
Model Checking

Bounded Prioritized Time Petri Nets

Bernard Berthomieu, Florent Peres, and François Vernadat

LAAS-CNRS, Université de Toulouse, Toulouse, France
fax: +33 (0)5.61.33.64.11 tel: +33 (0)5.61.33.63.63

e-mail:{Bernard.Berthomieu|Florent.Peres|Francois.Vernadat}@laas.fr

Abstract. In a companion paper [BPV06], we investigated the expres-
siveness of Time Petri Nets extended with Priorities and showed that it
is very close to that Timed Automata, in terms of weak timed bisimilar-
ity. As a continuation of this work we investigate here the applicability
of the available state space abstractions for Bounded Time Petri Nets to
Bounded Prioritized Time Petri Nets. We show in particular that a slight
extension of the “strong state classes” construction of [BV03] provides
a convenient state space abstraction for these nets, preserving mark-
ings, states, and LTL formulas. Interestingly, and conversely to Timed
Automata, the construction proposed does not require to compute poly-
hedra differences.

1 Introduction

Since their introduction in [Mer74], Time Petri nets (TPN for short) have been
widely used for the specification and verification of systems in which time plays
an essential role like communication protocols, hardware, or realtime systems.

TPNs extend Petri nets with temporal intervals associated with transitions,
specifying firing delay ranges for the transitions. Assuming transition t became
last enabled at time θ, and the end-points of its time interval are α and β, then
t cannot fire earlier than time θ + α and must fire no later than θ + β, unless
disabled by firing some other transition. Firing a transition takes no time.

Finite state space abstractions for bounded TPN ’s, preserving various classes
of properties, can be computed in terms of so-called state classes [BM83] [BD91]
[YR98] [BV03] [Had06]. State classes abstract sets of states by a marking and a
polyhedron capturing temporal information. The polyhedra can be represented
by difference systems, built and compared in polynomial time.

Though priorities are pervasive in some families of realtime systems, they are
not supported by the Time Petri Net models, and cannot be generally encoded
within. In a companion paper [BPV06] we proposed an extension of TPNs with
Priorities: in a Prioritized TPN (PrTPN for short) a transition is not allowed
to fire if some transition with higher priority is firable at the same instant. We
then proved that priorities strictly extend the expressiveness of Time Petri nets,
and in particular that Bounded PrTPNs can be considered equivalent to Timed
Automata, in terms of weak timed bisimularity.

As a continuation of this work, we investigate in this paper state space ab-
stractions for Bounded Prioritized Time Petri Nets. We first explain why the
classical ”state classes” construction of [BM83] is unable to cope with priorities.
Then, we show that a minor extension of the ”strong state classes” construction
of [BV03] (also called ”state zones” by some authors) is a suitable state space
abstraction, preserving the markings, states, and the formulas of linear time
temporal logics of the state space of PrTPNs. A refinement of this construction
also preserves the CTL properties of the state space. Interestingly, and con-
versely to the constructions proposed for model checking Prioritized Timed Au-
tomata [LHHC05], [DHLP06], the constructions required for PrTPNs preserve
convexity of state classes; they do not require to compute expensive polyhedra
differences.

The paper is organized as follows. Section 2 recalls the definition, semantics
and main properties of Prioritized Time Petri Nets. Section 3 discusses their state
space abstractions; not all available abstractions for TPNs can be extended to
cope with priorities. The modeling power of PrTPNs and the capabilities of the
proposed abstractions is illustrated in Section 4 by a simple scheduling example.
Finally, related work and some side-issues are discussed in Section 5.

2 Time Petri nets with priorities

2.1 Definition

Let I+ be the set of non empty real intervals with non negative rational end-
points. For i ∈ I+, ↓ i denotes its left end-point, and ↑ i its right end-point, or
∞ if i is unbounded. For any θ ∈ IR+, let i

�

– θ = {x − θ|x ∈ i ∧ x ≥ θ}.

Definition 1. [BPV06] A Prioritized Time Petri Net (PrTPN for short) is a
tuple 〈P,T,Pre,Post,≻, m0, Is〉 in which:

– 〈P,T,Pre,Post, m0〉 is a Petri net. P is the set of places, T is the set of
transitions, m0 is the initial marking, and Pre, Post : T → P → IN+ are
the precondition and postcondition functions, respectively.

– Is : T → I+ is the static interval function.
– ≻ is the priority relation, assumed irreflexive, asymmetric and transitive.

TPNs extend PNs with the static Interval function Is, PrTPNs extend
TPNs with the priority relation ≻ on transitions. Priorities will be represented
by directed arcs between transitions, the source transition having higher priority.

For f, g : P → N+, f ≥ g means (∀p ∈ P)(f(p) ≥ g(p)) and f{+|−}g maps
f(p){+|−}g(p) with every p. A marking is a function m : P → N+. A transition
t ∈ T is enabled at m iff m ≥ Pre(t).

Definition 2. A state of a TPN is a pair s = (m, I) in which m is a marking
and I is a function called the interval function. Function I : T → I+ associates
a temporal interval with every transition enabled at m.

The temporal components in states can be conveniently seen as firing do-
mains, rather than interval functions: The firing domain of state (m, I) is the
set of real vectors {φ|(∀k)(φ

k
∈I(k))}.

2.2 Semantics

Definition 3. The semantics of a PrTPN 〈P,T,Pre,Post,≻, m0, Is〉 is the
timed transition system 〈S, s0, 〉 where:

– S is the set of states (m, I) of the PrTPN
– s0 = (m0, I0) is the initial state, where m0 is the initial marking and I0 is

the static interval function Is restricted to the transitions enabled at m0.
– ⊆ S × T ∪ IR+ × S is the state transition relation, defined as follows

((s, a, s′) ∈ is written s
a
 s′):

• Discrete transitions: we have (m, I)
t
 (m′, I ′) iff t ∈ T and:

1) m ≥ Pre(t)
2) 0 ∈ I(t)
3) (∀t′ ∈ T)(m ≥ Pre(t) ∧ (t′ ≻ t) ⇒ 0 /∈ I(t′))
4) (∀k ∈ T)(m′ ≥ Pre(k) ⇒

I ′(k) = if k 6= t ∧ m − Pre(t) ≥ Pre(k) then I(k) else Is(k))

• Continuous transitions: we have (m, I)
θ
 (m, I ′) iff θ ∈ IR+ and:

5) (∀k ∈ T)(m ≥ Pre(k) ⇒ θ ≤↑ I(k))
6) (∀k ∈ T)(m ≥ Pre(k) ⇒ I ′(k) = I(k)

�

– θ)

Transition t may fire from (m, I) if t is enabled at m, firable instantly, and no
transition with higher priority satisfies these conditions. In the target state, the
transitions that remained enabled while t fired (t excluded) retain their intervals,
the others are associated with their static intervals. A continuous transition by
θ is possible iff θ is not larger than the right endpoint of any enabled transition.

This definition differs from that used for Time Petri nets [BPV06] by the
addition of condition (3), that prevents a transition to fire when some other
transition also firable instantly has higher priority. Note that priorities do not
modify the time-elapsing rules: all enabled transitions k are considered in con-
dition (5), whether or not t has priority over k.

The State Graph of a PrTPN is the timed transition system SG = (S, s0,).
From the properties of continuous transitions, any sequence of transitions of SG
ending with a discrete transition is equivalent to a sequence alternating delay
and discrete transitions, called a firing schedule or a time transition sequence.

Following [BM83], an alternative definition of the state space is often used for
TPNs, capturing only the states reachable by some firing schedule. It amounts
to interpret time-elapsing as nondeterminism. The Discrete State Graph of a
PrTPN is the triple DSG = (S, s0,→), with →⊆ S × T × S and:

s
t
→ s′ ⇔ (∃θ)(∃s′′)(s

θ
 s′′ ∧ s′′

t
 s′).

Any state of SG which is not in DSG is reachable from some state of DSG
by a continuous transition. Both the SG and DSG are dense graphs: states may
have uncountable numbers of successors.

A property of the state graphs of PrTPNs is worth to be mentioned: As in
TPNs, but conversely to Timed Automata, at least one of the enabled transitions
at a state is guaranteed to be firable after some delay. Time-elapsing may only
increase the number of firable transitions and temporal deadlocks cannot happen.

2.3 Properties

Boundedness: A PN is bounded if the marking of each place is bounded,
boundedness implies finiteness of the set of reachable markings. Boundedness
is undecidable for TPNs, and thus for PrTPNs, but there are a number of
decidable and convenient sufficient conditions for this property [BM83], [BV07].

Composability: Adding to their definition a labeling of transitions by actions,
a product operator can be defined for Prioritized Time Petri Nets. Under certain
restrictions, this product is compositional in the sense that the semantics of a
product of PrTPNs is equal to the product of their semantics [BPV06]. Com-
positional verification in presence of priorities has been investigated in length in
a more general framework in [GS03] and other works by these authors.

Expressiveness: It was shown in [BCH+05] that bounded TPNs are equivalent
to Timed automata (TAs for short) in terms of language acceptance, but that
TAs are strictly more expressive in terms of weak timed bisimilarity. Adding pri-
orities to TPNs preserves their expressiveness in terms of language acceptance,
but strictly increases their expressiveness in terms of weak timed bisimilarity:
it is shown in [BPV06] that any TA with invariants of the form ∧i(ki ≤ ci) is
weak time bisimilar to some bounded PrTPN , and conversely.

To illustrate this result, let us consider the TA and nets in the figure below.
As shown in [BCH+05], no TPN is weakly timed bisimilar with TA (a). In
particular, the TPN (b) is not: when at location q0 in the TA, time can elapse of
an arbitrary amount, while time cannot progress beyond 1 in TPN (b). Consider
now the PrTPN (c), in which t ≺ t′. Transition t′ is silent and is firable at any
time greater than 1, transition t bears label a and the default interval [0,∞[. t
may fire at any time not larger than 1, but not later, since t′ is then firable and
it has priority over t. Indeed, PrTPN (c) is weakly timed bisimilar with TA (a).

0q0

1q1

a, k <= 1

(a)

p0

t[0,1] a

p1

(b)

p0

p1

t'

]1,ω[p2

ta

(c)

3 State Space Abstractions for PrTPNs

The state graphs of PrTPNs are generally infinite, even when bounded. To
model check PrTPNs, one needs finite abstractions of their state graphs. If G is

some state space, A some abstraction of it, and f a logical formula of the family
one wish to preserve, then we must have G |= f iff A |= f . Traditionally, we will
focus on abstractions of the DSG rather than the SG.

For Time Petri nets, state space abstractions are available that preserve
markings (including deadlocks) [BV07], markings and all traces [BM83], [BD91],
states [BH06], states and traces [BV03], [Had06], and states, traces and branch-
ing properties [YR98], [BV03], [BH06]. We investigate in this section extensions
of these abstractions to Prioritized Time Petri Nets, when applicable.

3.1 Abstractions preserving markings and traces

Definition 4. For each firable sequence σ ∈ T∗, let Cσ be the set of states

inductively defined by: Cǫ ={s0} and Cσ.t ={s′|(∃s∈Cσ)(s
t

−→s′)}

Cσ the set of states reached in the discrete state graph by firing schedules
of support sequence σ. Each state of the DSG is in some Cσ. For each such set
Cσ, let M(Cσ) be the marking of any state in Cσ (all states in Cσ bear the
same marking), and F(Cσ) be the union of the firing domains of all states in
Cσ. Finally, let Cσ

∼= Cσ′ iff M(Cσ) = M(Cσ′) and F(Cσ) = F(Cσ′).
The classical state class construction of [BM83], [BD91], termed SCG in the

sequel, stems from the observation that, if Cσ
∼= Cσ′ , then any firing schedule

firable from some state in Cσ is firable from state in Cσ′ , and conversely. The
state classes of [BM83] denote the above sets Cσ, for all firable sequences σ,
considered modulo equivalence ∼=. The set of classes is equipped with a transition

relation: Cσ

t
−→ X ⇔ Cσ.t

∼= X , it is finite iff the net is bounded.
The SCG is a convenient abstraction for LTL model checking, it preserves

the markings and traces of the net. A weaker abstraction, only preserving mark-
ings, is obtained from the SCG by merging the classes related by inclusion of
their firing domains. Unfortunately, both these abstractions are too coarse to
preserve the effects of priorities. In fact, the founding observation that sets of
states equivalent by ∼= have same futures in terms of firing schedules simply does
not hold in presence of priorities, as illustrated by the following example.

p0

t0

[1,1]

t1

[0,1]

p1

t2

[0,0]

t3

[1,ω[p2

Firing t0 or t1 in the above net leads to the same SCG class. Now, because
t3 has higher priority than t2 and remains enabled while t0 or t1 fires, t2 can
never fire after t0, and may only fire after t1 if t1 fired earlier than time 1.

3.2 Abstractions preserving states and traces

The previous SCG construction considers the sets Cσ in Definition 4 mod-
ulo equivalence ∼=. In contrast, the strong state classes construction (SSCG
for short) proposed in [BV03], also called state zones by some authors, exactly
coincides with those sets Cσ. For building the SSCG, one first needs a canonical
representation for the sets Cσ, clock domains serve this purpose.

Clock domains: With each reachable state, one may associate a clock func-
tion γ. Function γ associates with each transition enabled at the state the time
elapsed since it was last enabled. Clock functions may also be seen as vectors γ
indexed over the transitions enabled.

In the SSCG construction, a class is represented by a marking and a clock
system, but classes still denote sets of states as in Definition 2 (defined from
interval functions). The set of states denoted by a marking m and a clock system
Q={Gγ ≤ g} is the set {(m, Φ(γ))|γ ∈ 〈Q〉}, where 〈Q〉 is the solution set of Q
and firing domain Φ(γ) is the solution set in φ of:

0 ≤ φ , e ≤ φ + γ ≤ l where e
k

= ↓Is(k) and l
k

= ↑Is(k)

Each clock vector denotes a state, but, unless the static intervals of all tran-
sitions are bounded, different clock vectors may denote the same state, and clock
systems with different solution sets (possibly an infinity) may denote the same
set of states. For this reason we introduce equivalence ≡:

Definition 5. Given c = (m, Q = {Gγ ≤ g}) and c′ = (m′, Q′ = {G′γ′ ≤ g′}),
let c ≡ c′ iff m = m′ and clock systems Q and Q′ denote the same sets of states.

Equivalence ≡ is clearly decidable, efficient methods for checking it are dis-
cussed e.g. in [BV03] and [Had06], relying upon some relaxations of clock sys-
tems. When the static intervals of all transitions are bounded, ≡ reduces to
equality of the solution sets of the clock systems.

Construction of the SSCG: Strong state classes are represented by a marking
m and a system Q = {Gγ ≤ g} describing a clock domain for the enabled

transitions. Clock variable γ
i
is associated with the ith transition enabled at m.

The first step in the computation of a successor class, when building the
SSCG, is to determine which transitions are firable from the current class. In
absence of priorities, transition t is firable from some state in class (m, Q) iff
there is some delay θ ∈ IR+ such that, augmented by θ, the clocks of all en-
abled transitions are not larger than the right endpoint of their respective static
intervals, and within that interval for transition t:

(a1) θ ≥ 0
(a2) θ + γ

t
∈ Is(t)

(a3) (∀i 6= t)(m ≥ Pre(i) ⇒ θ + γ
i
≤ ↑Is(i))

In presence of priorities, a fourth condition must be added, asserting that no
enabled transition with higher priority than t is firable at θ:

(a4) (∀i)(m ≥ Pre(i) ∧ i ≻ t ⇒ θ + γ
i
6∈ Is(i))

θ + γ
i
6∈ Is(i) holds iff θ + γ

i
> ↑Is(t) or θ + γ

i
< ↓Is(t), but the former case

may not happen since it contradicts condition (a3). The SSCG for a PrTPN
is built as for a TPN , just augmenting the enabling conditions as explained:

Algorithm 1 Computing the Strong State Class Graph with Priorities

– Rǫ = (m0, {0 ≤ γ
t
≤ 0 | m0 ≥ Pre(t)})

– If σ is firable and Rσ = (m,Q) then σ.t is firable iff
(i) m ≥ Pre(t)
(ii) Q augmented with

θ ≥ 0 , θ ≥ ↓Is(t) − γ
t

{θ ≤ ↑Is(i) − γ
i
| m ≥ Pre(i)}

{θ < ↓Is(j) − γ
j
| m ≥ Pre(j) ∧ j ≻ t}

is consistent
– If σ.t is firable then Rσ.t = (m′, Q′) is computed from Rσ = (m, Q):

m’ = m - Pre(t) + Post(t)
Q’ obtained by :
(a) A new variable is introduced, θ, constrained by (ii) above;
(b) ∀k ∈ T : m′ ≥ Pre(k), introduce a new variable γ′

k
, such that:

γ′

k
= γ

k
+ θ if k 6= t ∧ m − Pre(t) ≥ Pre(k)

0 ≤ γ′

k
≤ 0 otherwise

(c) The variables γ and θ are eliminated.

The temporary variable θ stands for the possible delays after which t can
fire. There is an arc labeled t between Rσ and c iff c ≡ Rσ.t. As for Time
Petri Nets, the SSCG of a PrTPN is finite iff the net is bounded. The clock
systems are difference systems, for which canonical forms can be computed here
in time complexity O(n2), following the observation of [Rok93] that they can
be computed incrementally. The SSCG preserves all traces of the net and also
permits to decide state reachability [BV07].

Compared to the methods proposed for model checking Prioritized Timed
Automata [LHHC05] [DHLP06], Algorithm 1 does not require the expensive
(O(n4)) DBM subtractions mandatory there. As was explained, this follows from
the fact that time-elapsing in PrTPNs is bounded by the smallest of the dead-
lines of the enabled transitions, whatever the priority relation.

3.3 Abstractions preserving branching properties

The branching properties are those one can express in branching time temporal
logics like CTL, or modal logics like HML or the µ-calculus. Neither the SCG
(for TPNs) nor the SSCG (for TPNs or PrTPNs) preserve these properties.

An abstraction preserving branching properties of the DSG was first pro-
posed in [YR98], called the Atomic state class graph (ASCG for short), for the
subclass of TPNs in which all transitions have bounded static intervals. An al-
ternative construction was proposed in [BV03], in which the ASCG is obtained
from the SSCG of the net by a partition refinement process. This construction
remains applicable to PrTPNs, it can be summarized as follows.

Bisimilarity is known to preserve branching properties. Let → be a binary
relation over a finite set U , and for any S ⊆ U , let S−1 = {x|(∃y ∈ S)(x → y)}.
A partition P of U is stable if, for any pair (A, B) of blocks of P , either A ⊆ B−1

or A ∩ B−1 = ∅. Computing a bisimulation, starting from an initial partition
P of states, is computing a stable refinement of P [ACH+92]. In our case, a
suitable initial partition of the state space is the set of classes of the SSCG (it is
a cover rather than a partition, but the method remains applicable). Computing
the ASCG is computing a stable refinement of the SSCG, the technical details
can be found in [BV03], [BV07].

4 An example: Rate Monotonic Scheduling

This example illustrates the use of priorities for expressing scheduling policies
on systems of tasks. The system is made of three realtime tasks, to be scheduled
by a rate monotonic policy, the corresponding PrTPN is shown in Figure 1.

Task i has the following transitions:

Pi Periodically generates a token in place newPi, representing a new
period event from which a task will be released,

Ri Marks the task release, i.e. the instant at which the task enter its
idle state and waits to be started. Updates its state from donei to
notdonei,

Si Starts the task, changes its state from idlei to execi,
Ei Completes the task: frees the resource and restores its state to donei,

DLi Signals a deadline miss, occuring when the task is still executing and
a new period event is generated.

A scheduler in a realtime system is often coded by a policy, which tells, when
the unpoliticized system is nondeterministic, how to resolve this nondeterminism.
The rate monotonic policy gives priorities to tasks according to their period
value, the task with smaller period having the highest priority. The policy is
expressed here using priorities. In this example, the upper task has the smallest
period (3), followed by the middle task (5), and the lower task (11).

Thus, the RM policy requires here that every transition of T1 that can
lead to a state enabling Si in zero time has to possess a higher priority than
all the corresponding transitions in T2, and similarly for T2 and T3. That is
P1, R1, S1 ≻ P2, R2, S2 ≻ P3, R3, S3 (to preserve readability, priorities are omit-
ted in Figure 1). This priority relation represents exactly the RM policy.

Algorithm 1 has been implemented and integrated in an experimental ver-
sion of the T ina toolbox [BRV04]. For this example, the unprioritized SSCG,

S1

[0,0]

E1

[1,1]

idle3

S3

[0,0]

S2

[0,0] exec2

notdone1

dlm2

DL2

[0,0]

newP1

dlm1

DL1

[0,0]

DL3

[0,0]dlm3

P1[3,3]

exec1

R1

[0,0]

R2

[0,0]

E2

[2,2]

E3

[2,2]exec3

R3

[0,0]

idle1

idle2

done3

notdone3

newP3

P3[11,11]

newP2

P2[5,5]

done2

notdone2

res

done1

Fig. 1. A task system (P1, R1, S1 ≻ P2, R2, S2 ≻ P3, R3, S3)

computed by T ina for the net with priorities removed, is unbounded. Taking pri-
orities into account, the tool builds a finite SSCG with 557 state classes and 671
transitions. All markings are safe (the places hold at most one token) and it can
be checked on the graph produced that no deadline miss can occur (transitions
DLi are dead).

5 Conclusion

The results presented in this paper increase the range of systems one can repre-
sent and analyze using Time Petri nets and similar models. Beside their modeling
convenience, priorities do extend the expressiveness of Time Petri nets. Further,
it has been shown that Prioritized Petri nets can be analyzed with methods
similar to the well known state class based methods for Time Petri nets. These
methods are easy to implement and have a tractable complexity.

As mentioned in the text, analyzing Prioritized Time Petri nets does not
require to use polyhedra differences, adding priorities to TPNs does not augment
the complexity of computation of classes.

The version of Prioritized TPNs introduced in this paper makes use of the
simplest possible notion of priority: static priorities. Technically, nothing pre-
vents to replace it by more flexible notions of priorities like dynamic priorities
depending on markings.

References

[ACH+92] R. Alur, C. Courcoubetis, N. Halbwachs, D.L. Dill, and H. Wong-Toi. Mini-
mization of timed transition systems. In CONCUR’92, Springer LNCS 630,
pages 340–354, 1996.

[BCH+05] B. Bérard, F. Cassez, S. Haddad, O. H. Roux, and D. Lime. Comparison
of the Expressiveness of Timed Automata and Time Petri Nets. In FOR-

MATS’05, Springer LNCS 3829, pages 211–225, 2005.
[BD91] B. Berthomieu and M. Diaz. Modeling and verification of time dependent

systems using time Petri nets. IEEE Tr. on Soft. Eng., 17(3):259–273, 1991.
[BH06] H. Boucheneb and R. Hadjidj. Using inclusion abstraction to construct

atomic state class graphs for time petri nets. In International Journal of

Embedded Systems, Vol. 2, No 1/2, June 2006.
[BM83] B. Berthomieu and M. Menasche. An enumerative approach for analyzing

time Petri nets. IFIP Congress Series, 9:41–46, 1983.
[BPV06] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between timed

automata and bounded time petri nets. In FORMATS’06, Springer LNCS

4202, pages 82–97, 2006.
[BRV04] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA – construction

of abstract state spaces for Petri nets and time Petri nets. International

Journal of Production Research, 42(14):2741–2756, 15 July 2004.
[BV03] B. Berthomieu and F. Vernadat. State class constructions for branching

analysis of time Petri nets. In TACAS’2003, Warsaw, Poland, Springer

LNCS 2619, pages 442–457, 2003.
[BV07] B. Berthomieu and F. Vernadat. State Space Abstractions for Time Petri

Nets. Handbook of Real-Time and Embedded Systems, Insup Lee, Joseph
Y-T. Leung and Sang Son, CRC Press, Boca Raton, FL., U.S.A., 2007.

[DHLP06] A. David, J. H̊akansson, K. G. Larsen, and P. Pettersson. Model checking
timed automata with priorities using DBM subtraction. In FORMATS’06,

Springer LNCS 4202, pages 128–142, 2006.
[GS03] G. Goessler and J. Sifakis. Priority systems. In Proceedings of FMCO’2003,

Leiden, the Netherlands, Springer LNCS 3188, pages 314–329, 2003.
[Had06] R. Hadjidj. Analyse et validation formelle des systèmes temps réel. PhD

Thesis, Ecole Polytechnique de Montréal, Univ. de Montréal, February 2006.
[LHHC05] Shang-Wei Lin, Pao-Ann Hsiung, Chun-Hsian Huang, and Yean-Ru Chen.

Model checking prioritized timed automata. In ATVA’2005, Springer LNCS

3707, pages 370–384, 2005.
[Mer74] P. M. Merlin. A Study of the Recoverability of Computing Systems. PhD

Thesis, Irvine, 1974.
[Rok93] T. G. Rokicki. Representing and Modeling Circuits. PhD Thesis, Stanford

Univ., Stanford, CA, 1993.
[YR98] T. Yoneda and H. Ryuba. CTL model checking of Time Petri nets using

geometric regions. IEEE Trans. on Inf. and Systems, E99-D(3):1–10, 1998.

