Skip to main content

Single Image Subspace for Face Recognition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4778))

Abstract

Small sample size and severe facial variation are two challenging problems for face recognition. In this paper, we propose the SIS (Single Image Subspace) approach to address these two problems. To deal with the former one, we represent each single image as a subspace spanned by its synthesized (shifted) samples, and employ a newly designed subspace distance metric to measure the distance of subspaces. To deal with the latter one, we divide a face image into several regions, compute the contribution scores of the training samples based on the extracted subspaces in each region, and aggregate the scores of all the regions to yield the ultimate recognition result. Experiments on well-known face databases such as AR, Extended YALE and FERET show that the proposed approach outperforms some renowned methods not only in the scenario of one training sample per person, but also in the scenario of multiple training samples per person with significant facial variations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  2. Beveridge, J.R., Bolme, D., Draper, B.A., Teixeira, M.: The CSU face identification evaluation system: its purpose, features, and structure. Machine Vision Application 16(2), 128–138 (2005)

    Article  Google Scholar 

  3. Beymer, D., Poggio, T.: Face recognition from one example view. In: Proceedings of the 5th IEEE International Conference on Computer Vision, pp. 500–507. IEEE Computer Society Press, Washington, DC (1995)

    Chapter  Google Scholar 

  4. Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(1), 4–13 (2005)

    Article  Google Scholar 

  5. Chapelle, O., Haffner, P., Vapnik, V.N.: Support Vector Machines for Histogram-based Image Classification. IEEE Transactions on Neural Networks 10(5), 1055–1064 (1999)

    Article  Google Scholar 

  6. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

  7. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. The Johns Hopkins University Press (1996)

    Google Scholar 

  8. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2004)

    Google Scholar 

  9. Liu, J., Chen, S.C.: Discriminant common vecotors versus neighbourhood components analysis and laplacianfaces: A comparative study in small sample size problem. Image and Vision Computing 24(3), 249–262 (2006)

    Article  Google Scholar 

  10. Lee, K., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 1–15 (2005)

    Google Scholar 

  11. Martinez, A.M.: Recognizing imprecisely localized, partially occluded and expression variant faces from a single sample per class. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(6), 748–763 (2002)

    Article  Google Scholar 

  12. Martinez, A.M., Benavente, R.: The AR face database. Technical Report, CVC (1998)

    Google Scholar 

  13. Moghaddam, B., Nastar, C., Pentland, A.: A bayesian similarity measure for direct image matching. In: Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, pp. 350–358 (1996)

    Google Scholar 

  14. Niyogi, P., Girosi, F., Poggio, T.: Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE 86(11), 2196–2209 (1998)

    Article  Google Scholar 

  15. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing 16(5), 295–306 (1998)

    Article  Google Scholar 

  16. Shan, S., Gao, W., Zhao, D.: Face identification based on face-specific subspace. International Journal of Image and System Technology 13(1), 23–32 (2003)

    Article  Google Scholar 

  17. Tan, X., Chen, S.C., Zhou, Z.-H., Zhang, F.: Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft kNN ensemble. IEEE Transactions on Neural Networks 16(4), 875–886 (2005)

    Article  Google Scholar 

  18. Tan, X., Chen, S.C., Zhou, Z.-H., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition 39(9), 1725–1745 (2006)

    Article  MATH  Google Scholar 

  19. Torre, F., Gross, R., Baker, S., Kumar, V.: Representational oriented component analysis (ROCA) for face recognition with one sample image per training class. In: Proceedings of the 23rd IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 266–273. IEEE Computer Society Press, San Diego, CA (2005)

    Google Scholar 

  20. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–96 (1991)

    Article  Google Scholar 

  21. Wiskott, L., Fellous, J., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)

    Article  Google Scholar 

  22. Wolf, L., Shashua, A.: Learning over sets using kernel principal angles. Journal of Machine Learning Research 4(6), 913–931 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu, J., Zhou, Z.-H.: Face recognition with one training image per person. Pattern Recognition Letters 23(14), 1711–1719 (2002)

    Article  MATH  Google Scholar 

  24. Yamaguchi, Q., Fukui, K., Maeda, K.: Face recognition using temporal image sequence. In: Proceedings of the 3rd International Conference on Face & Gesture Recognition, Washington, DC, pp. 318–323 (1998)

    Google Scholar 

  25. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Survey 35(4), 399–458 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. Kevin Zhou Wenyi Zhao Xiaoou Tang Shaogang Gong

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J., Chen, S., Zhou, ZH., Tan, X. (2007). Single Image Subspace for Face Recognition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds) Analysis and Modeling of Faces and Gestures. AMFG 2007. Lecture Notes in Computer Science, vol 4778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75690-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75690-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75689-7

  • Online ISBN: 978-3-540-75690-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics