnect these states in the automaton controlstructure in order to match
the semantics of the tree rotations.
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4 Abstraction of Programs with Trees into Counter Automata

In this section, we provide a translation from tree manipulating programs to counter
automata such that existing techniques for proving termination of counter automata can
be used to prove termination of the programs. Before describing the translation, we
define the simulation notion that we will use to formalise correctness of the translation.

Let P be a program with a set of instructionsInstr, an initial labell0 ∈ Lab, a set of
input treesI0 ⊆ T (C ), and a set of reachable configurationsRP ⊆ Lab× T (C ). Let us
also have a counter automatonA= 〈X,Q,q0,ϕ0,→〉 with →∈ Q×Φ(X)×Q, and a set
of reachable configurationsRA. A functionM : X× T (C ) → Z is said to be ameasure
assigning counters integer values for a particular tree7. Let M(t) = {M(x,t) | x∈ X}.

Definition 1. The program P is simulated by the counter automaton A w.r.t. M: X ×
T (C ) → Z and θ : Instr → Φ iff there exists a relation∼ ⊆ RP ×RA such that
(1) ∀t0 ∈ I0 : M(t0) |= ϕ0 ∧ 〈l0,t0〉 ∼ 〈q0,M(t0)〉 and (2)∀(l1,t1),(l2,t2) ∈ RP ∀i ∈
Instr ∀(q1,ν1) ∈ RA : (l1, t1)

i
−→ (l2,t2) ∧ (l1,t1) ∼ (q1,ν1) ⇒ ∃(q2,ν2) ∈ RA :

(q1,ν1)
θ(i)
−−→ (q2,ν2) ∧ (l2, t2) ∼ (q2,ν2).

The measureM ensures that the counters are initially correctly interpreted over the
input trees, whereasθ ensures that the counters are updated in accordance with the
manipulations done on the trees. Simulation in the sense of Definition 1 guarantees that
if we prove termination of the CA, the program will terminateon anyt ∈ I0.

4.1 Abstract Control Flow Graphs

According to Figure 2, we construct the CA simulating a program in two steps: we
first construct the so-calledabstract control flow graph(ACFG) of a program, and then
translate it into a CA. Initially, the ACFG of a program is computed from its CFG by
decorating its nodes with ARTMC-overapproximated sets of configurations reachable
at each line (we keep the initial set of trees exact exploiting the fact that w.l.o.g. there are
no statements leading back to the initial line). These sets allow us to exclude impossible
(not fireable) transitions from the ACFG and thus derive a more exact CA. Further, in
subsequent refinement iterations, infeasible terminationcounterexamples are excluded
by splitting these sets (if this appears to be insufficient, we re-run ARTMC to compute a
better overapproximation of the reachable sets of configurations). Below, we first define
the notion of ACFG, then we provide its translation to counter automata.

In what follows, letP be a program with instructionsInstr, working on trees from
T (C ), and letl0 ∈ Labbe the initial line ofP. Thecontrol flow graph(CFG) ofP is a la-

belled graphF = 〈Instr,Lab, l0,⇒〉 wherel
i
⇒ l ′ denotes the presence of an instruction

i between control locationsl , l ′ ∈ Lab. We further suppose that the input tree configura-
tions forP are described by the user as a (regular) set of treesI0 ⊆ T (C ). An abstract
control flow graph(ACFG) for P is then a graphG = 〈Instr,LI ,〈l0, I0〉, 7−→〉 whereLI

is afinite subset ofLab×2T (C ), 〈l0, I0〉 ∈ LI , and there is an edge〈l , I〉
i

7−→ 〈l ′, I ′〉 iff

l
i
⇒ l ′ in the CFG ofP andpost(i, I)∩ I ′ 6= /0.

7 Intuitively, certain counters will measure, e.g., the distance of a certain node from the root, the
size of the subtree below it, etc.
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Note that since we work with ACFGs annotated with regular sets of configurations
and since we can implement the effect of each instruction on aregular set as an opera-
tion on tree automata, we can effectively check thatpost(i, I)∩ I ′ 6= /0, which is needed
for computing the edges of ACFGs. Note also that a location inP may correspond to
more than one locations inG.

We say thatG covers the invariants of Pwhose set of reachable states isRP iff each
treet ∈ T (C ) that is reachable at a program linel ∈ Lab (i.e., 〈l ,t〉 ∈ RP), appears in
some of the sets of program configurations associated withl in the locations ofG. For-
mally,∀l ∈ Lab : RP∩ ({l}×T (C )) ⊆ {l}×

S

〈l ,I〉∈LI I . The following lemma captures
the relation between the semantics of a program and that of anACFG.

Lemma 1. Let P be a program with trees and G an ACFG that covers the invariants of
P. Then, the semantics of G simulates that of P in the classical sense.

4.2 Translation to Counter Automata

We now describe the construction of a CAArsc(G) = 〈X,Q,q0,ϕ0,→〉 from an ACFG
G= 〈Instr,LI ,〈l0, I0〉, 7−→〉 of a programP such thatArsc(G) simulatesP in the sense of
Def. 1. We consider two sorts of counters, i.e.,X = XPVar∪ XData, whereXPVar =
{rx | x∈ PVar} ∪ {sx | x∈ PVar} andXData = {cd | d∈ Data}. The role of these coun-
ters is formalised via a measureMrsc : X × T (C ) → Z in [18]. Intuitively, Mrsc(rx,t)
andMrsc(sx, t) record the distance from the root of the noden pointed to byx and the
size of the subtree belown, respectively, andMrsc(cd,t) gives the number of nodes with
datad in a treet ∈ T (C ).

We buildArsc(G) from G by simply replacing the instructions on edges ofG by op-
erations on counters. Formally, this is done by the translation functionθrsc defined in Ta-
ble 1. The mapping for the instructionsx = y.right andrightRotate(x,X,Y,A,B) is
skipped in Table 1 as it is analogous to that ofx= y.left andleftRotate(x,X,Y,A,B),
respectively. Also, for brevity, we skip the instructions leading to the error stateErr.
As a convention, if the future value of a counter is not explicitly defined, we con-
sider that the future value stays the same as the current value. Moreover, in all for-
mulae, we assume an implicit guard−1≤ rx < TreeHeight∧ −1≤ sx < TreeSizefor
eachx ∈ PVar8 and 0≤ cd ≤ TreeSize∧ ∑d∈Datacd = TreeSizefor eachd ∈ Data.
TreeHeightandTreeSizeare parameters restricting the range in which the other coun-
ters can change according to a given input tree. They are needed as a basis on which
termination of the resulting automaton can be shown.

Next, we defineQ = LI , q0 = 〈l0, I0〉, andq
θrsc(i)
−−−→ q′ iff q

i
7−→ q′ for all i ∈ Instr.

The initial constraintϕ0 on the chosen counters can be automatically computed9 from
the regular set of input treesI0 such that it satisfies requirement (1) of Definition 1. The
following theorem shows the needed simulation relation between the counter automata
we construct and the programs.

Theorem 2. Given a program P and an ACFG G of P covering its invariants, the CA
Arsc(G) simulates P in the sense of Definition 1 wrt.θrsc and Mrsc.

8 −1 corresponds tox being null.
9 This can be done by computing the Parikh image of a context-free languageL (I0) correspond-

ing to the regular tree languageI0. For each treet ∈ I0 there is a word inL (I0) consisting of
all nodes oft. We use special symbols to denote the position of a node in thetree relative to a
given variable (under the variable, between it and the root)and the data values of nodes.
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Table 1.The mappingθrsc from program instructions to counter manipulations

instructioni counter manipulationθrsc(i)

if(x == null) rx = −1
if(x! = null) rx ≥ 0
if(x == y) rx = ry∧sx = sy
if(x! = y) true

if(x.data == d) rx ≥ 0∧cd ≥ 1
if(x.data! = d) rx ≥ 0∧cd < TreeSize

x = null r ′x = s′x = −1
x = y r ′x = ry∧s′x = sy

goLeftNull(x,y) ry ≥ 0∧sy ≥ 1∧ r ′x = s′x = −1
goLeftNonNull(x,y) ry ≥ 0∧sy ≥ 2∧ r ′x = ry +1∧s′x < sy

goUpNull(x,y) ry = 0∧sy ≥ 1∧ r ′x = s′x = −1
goUpNonNull(x,y) ry ≥ 1∧sy ≥ 1∧ r ′x = ry−1∧s′x > sy
changeData(x,d,d) rx ≥ 0∧sx ≥ 1∧cd > 0

changeData(x,d1,d2),d1 6= d2 rx ≥ 0∧sx ≥ 1∧cd1 > 0∧c′d2
= cd2 +1∧c′d1

= cd1 −1
leftRotate(x,X,Y,A,B) gLe f tRotate(x,X,Y,A,B)∧aLe f tRotate(x,X,Y,A,B)

gLe f tRotate(x,X,Y,A,B) = aLe f tRotate(x,X,Y,A,B) =
rx ≥ 0 ∧ sx ≥ 2∧
(∀v∈ X : rv = rx ∧ sv = sx) ∧ (∀v∈ X : r ′v = rv +1 ∧ s′v < sv) ∧
(∀v,v′ ∈Y : rv = rx +1 ∧ sv < sx ∧ (∀v∈Y : r ′v = rv−1 ∧ s′v > sv) ∧

rv = rv′ ∧ sv = sv′) ∧
(∀v∈ A : rv ≥ rx +1 ∧ sv < sx) ∧ (∀v∈ A : r ′v = rv +1 ∧ s′v = sv) ∧
(∀v∈ B : rv ≥ rx +2 ∧ sv < sx−1) (∀v∈ B : r ′v = rv−1 ∧ s′v = sv)

The generated CAArsc(G) has the property that each transitionq
ϕ
−→ q′ can be

mapped back into the program instruction from which it originates. This is because the
instructions onto which we decompose each program statement are assigned different
formulae, by the translation functionθrsc, and there is at most one statement between
each two control locations of the program. Formally, we capture this by a function

ξ : Q×Φ×Q→ Instr such that∀q1,q2 ∈ Q,ϕ ∈ Φ : q
ϕ
−→ q′ ⇒ q

ξ(q1,ϕ,q2)
7−→ q′. We gen-

eraliseθrsc andξ to sequences of transitions, i.e., for a pathπ in Arsc, ξ(π) denotes the
sequence of program instructions leading toπ, andθrsc(ξ(π)) denotes the sequence of
counter operations onπ obtained by projecting out the control locations fromπ.

5 Checking Spuriousness of Counterexamples
Since the CAArsc generated from a programP with trees is a simulation ofP (cf. Theo-
rem 2), proving termination ofArsc suffices to prove termination ofP. However, ifArsc
is not proved to terminate by the termination checker of choice, there are three possibil-
ities: (1)Arsc terminates, but the chosen termination checker did not find atermination
argument, (2) bothArsc as well asP do not terminate, and (3)P terminates, butArsc
does not, as a consequence of the abstraction used in its construction. In all cases, the
CA termination checker outputs a counterexample consisting of a finite path (stem) that
leads to a cycle, both paths forming a lasso. Formally, a lasso S.L over the control struc-
ture of a CAArsc is said to bespuriousiff there exists a non-terminating run ofArsc
alongS.L, and for not ∈ I0 doesP have an infinite run along the pathξ(S).ξ(L).

The three cases are dealt with in the upcoming paragraphs.

Deciding termination of CA lassos.We first show that termination of a given control
loop is decidable in a CA whose transition relations are conjunctions of difference con-
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straints, i.e. formulae of the formsx−y≤ c, x′−y≤ c, x−y′ ≤ c, orx′−y′ ≤ c wherex′

denotes the future value of the counterx andc∈ Z is an arbitrary integer constant. For
this type of CA, the composed transition relation of the given control loop is also ex-
pressible as a conjunction of difference constraints. Then, this relation can be encoded
as a constraint graph G such that the control loop terminatesiff G contains a negative
cycle (for details see [18]). Using the results of [11, 7], this fact can be encoded as a
Presburger formula and hence decided. At the same time, it isclear that the CA gener-
ated via the translation functionθrsc fall into the described class of CA. In particular,
the constraint that each counter is bounded from below by−1 and from above by the
TreeHeightor TreeSizeparameters is expressible using difference constraints.10

Theorem 3. Let A= 〈X,Q,q0,ϕ0,−→〉 be a counter automaton with transition relations
given as difference constraints. Then, given a control loopin A, the problem whether
there exists an infinite computation along the loop is decidable.

Checking termination of program lassos.Due to the above result, we may hence-
forth assume that the lassoS.L returned by the termination analyser has a real non-
terminating run in the CA. The lasso is mapped back into a sequence of program in-
structionsξ(S).ξ(L) forming a program lasso. Two cases may arise: either the lasso is
real on the program or it is spurious.

Non-spurious program lassos.Since we do not consider dynamic allocation, the number
of configurations that a program can reach from any input treeis finite. Consequently,
if there is a treetω from which the program will have an infinite run along a given
lasso, then we can discover it by an exhaustive enumeration of trees. We handle the
discovery oftω by evaluating the lasso for all trees of up to a certain (increasingly
growing) height at the same time (by encoding them as regulartree language and using
the implementation of program instructions over tree automata that we have). As we
work with finite sets of trees, we are bound to visit the same set twice after a finite
number of iterations, if there exists a non-terminating runalong the lasso.

Spurious program lassos.We handle this case also by a symbolic iteration of a given
program lassoσ.λ starting with the initial set of trees. We compute iteratively the sets
post(σ.λk, I0),k = 1,2, . . .. In the case of lassos without destructive updates, this com-
putation is shown to reach the empty set after a number of iterations that is bounded by
a double exponential in the length of the lasso (cf. Section 5.1). In the case of lassos
with destructive updates, we can guarantee termination of the iteration with the empty
set provided there exists some CAAu (albeit unknown) keeping track of the particular
tree measures we consider here (formalised via the functions Mrsc andθrsc in Section
4.2) that simulates the given program and that terminates11 (cf. Section 5.2). In the
latter case, even though we cannot guarantee the discovery of Au, we can at least en-
sure that the sequencepost(σ.λk, I0), k = 1,2, . . . terminates with the empty set. This
gives us a basis for refining the current ACFG such that we get rid of the spurious lasso
encountered, and we can go on in the search for a CA showing thetermination of the
given program.

10 To encode conditions of the formx≤ c we add a new variablez, initially set to zero, with the
conditionz′ = z appended to each transition, and rewrite the original condition asx−z≤ c.

11 We can relax this condition by saying thatAu does not have any infinite run, not corresponding
to a run of the program. For the sake of clarity, we have chosenthe first stronger condition.
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5.1 Deciding Spuriousness of Lassos without Destructive Updates

In this section, we show that the spuriousness problem for a given lasso in a program
with trees is decidable, if the lasso does not contain destructive updating instructions,
i.e., tree rotations. The argument for decidability is that, if there exists a non-terminating
run along the loop, then there exists also a non-terminatingrun starting from a tree of
size bounded by a constant depending on the program. Thus, there exists a tree within
this bound that will be visited infinitely many often.12

Given a loop without destructive updates, we first build an abstraction of it by re-
placing thego{Left|Right|Up}Null(x,y) instructions byx = null, and by eliminat-
ing all changeData(x,d1,d2) instructions and the tests. Clearly, if the original loop has
a non-terminating computation, then its abstraction will also have a non-terminating
run starting with the same tree. The loop is then encoded as aniterative linear transfor-
mation which, for each pointer variablex∈ PVar, has a counterpx encoding the binary
position of the pointer in the current tree using 0/1 as the left/right directions. Addi-
tionally, the most significant bit of the encoding is required to be always one, which
allows for differentiating between, e.g., the position 001encoded by 9= (1001)2, and
0001 encoded by 17= (10001)2. Null pointers are encoded by the value 0. The program
instructions are translated into counter operations as follows:

x = null : px = 0 x = y : px = py goLeftNonNull(x,y) : px = 2⋆ py

goRightNonNull(x,y) : px = 2⋆ py+1 goUpNonNull(x,y) : px = 1
2 py

where 2⋆ and 1
2 denote the integer functions of multiplication (x 7→ 2x) and division

(x 7→ x/2). Assuming that we haven pointer variables, each program instruction is
modelled by a linear transformation of the formp′ = Ap+B whereA is ann×n matrix
with at most one non-null element, which is either 1,2 or 1

2, andB is ann-column vector
with at most one 1 and the rest 013. The composition of the instructions on the loop is
also a linear transformation, except thatA has at most one non-null element on each
line, which is eitherI , or a composition of 2⋆’s and 1

2 ’s.
SinceA has at most one non-null element on each line, one can extractan m×

m matrix A0 for somem≤ n that has exactly one non-null element on each line and
column. Our proof is based on the fact that there exists some constantk bounded by
O (3m) such thatA0

k is a diagonal matrix. Intuitively, this means that the position of
each pointer at stepi + k is given by a linear function of the position of the pointer at
i. ThenAi is an exponential function ofi. As there is no dynamic allocation of nodes
in the tree, the non-termination hypothesis implies that the positions of pointers have to
stay in-between bounds. But this is only possible if the elements of the main diagonal of
A0

k are eitherI or compositions of the same number of 2⋆ and1
2. Intuitively, this means

that all pointers are confined to move inside bounded regionsof the working tree.

Theorem 4. Let P be a program over trees, PVar and Data be its sets of pointer vari-
ables and data elements,C = Data×2PVar∪{2}, I0 ⊆ T (C ) be an initial set of trees,
and σ.λ be a lasso of P. Then, if P has an infinite run along the pathσ.λω for some
t0 ∈ I0, then there exists a tree tb0 ∈ T (C ) of height bounded by(||PVar||+ 1) ·

(

|σ|+
|λ| ·3||PVar||

)

such that P, started with tb0, has an infinite run along the same path.

12 Since there is no dynamic allocation, all trees visited starting with a tree of sizek will also
have sizek. Hence each run of the program will either stop, or re-visit the same program
configuration after a bounded number of steps.

13 We interpret the matrix operations over the semiring of integer functions〈N → N,+,◦,0, I 〉,
where◦ is functional composition andI is the identity function.
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Decidability of spuriousness is an immediate consequence of this theorem. Also,
there is a bound on the number of symbolic unfoldings of a spurious lasso starting with
the initial set of trees.

Corollary 1. Let P be a program over trees, PVar and Data its sets of pointervariables
and data elements,C = Data× 2PVar∪ {2}, and I0 ⊆ T (C ) an initial set of trees.
Given a lasso S.L in the CA Arsc(G) built from an ACFG G of P, letσ = ξ(S) andλ =
ξ(L). Then, ifσ.λ does not contain destructive updates, its spuriousness is decidable.

Moreover, if the lasso is spurious, for all k≥ |λ| ·max(2, ||Data||)2(||PVar||+1)·(|σ|+|λ|·3||PVar||)
,

we have post(σ.λk, I0) = /0.

Despite the double exponential bound, experimental evidence (see Section 7) shows
that the number of unfoldings necessary to eliminate a spurious lasso is fairly small.

5.2 Analysing Lassos with Destructive Updates

Theorem 5 stated below shows that spuriousness of a lasso that contains destructive
updates, i.e., tree rotations, is decidable if there existsa terminatingCA Au, not neces-
sarily known to us, simulating the program wrt.θrsc andMrsc. That is, if there exists a
termination argument for the program based on the tree measures we use, then we can
prove spuriousness of the lasso by a symbolic iteration of the initial set.

Theorem 5. Let P be a program with an ACFG G and let S.L be a spurious lasso in
Arsc(G). If there exists a CA Au that simulates P wrt.θrsc and Mrsc and that terminates
on all inputs, then there exists k∈ N such that post(ξ(S).ξ(L)k, I0) = /0.

Indeed, imagine that for anyl ∈ N there is an input treetl ∈ I0 for whichξ(S).ξ(L)l

is fireable. Then, the CAAu, having a finite-control, and simulatingP has to contain
a lasso with a stemS.Ln1 and a loopLn2 for somen1,n2 ∈ N (i.e., a possibly partially
unfold S.L). However, as the set of initial counter valuations ofAu must include the
one of Arsc(G) (as that is the smallest possible wrt.Mrsc), this means thatAu has a
non-terminating run also, which is a contradiction.

6 Abstraction Refinement

Let P be a program,G = 〈Instr,LI ,〈l0, I0〉, 7−→〉 be an ACFG ofP, andArsc(G) be the
CA obtained by the translation described in Section 4. LetS.L be a spurious lasso, i.e.,
a path over whichArsc(G) has an infinite run, whileP does not have an infinite run over
the corresponding program pathσ.λ whereσ = ξ(S) andλ = ξ(L). Then, we produce
a new ACFGGS.L of P such thatArsc(GS.L) will not exhibit any lasso-shaped path with
a stem labelled with the sequence of counter operationsθrsc(σ).θrsc(λ)p and a loop
labelled withθrsc(λ)q for any p,q≥ 0. Provided that the spuriousness of the lassoS.L
is detected using either Corollary 1 or Theorem 5, we know that there existsk > 0 such
that post(σ.λl , I0) = /0 for all l ≥ k. To build the refined ACFGGS.L, we use the sets
post(σ.λi, I0), 0≤ i < k, computed in the spuriousness analysis ofS.L (cf. Section 5).

We refineG into GS.L by splitting some of its locations〈l i , Ii〉 ∈ LI into several
locations of the form〈l i , Ii j 〉, and by recomputing the edges according to the defini-
tion of ACFG (cf. Section 4.1). Intuitively, the setsIi j form a partition ofIi such that
Ii j will contain all trees fromIi that are visited inat most j iterations of the loop.
As we prove in [18], since we keep apart the sets of trees for which the lasso may
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be iterated a different number of times,Arsc(GS.L) will not contain lassos of the form
θrsc(σ).θrsc(λ)p.

(

θrsc(λ)q
)ω

for any p,q > 0.
Due to the fact that our verification problem is not r.e. (cf. Theorem 1), the Abstract-

Check-Refine loop might diverge. One situation in which thiscan happen is when, at
each refinement step, a certain line invariantIi is split such that one of the parts, sayIi j ,
is finite (e.g., it contains only trees up to some height). However, to exclude a spurious
counterexample, it might be the case thatIi has to be split into infinite sets according
to some more general property (e.g., the same number of red and black nodes).14 In
such situations, we use a heuristicaccelerationmethod consisting in applying the finite
height abstractionα of ARTMC (cf. Section 3) to split the line invariants. That is, apart
from splitting Ii wrt. the setspost(σ.λi, I0), we split wrt. the setsα(post(σ.λi , I0)) too.
In Section 7, we report on an example in which the acceleratedrefinement based on the
finite height abstraction was successfully used to make the analysis converge.

Another problem that may occur is that the invariants computed by ARTMC may
not be precise enough for proving termination of the given program. That is why after
a predefined number of steps of refining ACFGs by splitting, werepeat ARTMC with a
more precise abstraction(e.g., we increase the abstraction height). We re-run ARTMC
on the underlying CFG of the last computed ACFGG and restrict the computed reach-
ability sets to the sets appearing in the locations ofG in order to preserve the effect of
the refinement steps done so far. Due to the space restrictions, we provide a detailed
description of these issues in [18].

7 Implementation and Experimental Results

To demonstrate the applicability of our approach, we testedit on several real procedures
manipulating trees. We restricted the ARTMC tool from [6] tobinary trees with parent
pointers and added support for tree rotations, instead of using general purpose destruc-
tive updates. The absence of null pointer dereferences was verified fully automatically.
Termination of the generated CA was checked using the ARMC tool [23].

We first considered the following set of case studies (for more details see [18]):
(1) a non-recursivedepth-first tree traversal, (2) a procedure forsearching a data value
in a red-black tree[15] (with the actual data abstracted away and all the comparisons
done in a random way), and (3) the procedure thatrebalances red-black trees after
inserting a new elementusing tree rotations [15]. In the latter two cases, the set ofinput
trees was a regular overapproximation of all red-black trees (we abstracted away the
balancedness condition).

Table 2.Experimental Results
Example TARTMC |Q|Inv TCA Ncnt Nloc Ntr

Depth-first tree traversal 43s 67 10s 5 15 20
RB-search 2s 22 1s 3 8 11

RB-rebalance after insert1m 9s 87 36s 7 44 66

The results of the
experiments that we
performed on a PC
with a 1.4 GHz In-
tel Xeon processor are
summarised in Table 2.
The table contains the
ARTMC running times (TARTMC), the number of states of the largest invariant gener-
ated by ARTMC (|Q|Inv), the time spent by the ARMC tool to show termination (TCA),
and the number of counters (Ncnt), locations (Nloc), and transitions (Ntr ) of the CA.

14 A similar case is encountered in classical abstraction refinement for checking safety properties.
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For the three above programs, it turned out to be possible to prove the termination
without a need of refinement. In the third experiment, we could even remove check-
ing of the condition of the red-black trees (a red node has only black sons), leading
to smaller verification times, with less precise invariants, which were, however, still
precise enough for the termination proof.

bool odd= false;
if (list ! = null) then
while (true) do

x = list;
while (x ! = null) do

x.data= odd;
odd= not(odd);
x = x.next;

od

if (not(odd)) then break;
od

Fig. 3. A procedure marking ele-
ments of a list as odd or even from
the end of the list

To test our refinement procedure, we applied
it on another case study where the initial invari-
ants were not sufficient to prove termination. In
particular, we considered the procedure in Fig-
ure 3 that marks the elements of a singly-linked
list as even or odd, depending on whether their
distance to the end of the list is even or odd. As
the procedure does not know the length of the list
and cannot use back-pointers, it tries to mark the
first element as even, and at the end of the list, it
checks whether the last element was marked as
odd. If this is true, the marking is correct, other-
wise the marking has to be reversed.

For this procedure, even if one builds the CA
starting with the exact line invariants, termination
cannot be established. To establish termination,
one has to separate configurations where the procedure is marking the list in a correct
way from those where the marking is incorrect. Then, the outer loop of the procedure
will not appear in the CA at all since, in fact, it can be fired atmost twice: once when
the initial guess is correct and twice otherwise. The challenge is to recognise this fact
automatically.

We managed to verify termination of the procedure on an arbitrary input list after
excluding 9 spurious lassos (in 2 cases, the refinement was accelerated by the use of the
finite-height abstraction on theIi j sets that resulted from splitting line invariants when
excluding certain spurious lassos).

8 Conclusion

We addressed the problem of proving termination of a significant class of tree manip-
ulating programs. We provide a counter-example guided abstraction refinement loop
based on the ARTMC framework and on exploiting the existing work on checking ter-
mination of counter automata. A number of results related tothe decidability of the
spuriousness problem of lasso-shaped termination counterexamples were given. Our
method is not guaranteed to stop (as the problem is not r.e.),but when it stops, it pro-
vides a precise answer (both in the positive and negative case). The method was exper-
imentally tested to be successful on several interesting practical programs.

Future work includes a more efficient implementation of our framework as well as
its extension to more complex programs (like, e.g., programs with unbounded dynamic
allocation and general destructive pointer updates). We would also like to further in-
vestigate cases in which the universal termination problemis r.e. (and hence allowing
complete verification techniques).
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