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Abstract. We consider the termination problem of programs manipugtiee-
like dynamic data structures. Our approach is based on aemexample guided
abstraction refinement loop. We use abstract regular trekehuiecking to infer
invariants of the program. Then, we translate the prograacmunter automaton
(CA) which simulates it. If the CA can be shown to terminategexisting tech-
nigues, the program terminates. If not, we analyse the lplessounterexample
given by a CA termination checker and either conclude treptiogram does not
terminate, or else refine the abstraction and repeat. We 8faivthe spuriousness
problem for lasso-shaped counterexamples is decidabane sion-trivial cases.
We applied the method successfully on several interestisg studies.

1 Introduction

Verification of programs with dynamic linked data strucsiig a difficult task, among
other reasons, due to the use of unbounded memory, and tlraietature of pointer
manipulations. Most of the approaches existing in this @m@aentrate on checking
safety properties such as, e.g., absence of null pointefetences, preservation of
shape invariants, etc. In this paper, we go further and ¢atld universal termination
problem of programs manipulating tree data structures. éljgnwve are interested in
proving that such a program terminates for any input treeobatgiven set described
as an infinite regular tree language over a finite alphabet.

We handle sequential, non-recursive programs workingesstwith parent point-
ers and data values from a finite domain. The basic statementonsider are data
assignments, non-destructive pointer assignments, aaddtations. This is sufficient
for verifying termination of many practical programs overda-shaped data structures
(e.g., AVL trees or red-black trees) used, in general, foragfe and a fast retrieval of
data. Moreover, many programs working on singly- and dodibked lists fit into our
framework as well. We do not consider dynamic allocationhiis version of the pa-
per, but insertion/removal of leaf nodes, common in mangtal tree manipulating
programs, can be easily added, if not used in a loop.

We build onAbstract Regular Tree Model Checki@yRTMC) [5], a generic frame-
work for symbolic verification of infinite-state systemssbd on representing regular
sets of configurations by finite tree automata, and progratersients as operations
on tree automata. We represent a given program as a controfeph whose nodes
are annotated with (overapproximations of) sets of redehainfigurations computed
using ARTMC. From the annotated control flow graph, we builtbanter automaton
(CA) that simulates the program. The counters of the CA kesgktof different mea-
sures within the working tree: the distances from the rooiides pointed to by certain
variables, the sizes of the subtrees below such nodes, amithbers of nodes with a
certain data value. Termination of the CA is analysed bytixjgools, e.g., [8,12, 23].



Our analysis uses @ounter-example Guided Abstraction Refinem@&EGAR)
loop [10]. If the tool we use to prove termination of the CA seeds, this implies
that the program terminates on any input from the given siei@ise, the CA checker
tool outputs a lasso-shaped counterexample. For the di&#s generated by our trans-
lation scheme, we prove that it is decidable whether theistsea non-terminating run
of the CA over the given laséo

However, even if we are given a real lasso in the generatedddA,to the ab-
straction involved in its construction, we still do not knevhether this implies also
non-termination of the program. We then map the lasso ovegénerated CA back
into a lasso in the control of the program, and distinguish ¢ases. If (1) the program
lasso does not contain tree rotations, termination of atiatations along this path is
decidable. Otherwise, (2) if the lasso contains tree rmtatiwe can decide termination
under the additional assumption that there exists a CA (aoessarily known to us)
that witnesses termination of the program (i.e., intulfivén the case when the tree
measures we use are strong enough to show termination)thrchses, if the program
lasso is found to be spurious, we refine the abstraction andrgee a new CA from
which an entire family of counterexamples (including théstizular one) is excluded.

The analysis loop is not guaranteed to terminate even if trengorogram termi-
nates due to the fact that our problem is not recursively esrabie. However, experi-
ence with our implementation of a prototype tool shows thatrhethod is successfully
applicable to proving termination of various real-life grams.

All proofs and more details can be found in the full versio8][a&f the paper.

Contributions of the Paper: (1) We have developed a systematic translation of pro-
grams working on trees into counter automata; the traosiasi based on an adequate
choice of measures that map parts of the memory structutespivsitive integers.
(2) We provide a new CEGAR loop for refining the translatiopafgrams into counter
automata on demand. (3) We present new decidability refeulitse spuriousness prob-
lem of lasso-shaped counterexamples for both counter attoand programs with
trees. (4) We have implemented our techniques on top of tisérexframework ofAb-
stract Regular Tree Model Checkingur tool can handle examples of tree manipulating
programs that, to the best of our knowledge, are not handleshp existing tool.

Related Work. The area of research on automated verification of progranmipma
lating dynamic linked data structures is recently quite.lVarious approaches to veri-
fication of such programs differing in their principles, degof automation, generality,
and scalability have been proposed. They are based ommigadic second order logic
[21], 3-valued predicate logic with transitive closure [2eparation logic [22,17], or
finite automata [16, 6].

With few exceptions, all existing verification methods feograms with recursive
data structures tackle verification of safety propertiag1], 25], specialised ranking
functions over the number of nodes reachable from pointéalvizs are used to verify
termination of programs manipulating linked lists. Teration of programs manipulat-
ing lists has further been considered in [17, 4] using caists on the lengths of the
list segments not having internal nodes pointed from oatsid the best of our knowl-
edge, automated checking of termination of programs méetipg trees has so-far
been considered in [20] only, where the Deutsch-SchortéNese traversal algorithm

4 If the analyser used returns a spurious lasso-shaped cexateple for the termination of the
CA, we suggest choosing another tool.
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was proved to terminate using a manually created progresitonoencoded in first-
order logic.

In the past several years, a number of industrial-scalevaoétmodel checkers such
as SLAM [2], BLAST [19], or MAGIC [9] were built using the CEGR approach [10].
However, these tools consider verification of safety progsionly. On what concerns
termination, CEGAR was applied in [12, 13], and implemeritethe TERMINATOR
[14] and ARMC [23] tools. Both of these tools are designed rtavp termination of
integer programs without recursive data structures.

Concerning termination of programs with recursive datacstires, the available
termination checkers for integer programs can be psedidedthat there is a suitable
abstraction of such programs into programs over integers,dounter automata. Such
abstraction can be obtained by recording some numericehctaaistics of the heap in
the counters, while keeping the qualitative propertieseflieap in the control of the
CA. Indeed, this is the approach taken in [4] for checkingiieation of programs over
singly-linked lists. The abstraction used in [4] is basedompacting each list segment
into a single abstract node and recording its length in thentars of the generated
CA. The number of abstract heap graphs that one obtains tysisvfinite (modulo
the absence of garbage)—therefore they can be encodeddoritrel of the CA. The
translation produces a CA thatliésimilar to the original program, and therefore any
(positive or negative) result obtained by analysing the ©Rl& for the program.

However, in the case of programs over trees, one cannot esedh of [4] to obtain
a bisimilar CA since the number of branching nodes in a tremiunded. Therefore,
the translation to CA that we propose here loses some intiwmabout the behaviour
of the program, i.e., the semantics of the CA overapproxésitie semantics of the
original program. Then, if a spurious non-termination deuexample is detected over
the generated CA, the translation is to be refined. This neféme is done by a spe-
cialised CEGAR loop that considers also structural infdrameabout the heaps. To the
best of our knowledge, no such CEGAR loop was proposed befahe literature.

As said already above, the approach of [17] is similar to p4iHat it tracks the
length of the list segments. However, it does not generat& ai@ulating the original
program. Instead, it first obtains invariants of the progfaring separation logic) and
then computes the so-called variance relations that saytimvariants change within
each loop when the loop is fired once more. When the computéshea relations are
well-founded, termination of the program is guaranteedilkédrthe approach of [4]
(bisimulation preserving) and the approach we present fierged on CEGAR), the
analysis of [17] fails if the initial abstraction is not piee enough.

The approach of [17] was recently generalised in [3] to a gdrfeamework that
one can use to extend existing invariance analyses to war@malyses that can in turn
be used for checking termination. Up to now, this framewa& hot been instantiated
for programs with trees (by providing the appropriate measand their abstract se-
mantics). Moreover, it is not clear how the variance analfisimework fits with the
CEGAR approach.

2 Preliminaries

Programs with Trees. We consider sequential, non-recursive C-like program&ingr
over tree-shaped data structures with a finite set of poursteablesPVar. Each node
in a tree contains a data value from a finite Bata and three next pointers, denoted
left ,right , andup.® Forx,y e PVarandd € Data, we allow the following statements:

5 A generalisation of our approach to trees with another asistraightforward.
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(1) assignments = null, x =Yy, X=Yy.{left|right|up}, x.data = d, (2) conditional
statements and loops based on the tests- null, Xx ==Y, x.data == d, and (3) the
standard left and right tree rotations [15] (cf. Figure B)isIsyntax covers a large set of
practical tree-manipulating procedures. For technicatoes, we require w.l.o.g. that
no statements take the control back to the initial line

Memory configurations of the considered programs can besepted as trees with
nodes labelled by elements of the get= Data x 2°V&'U {O}—a node is either null
and represented by or it contains a data value and a set of pointer variablestipgin
to it. Each pointer variable can point to at most one tree fddeis null, it does not
appear in the tree). Let (¢) be the set of all such trees ahdbthe set of all program
lines. A configuration of a program is a péirt) € Labx 7 (¢). For space reasons, the
semantics of the program statements considered is givd8]n [

Some program statements may influence the counters of then&Awe build to
simulate programs in several different ways. For instaafer x = x.1eft, the dis-
tance ofx from the root may increase by one, but it may also become uretefivhich
we represent by the special valudl) if x.1eft is null. Similarly, a single rotation
statement may change the distance of a node pointed by satabledrom the root in
several different ways according to where the node is laciate particular input tree.
For technical reasons related to our abstraction refinesw@me, we need a one-to-
one mapping between actions of a program and the countepoiations simulating
them. In order to ensure the existence of such a mapping, eenggse each program
statement into severalstructions The semantics of a statement is the union of the se-
mantics of its composing instructions, and exactly oneision is always executable
in each program configuration.

In particular, the assignments=null andx =y are instructions. Conditional state-
ments of the fornx == null andx ==y are decomposed into two instructions each,
corresponding to their true and false branches. A conditistatement.data ==d is
decomposed into three instructions, corresponding toutsand false branches, and an
error branch for the case==null. Each statement=y.1eft is decomposed into in-
structionggoLeftNull(X,y) for the case whepleft ==null, goLeftNonNull(X,y)
for the case/.left! = null, andgoLeftErr(X,Y) for the case of a null pointer deref-
erence. The statements- y.right andx = y.up are treated in a similar way. The state-
mentsx.data = d are decomposed into a set of instructi@hsngeData(x,d’,d) for
all d’ € Data. A special instructiorhangeDataErr(x) for the null pointer dereference
is also introduced.

Finally, a left rotation on a node
pointed by a variablex € PVar is de-
composed into a set of instructions
leftRotate(x,X,Y,A B) where X con-
tains variables aliased tw, Y variables
pointing to the right son of, A variables
pointing inside the left subtree af andB
variables pointing into the right subtree o ,
the right son o (Figure 1). The instruc-  F19- 1. leftRotate(X,X,Y,A B)
tion leftRotateErr(X) is introduced for the case of a null dereference within the
rotation. Right rotations are decomposed analogously.

Given a progranP, we denote byinstr the set of instructions that appear fh

and by (l,t) '—P> (I',t") the fact thatP has a transition frondl,t) to (I’,t’) caused by
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firing an instruction € Instr. By i(t) we denote the effect ofon a treet € 7 (¢). We
denote by, the unionU;cnstr '?, and by% the reflexive and transitive closure gf.

Fori e Instrandl C 7(¢), let post(i,l) = {i(t) | t € |}. We also generalispost to
sequences of instructions.

Counter Automata. For an arithmetic formula, let FV(¢) denote the set of free
variables ofp. For a set of variableX, let ®(X) denote the set of arithmetic formulae
with free variables fronX U X’ whereX’ = {X | xe X}. If v: X — Z is an assignment
of FV(¢) C X, we denote by = ¢ the fact thav is a satisfying assignment ¢f

A counter automaton (CA) is a tuple= (X,Q,qo, §o, —) whereX is the set of
countersQ is a finite set of control locations)p € Q is a designated initial location,
do is an arithmetic formula such thBY (o) C X, describing the initial assignments of
the counters, and-€ Q x ®(X) x Qs the set of transition rules.

A configuration of a CA is a paifg,v) € Q x (X — Z). The set of all configurations

is denoted by. The transition relatioR>C € x € is defined by(q, V) % (d,Vv) iffthere
exists a transitior LA d such that ifo is an assignment dfV (¢), whereo(x) = v(x)

ando(X) = V'(x), we have that = ¢ andv(x) = V/(x) for all variablesx with X' &
FV(¢). We denote by, the unionUycq 4, and by%» the reflexive and transitive clo-

sure of. A run of Ais a sequence of configuratiofg, Vo), (d1,V1), (g2, V2) ... such
that (g, vi) = (0i+1,Vit1) for eachi > 0 andvg = ¢o. We denote byra the set of all
configurations reachable By i.e., %4 = {(q,v) | (do, Vo) % (g,v) for somevg = ¢o}-

3 The Termination Analysis Loop

Our termination analysis procedure based on abstractimeneent is depicted in Fig. 2.
We start with the control flow graph (CFG) of the given programnd use ARTMC to
generate invariants for its control points. Then, the CF@otated with the invariants
(an abstract CFG, see Section 4) is converted into & @hich is checked for termina-
tion using an existing tool (e.g., [23]). If the CA is provedterminate, termination of
the program is proved too. Otherwise, the termination a®alputputs a lasso-shaped
counterexample. We check whether this counterexamplalsrrehe CA—if not, we
suggest the use of another CA termination checker (for tyrewve skip this in Fig. 2).
If the counterexample is real on the CA, it is translated battka sequence of program
instructions and analysed for spuriousness on the prodfaime counterexample is
found to be real even there, the procedure reports non+tatian. Otherwise, the pro-
gram CFG is refined by splitting some of its nodes (actudily dets of program config-
urations associated with certain control locations), &ieddop is reiterated. Moreover,
ARTMC may also be re-run to refine the invariants used (adlprikscussed in Sec-
tion 6).

If our termination analysis stops with either a positive oregative answer, the an-
swer is exact. However, we do not guarantee terminationfpoéthese cases. Indeed,
this is the best we can achieve as the problem we handle igoatsively enumerable
even when destructive updates (i.e., tree rotations) arallwved. This can be proved
by a reduction from the complement of the halting problen2@ounter automata.

6 The use of invariants in the abstract CFGs allows us to renmpessible transitions and
therefore improves the accuracy of the translation to CA.
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Program Translation Counter Termination Check es Report "termination”
with trees Automaton
l no

Lasso-shaped

ARTMC counterexample
ontre ‘w/ puCr;:J:cskness no Report "non-termination

Fig. 2. The proposed abstract-check-refine loop

Theorem 1. The problem whether a program with trees without destrectipdates
terminates on any input tree is not recursively enumerable.

Therefore we do not further discuss termination guararfteesur analysis proce-
dure in this paper, and postpone the research on potentisipguarantees, in some
restricted cases, for the future. However, despite therétieal limits, the experimental
results reported in Section 7 indicate a practical usefidé our approach.

ARTMC. We useabstract regular tree model checking overapproximate the sets of
configurations reachable at each line of a program (i.e ghopuiteabstract invariants
for these lines) and also to check that the prografress of basic memory inconsisten-
cieslike null pointer dereferences. Due to space limitations,omly give a very brief
overview of ARTMC here—more details can be foundin [6, 18jeTdeais to represent
each program configuration as a tree over a finite alphalmtiaesets of such configu-
rations by finite tree automata, and program instructiorgpasations on tree automata.
Starting from a regular set of initial configurations, theperations are then iteratively
applied until a fixpoint is reached. In order to make the cotation stop, the sets of
reachable configurations (i.e., finite tree automata) astratted at each step. Several
abstraction schemes based on collapsing states of the rdeced tree automata may
be used. For example, tHimite-height abstractiortollapses the automata states that
accept exactly the same trees up to some height. All theaattistns are finite-range,
guaranteeing termination of the abstract fixpoint computatind can be automatically
refined (e.g., in the mentioned case, by increasing theaatitn height).

For the needs of ARTMC, we encode configurations of the censdprograms
simply as trees over the alphalet= Datax 2°Va'u {O}. Most of the instructions can
be encoded as structure-preserving tree transducersngdinaer can check conditions
like x ==y or x.data == d by checking node labels. Transducers can also be used
to move symbols representing the variables to nodes markexbine other variable
(x =1y), remove a symbol representing a variable from the tree ull ), move it
one level up or downq=y.{left |right |up}), or change the data element in the node
marked by some variablec.flata = d). The rotations are a bit more complex. They
cannot be implemented as tree transducers. However, timestilebe implemented as
special operations on tree automata. First, a test of theahpbsitioning of the vari-
ables in the tree required by their distribution in the s€t¥,A B is implemented as
an intersection with a tree automaton that remembers wlsidhhles were seen, and in
which branches. Then, we locate the automata states thegitebe tree node represent-
ing the root of the rotation (cf. Figure 1), their childremdatheir right grandchildren.
Finally, we reconnect these states in the automaton costinadture in order to match
the semantics of the tree rotations.



4 Abstraction of Programs with Trees into Counter Automata

In this section, we provide a translation from tree manipataprograms to counter
automata such that existing techniques for proving tertiinaf counter automata can
be used to prove termination of the programs. Before ddésgrithe translation, we
define the simulation notion that we will use to formalisereotness of the translation.
Let P be a program with a set of instructiohmsstr, an initial labellp € Lab, a set of
input treedo C 7 (¢), and a set of reachable configuratiagsC Labx 7 (¢). Let us
also have a counter automatdn- (X, Q,qo, do, —) with —€ Q x ®(X) x Q, and a set
of reachable configuratioma. A functionM : X x 7 (¢) — Z is said to be aneasure
assigning counters integer values for a particular'treet M (t) = {M(x,t) | x € X}.

Definition 1. The program P is simulated by the counter automaton A w.r.t.X{vk
7(c) — Z and® : Instr — @ iff there exists a relation~ C ®p x Ra such that
(1) Vo € lo: M(to) = do A (lo,to) ~ (do,M(to)) and (2)¥(I1,ta), (I2,t2) € Rp Vi €
Instr V(q;,vl) € Ra: (I1,t1) L (I2,t2) A (I1,t1) ~ (g1,v1) = 3(g2,V2) € Ra:

0
(01,V1) 22 (02, V2) A (I2,t2) ~ (0,V2).

The measur&! ensures that the counters are initially correctly intelgniever the
input trees, wherea8 ensures that the counters are updated in accordance with the
manipulations done on the trees. Simulation in the sensebihifion 1 guarantees that
if we prove termination of the CA, the program will terminate anyt € .

4.1 Abstract Control Flow Graphs

According to Figure 2, we construct the CA simulating a paogrin two steps: we
first construct the so-callegbstract control flow grapffACFG) of a program, and then
translate it into a CA. Initially, the ACFG of a program is cpuated from its CFG by
decorating its nodes with ARTMC-overapproximated setsooffigurations reachable
at each line (we keep the initial set of trees exact explgitire fact that w.l.0.g. there are
no statements leading back to the initial line). These dketw as to exclude impossible
(not fireable) transitions from the ACFG and thus derive aeveact CA. Further, in
subsequent refinement iterations, infeasible terminatiamterexamples are excluded
by splitting these sets (if this appears to be insufficieetrgsrun ARTMC to compute a
better overapproximation of the reachable sets of configuns). Below, we first define
the notion of ACFG, then we provide its translation to couaigomata.

In what follows, letP be a program with instructionsistr, working on trees from
7 (c), and letlg € Labbe the initial line ofP. Thecontrol flow graph(CFG) ofP is a la-

belled graphF = (Instr,Lab,lg,=) wherel = |’ denotes the presence of an instruction
i between control locatiorisl’ € Lab. We further suppose that the input tree configura-
tions for P are described by the user as a (regular) set of tke€sz (¢ ). An abstract
control flow graph(ACFG) for P is then a grapl& = (Instr, LI, {lp, lp),—) whereLl

is afinite subset ofLab x 27(€), (I, lo) € LI, and there is an edgg, 1) —— (I,1') iff

| & 1”in the CFG ofP andpost(i,1) N1’ # 0.

7 Intuitively, certain counters will measure, e.g., thealiste of a certain node from the root, the
size of the subtree below it, etc.



Note that since we work with ACFGs annotated with regulas sétonfigurations
and since we can implement the effect of each instruction mgalar set as an opera-
tion on tree automata, we can effectively check thast(i,|) N1’ # 0, which is needed
for computing the edges of ACFGs. Note also that a locatiof inay correspond to
more than one locations i@.

We say that covers the invariants of ®hose set of reachable stategjsiff each
treet € 7 (¢) that is reachable at a program lihe Lab (i.e., (I,t) € ®p), appears in
some of the sets of program configurations associated witthe locations ofs. For-
mally, vl € Lab: e N ({1} x 7 (¢)) C {I} x Uy 1yeus I The following lemma captures
the relation between the semantics of a program and that ACHG.

Lemma 1. Let P be a program with trees and G an ACFG that covers the ians of
P. Then, the semantics of G simulates that of P in the clalssicese.

4.2 Translation to Counter Automata

We now describe the construction of a @¢(G) = (X, Q, o, do, —) from an ACFG
G = (Instr,LI,(lo,lo),—) of a progranP such tha#sc(G) simulates? in the sense of
Def. 1. We consider two sorts of counters, i.¥.= Xpyar U Xpata, Where Xpyar =
{rx | xe PVar} U {sc| xe€ PVar} andXpata = {Cq | d € Data}. The role of these coun-
ters is formalised via a measubsc : X x 7 (¢) — Z in [18]. Intuitively, Mysc(rx,t)
andMysc(sx,t) record the distance from the root of the nadpointed to byx and the
size of the subtree below respectively, ansc(cq,t) gives the number of nodes with
datad in a treet € 7(¢).

We build Arsc(G) from G by simply replacing the instructions on edges3y op-
erations on counters. Formally, this is done by the traiasldtinctiond,sc defined in Ta-
ble 1. The mapping for the instructiors= y.right andrightRotate(x, X,Y,A,B) is
skipped in Table 1 asitis analogousto thatefy.left andleftRotate(X, X,Y, A B),
respectively. Also, for brevity, we skip the instructiomsatling to the error statéerr.
As a convention, if the future value of a counter is not exghjiddefined, we con-
sider that the future value stays the same as the curreng.vilareover, in all for-
mulae, we assume an implicit guard < ry < TreeHeightA —1 < s, < TreeSizdor
eachx € PVar® and 0< ¢q < TreeSizeA S qcpaaCd = TreeSizeor eachd € Data
TreeHeightandTreeSizare parameters restricting the range in which the other-coun
ters can change according to a given input tree. They areedessia basis on which

termination of the resulting automaton can be shown.

Next, we definegQ = LI, go = (lp, lo), andq BreclD), q iff g LR g for alli € Instr.

The initial constraintho on the chosen counters can be automatically computech
the regular set of input treég such that it satisfies requirement (1) of Definition 1. The
following theorem shows the needed simulation relatiomveehn the counter automata
we construct and the programs.

Theorem 2. Given a program P and an ACFG G of P covering its invariants, @A
Arsc(G) simulates P in the sense of Definition 1 vige and M.

8 _1 corresponds t& being null.

9 This can be done by computing the Parikh image of a contertiinguage (lo) correspond-
ing to the regular tree languagdg For each tre¢ € g there is a word irnc (lp) consisting of
all nodes ot. We use special symbols to denote the position of a node itrekeelative to a
given variable (under the variable, between it and the raad)the data values of nodes.
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Table 1. The mapping,sc from program instructions to counter manipulations

| instructioni | counter manipulatioBsc(i) |
if(Xx==null) rx=-1
if(x! =null) rx>0
if(x==yY) X=IyA%=S
if(x =y) true
if(x.data==d) rx>0ACg>1
if(x.datal =d) rx > 0ACq < TreeSize
X=null rf=g=-1
X=y rh=ryAS=s
goLeftNull(X,y) ry>0As, > 1Ar; =5 =—1
goLeftNonNull(X,y) ry>0AS > 2AT =1y +1AS <S
goUpNull(X,y) ry=0As, > 1Ar;=5=—-1
goUpNonNull(X,y) ry>1As > 1A =ry—1AS >S5
changeData(x,d,d) ry >0ASc>1Acyg >0
changeData(X,d1,dp),d1 # dp|rx > 0AS > 1ACq > 0ACy =Cy, +1ACH =Cy —1
leftRotate(x, X,Y,A,B) |gLeftRotatéx,X,Y,A B)AalLeftRotatéx, X,Y,A B)

gLeftRotatéx, X,Y,A B) = aleftRotatéx, X,Y,A B) =
rk >0A>2A
(WeX:iry=rx A sy =) A (WeX:iri=ry+1 A8, <s)A

(WVeYiry=ry+1A sy <SA (WeY:ir,=ry—1Ag>s)A
rv=ry A Sy=S/) A

(WeAry>rk+1A s <) A (WeAir,=ry+1AS,=s)A

(WEB:ry>rx+2 A sy <sx—1) (WweB:r,=ry—1A8=5%)

The generated CA\sc(G) has the property that each transitiqnﬂ g can be
mapped back into the program instruction from which it aréges. This is because the
instructions onto which we decompose each program statemnerassigned different
formulae, by the translation functidhjsc, and there is at most one statement between
each two control locations of the program. Formally, we aepthis by a function

£:Qx ®xQ— Instrsuch thavgy,gp € Q0 € @:q > q = g H0b ) q. We gen-

eraliseBrsc and¢ to sequences of transitions, i.e., for a patin Arsc, &(17) denotes the
sequence of program instructions leadingg@nd®,s¢(¢ (1)) denotes the sequence of
counter operations onobtained by projecting out the control locations from

5 Checking Spuriousness of Counterexamples

Since the CAAsc generated from a prografwith trees is a simulation d? (cf. Theo-
rem 2), proving termination ofs¢ suffices to prove termination &. However, ifA;sc
is not proved to terminate by the termination checker of obahere are three possibil-
ities: (1) Arsc terminates, but the chosen termination checker did not firgraination
argument, (2) bott\sc as well asP do not terminate, and (3 terminates, buf\sc
does not, as a consequence of the abstraction used in itswain. In all cases, the
CA termination checker outputs a counterexample congistita finite path (stem) that
leads to a cycle, both paths forming a lasso. Formally, @I84sover the control struc-
ture of a CAAc is said to bespuriousiff there exists a non-terminating run éfsc
alongS.L, and for na € Ig doesP have an infinite run along the pagS).&(L).

The three cases are dealt with in the upcoming paragraphs.

Deciding termination of CA lassos.We first show that termination of a given control
loop is decidable in a CA whose transition relations are wactjions of difference con-
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straints, i.e. formulae of the fornxs-y < ¢, X —y<c,x—y <c, orx —y < cwherex
denotes the future value of the counteandc € Z is an arbitrary integer constant. For
this type of CA, the composed transition relation of the gieentrol loop is also ex-
pressible as a conjunction of difference constraints. Ttiea relation can be encoded
as a constraint graph G such that the control loop terminfit€scontains a negative
cycle (for details see [18]). Using the results of [11, 7]stfact can be encoded as a
Presburger formula and hence decided. At the same time;lias that the CA gener-
ated via the translation functidis fall into the described class of CA. In particular,
the constraint that each counter is bounded from below-byand from above by the
TreeHeightor TreeSizgparameters is expressible using difference constréints.

Theorem 3. Let A= (X, Q, do, $o, —) be a counter automaton with transition relations
given as difference constraints. Then, given a control lwop, the problem whether
there exists an infinite computation along the loop is deaiela

Checking termination of program lassos.Due to the above result, we may hence-
forth assume that the lasSL returned by the termination analyser has a real non-
terminating run in the CA. The lasso is mapped back into a esecgi of program in-
structions (S).&(L) forming a program lasso. Two cases may arise: either the lass
real on the program or it is spurious.

Non-spurious program lassoSince we do not consider dynamic allocation, the number
of configurations that a program can reach from any inputitéiaite. Consequently,

if there is a tred,, from which the program will have an infinite run along a given
lasso, then we can discover it by an exhaustive enumerafitnees. We handle the
discovery oft, by evaluating the lasso for all trees of up to a certain (iasiegly
growing) height at the same time (by encoding them as re¢rdladanguage and using
the implementation of program instructions over tree aati@nthat we have). As we
work with finite sets of trees, we are bound to visit the samewiee after a finite
number of iterations, if there exists a non-terminatingallong the lasso.

Spurious program lasso$Ve handle this case also by a symbolic iteration of a given
program lass@.A starting with the initial set of trees. We compute iterdiivhe sets
posl(o.)\k, lo),k=1,2,.... In the case of lassos without destructive updates, this com
putation is shown to reach the empty set after a number ettiters that is bounded by

a double exponential in the length of the lasso (cf. Sectidn. 3n the case of lassos
with destructive updates, we can guarantee terminatioheitération with the empty
set provided there exists some @@ (albeit unknown) keeping track of the particular
tree measures we consider here (formalised via the furethibg and6;sc in Section
4.2) that simulates the given program and that termifates. Section 5.2). In the
latter case, even though we cannot guarantee the discof/éyy, e can at least en-
sure that the sequeng@st(a.\X, 1), k= 1,2,... terminates with the empty set. This
gives us a basis for refining the current ACFG such that weideff the spurious lasso
encountered, and we can go on in the search for a CA showingtimnation of the
given program.

10 To encode conditions of the form< ¢ we add a new variable initially set to zero, with the
conditionZ = z appended to each transition, and rewrite the original ¢mmmdasx —z < c.

11 We can relax this condition by saying th&f does not have any infinite run, not corresponding
to a run of the program. For the sake of clarity, we have chtsefirst stronger condition.
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5.1 Deciding Spuriousness of Lassos without Destructive dptes

In this section, we show that the spuriousness problem favendasso in a program
with trees is decidable, if the lasso does not contain detsiriupdating instructions,
i.e., tree rotations. The argument for decidability is tifdhere exists a non-terminating
run along the loop, then there exists also a non-terminatingstarting from a tree of
size bounded by a constant depending on the program. Thars, élxists a tree within
this bound that will be visited infinitely many oftéA.

Given a loop without destructive updates, we first build astraetion of it by re-
placing thego{Left|Right|Up}Null(x,y) instructions byx = null, and by eliminat-
ing all changeData(X,ds,d) instructions and the tests. Clearly, if the original loog ha
a non-terminating computation, then its abstraction wibahave a non-terminating
run starting with the same tree. The loop is then encoded @serative linear transfor-
mation which, for each pointer variabte= PVar, has a countepy encoding the binary
position of the pointer in the current tree using 0/1 as tffi¢right directions. Addi-
tionally, the most significant bit of the encoding is reqdite be always one, which
allows for differentiating between, e.g., the position @toded by 3= (1001),, and
0001 encoded by 17 (10001),. Null pointers are encoded by the value 0. The program
instructions are translated into counter operations davst

X=null:px=0 X=Y:pPx=py goLeftNonNull(X,y) : px = 2% Py
goRightNonNull(X,y) : px = 2x py+1 goUpNonNull(X,y) : Ppx= 3Py

where & and% denote the integer functions of multiplication+- 2x) and division
(x — x/2). Assuming that we have pointer variables, each program instruction is
modelled by a linear transformation of the foph= Ap + B whereA is ann x n matrix
with at most one non-null element, which is eithe? br%, andB is ann-column vector

with at most one 1 and the rest0 The composition of the instructions on the loop is
also a linear transformation, except tiahas at most one non-null element on each
line, which is eitherr, or a composition of £s and%’s.

SinceA has at most one non-null element on each line, one can exnautx
m matrix Ag for somem < n that has exactly one non-null element on each line and
column. Our proof is based on the fact that there exists samstantk bounded by
0(3™) such thatAg* is a diagonal matrix. Intuitively, this means that the piositof
each pointer at stejp+ k is given by a linear function of the position of the pointer at
i. ThenA' is an exponential function af As there is no dynamic allocation of nodes
in the tree, the non-termination hypothesis implies thatgbsitions of pointers have to
stay in-between bounds. But this is only possible if the elets of the main diagonal of
AoX are eitherr or compositions of the same number @fa?nd%. Intuitively, this means
that all pointers are confined to move inside bounded regibtiee working tree.

Theorem 4. Let P be a program over trees, PVar and Data be its sets of poirari-
ables and data elements,= Datax 2°V&u {0}, Io C 7 (¢) be an initial set of trees,
anda.\ be a lasso of P. Then, if P has an infinite run along the pa#t® for some
to € lo, then there exists a tregote 7 (¢) of height bounded bj|PVar| +1) - (|o] +

|A| - 3IPVarl) such that P, started withyg, has an infinite run along the same path.

12 Since there is no dynamic allocation, all trees visitedtistarwith a tree of sizek will also
have sizek. Hence each run of the program will either stop, or re-visé same program
configuration after a bounded number of steps.

13 We interpret the matrix operations over the semiring ofgatefunctions(N — N, +,0,0, 1),
whereo is functional composition and is the identity function.

11



Decidability of spuriousness is an immediate consequehti@istheorem. Also,
there is a bound on the number of symbolic unfoldings of aisparasso starting with
the initial set of trees.

Corollary 1. Let P be a program over trees, PVar and Data its sets of powvaéables
and data elements; = Datax 2PVa'u {0}, and b C 7 (¢) an initial set of trees.
Given a lasso & in the CA Asc(G) built from an ACFG G of P, let = &(S) andA =

&(L). Then, ifo.A does not contain destructive updates, its spuriousnessdildble.

f . . PVar|+1): Al-3IPVarl
Moreover, if the lasso is spurious, for alk [A| - max(2, | Data][)2! ™" (70

we have posgo.\X,lg) = 0.

Despite the double exponential bound, experimental ecielésee Section 7) shows
that the number of unfoldings necessary to eliminate a spafasso is fairly small.

5.2 Analysing Lassos with Destructive Updates

Theorem 5 stated below shows that spuriousness of a lassodhiains destructive
updates, i.e., tree rotations, is decidable if there egigtsminatingCA A, not neces-
sarily known to us, simulating the program witsc andM,sc. That is, if there exists a
termination argument for the program based on the tree messte use, then we can
prove spuriousness of the lasso by a symbolic iterationeofrtitial set.

Theorem 5. Let P be a program with an ACFG G and le. Se a spurious lasso in
Arsc(G). If there exists a CA fpthat simulates P wriB;sc and Msc and that terminates
on all inputs, then there existskN such that posg (S).&(L)%,1o) = 0.

Indeed, imagine that for aryc N there is an input treg € Io for which&(S).&(L)'
is fireable. Then, the CA\,, having a finite-control, and simulatirigyhas to contain
a lasso with a ster§.L™ and a loopL" for someny,n; € N (i.e., a possibly partially
unfold SL). However, as the set of initial counter valuationsfgfmust include the
one of Ais¢(G) (as that is the smallest possible Wi;sc), this means tha#, has a
non-terminating run also, which is a contradiction.

6 Abstraction Refinement

Let P be a programG = (Instr, LI, (lp, lp),—) be an ACFG o, andA;s¢(G) be the
CA obtained by the translation described in Section 4.3 kthe a spurious lasso, i.e.,
a path over whicl\sc(G) has an infinite run, whil® does not have an infinite run over
the corresponding program patth whereo = §(S) andA = g(L). Then, we produce
anew ACFGGs_ of P such thats¢(Gs) will not exhibit any lasso-shaped path with
a stem labelled with the sequence of counter operaipnso).6sc(A)P and a loop
labelled with6,s¢(A)? for any p,q > 0. Provided that the spuriousness of the lI88&0
is detected using either Corollary 1 or Theorem 5, we knowttiere existk > 0 such
that post(o.)\',lo) =0 for all | > k. To build the refined ACFG5s,, we use the sets
post(a.A',lp), 0 <i < k, computed in the spuriousness analysiS.af(cf. Section 5).
We refineG into Gg by splitting some of its locationgl;, ;) € LI into several
locations of the form(l;, l;j), and by recomputing the edges according to the defini-
tion of ACFG (cf. Section 4.1). Intuitively, the selg form a partition ofl; such that
lij will contain all trees froml; that are visited inat most jiterations of the loop.
As we prove in [18], since we keep apart the sets of trees faclwtihe lasso may
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be iterated a different number of time%sc(Gs) will not contain lassos of the form
Brsc(0).Brsc(A)P. (Brsc(M)9)* for any p,q > 0.

Due to the fact that our verification problem is notr.e. (dfebrem 1), the Abstract-
Check-Refine loop might diverge. One situation in which d@s happen is when, at
each refinement step, a certain line invariaig split such that one of the parts, dgy
is finite (e.g., it contains only trees up to some height). sy, to exclude a spurious
counterexample, it might be the case thaias to be split into infinite sets according
to some more general property (e.g., the same number of gdblank nodes}? In
such situations, we use a heurisiitceleratiormethod consisting in applying the finite
height abstraction of ARTMC (cf. Section 3) to split the line invariants. That &part
from splitting I; wrt. the setgost(c.A', lp), we split wrt. the setsi(post(c.A', lg)) too.

In Section 7, we report on an example in which the accelerat@tement based on the
finite height abstraction was successfully used to makerialysis converge.

Another problem that may occur is that the invariants corgity ARTMC may
not be precise enough for proving termination of the givesgpam. That is why after
a predefined number of steps of refining ACFGs by splittingrepeat ARTMC with a
more precise abstractiofe.g., we increase the abstraction height). We re-run ARTMC
on the underlying CFG of the last computed ACB&nd restrict the computed reach-
ability sets to the sets appearing in the location&ah order to preserve the effect of
the refinement steps done so far. Due to the space restactimnprovide a detailed
description of these issues in [18].

7 Implementation and Experimental Results

To demonstrate the applicability of our approach, we teist@aseveral real procedures
manipulating trees. We restricted the ARTMC tool from [6piaary trees with parent
pointers and added support for tree rotations, insteadinfjugeneral purpose destruc-
tive updates. The absence of null pointer dereferences aréged fully automatically.
Termination of the generated CA was checked using the ARMC[23].

We first considered the following set of case studies (foremetails see [18]):
(1) a non-recursivdepth-first tree traversal2) a procedure fosearching a data value
in a red-black treg15] (with the actual data abstracted away and all the coispas
done in a random way), and (3) the procedure tkeablances red-black trees after
inserting a new elemennising tree rotations [15]. In the latter two cases, the sitmft
trees was a regular overapproximation of all red-blackstigee abstracted away the
balancedness condition).

The results of the Table 2. Experimental Results
experiments that we

performed on a PCH Example |TARTMC||Q|Inv|TCA|Ncnt|NIoc|Ntr||
with a 1.4 GHz In- || Depth-firsttree traversal 43s | 67 {109 5 | 15|20
tel Xeon processor are RB-search 2s | 22 |1s| 3|8 |11
summarised in Table 2./|RB-rebalance after insertm 9s| 87 |36 7 | 44|66
The table contains the

ARTMC running times TarTMmc), the number of states of the largest invariant gener-
ated by ARTMC (Q|inv), the time spent by the ARMC tool to show terminatida/),

and the number of counter4), locations Noc), and transitionsN) of the CA.

14 A similar case is encountered in classical abstractioneafamt for checking safety properties.
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For the three above programs, it turned out to be possibleoegghe termination
without a need of refinement. In the third experiment, we daven remove check-
ing of the condition of the red-black trees (a red node hayg bldck sons), leading
to smaller verification times, with less precise invariamthich were, however, still
precise enough for the termination proof.

To test our refinement procedure, we appligshol odd = false;
it on another case study where the initial invaricf (list ! = null) then
ants were not sufficient to prove termination. In yhile (true) do
particular, we considered the procedure in Fig-  x = list;
ure 3 that marks the elements of a singly-linked  ynhile (x! = null) do

list as even or odd, depending on whether their x.data = odd:
distance to the end of the list is even or odd. As odd= not(odd);
the procedure does not know the length of the list X = X.next;

and cannot use back-pointers, it tries to markthe g

first element as even, and at the end of the list, it ¢ (not(odd)) then break;
checks whether the last element was marked as,q

odd. If this is true, the marking is correct, other-

wise the marking has to be reversed. Fig.3. A procedure marking ele-

For this procedure, even if one builds the CAnents of a list as odd or even from
starting with the exact line invariants, terminatiothe end of the list
cannot be established. To establish termination,
one has to separate configurations where the procedure ksngahne list in a correct
way from those where the marking is incorrect. Then, therdotep of the procedure
will not appear in the CA at all since, in fact, it can be firedvaist twice: once when
the initial guess is correct and twice otherwise. The chgkeis to recognise this fact
automatically.

We managed to verify termination of the procedure on anrayitinput list after
excluding 9 spurious lassos (in 2 cases, the refinement wateaated by the use of the
finite-height abstraction on thg sets that resulted from splitting line invariants when
excluding certain spurious lassos).

8 Conclusion

We addressed the problem of proving termination of a sigaificlass of tree manip-
ulating programs. We provide a counter-example guidedrattgdn refinement loop
based on the ARTMC framework and on exploiting the existimgkaon checking ter-
mination of counter automata. A number of results relatethéodecidability of the
spuriousness problem of lasso-shaped termination caxaemples were given. Our
method is not guaranteed to stop (as the problem is notlngt.Wwhen it stops, it pro-
vides a precise answer (both in the positive and negative cke method was exper-
imentally tested to be successful on several interestiagtigal programs.

Future work includes a more efficient implementation of aanfework as well as
its extension to more complex programs (like, e.g., prograsith unbounded dynamic
allocation and general destructive pointer updates). Weldvalso like to further in-
vestigate cases in which the universal termination prohtene. (and hence allowing
complete verification techniques).
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