
Formal Testing of Systems Presenting Soft and
Hard Deadlines�

Mercedes G. Merayo, Manuel Núñez, and Ismael Rodrguez

Dept. Sistemas Informáticos y Computación
Universidad Complutense de Madrid, E-28040 Madrid, Spain
mgmerayo@fdi.ucm.es,mn@sip.ucm.es,isrodrig@sip.ucm.es

Abstract. We present a formal framework to specify and test systems
presenting both soft and hard deadlines. While hard deadlines must be
always met on time, soft deadlines can be sometimes met in a different
time, usually higher, from the specified one. It is this characteristic (to
formally define sometimes) what produces several reasonable alternatives
to define appropriate implementation relations, that is, relations to de-
cide wether an implementation is correct with respect to a specification.
In addition to introduce these relations, we define a testing framework
to test implementations.

1 Introduction

Formal methods refer to techniques based on mathematics for the specification,
development, and verification of systems. The use of formal methods is espe-
cially relevant in reliable systems where, due to safety and security reasons,
it is important to ensure that errors are not included during the development
process. Formal methods are particularly effective when used early in the devel-
opment process, at the requirements and specification levels, but can be used
for a complete formal development of a system. In this regard, and consider-
ing specification formalism, we may mention the (original) notions of process
algebras, Petri nets, and Moore/Mealy machines. Once the roots were well con-
solidated other considerations were taken into account. The next step was to
deal with quantitative information such as the time underlying the performance
of systems or the probabilities resolving the non-deterministic choices that a sys-
tem may undertake. These characteristics gave raise to new models where time
and/or probabilities were included (for example, [1,2,3,4,5,6,7,8] among many
others).

The formal representation of systems allows to rigorously analyze their prop-
erties. In particular, it allows to establish the correctness of the system with
� This research was partially supported by the Spanish MEC projects MAS-

TER/TERMAS TIC2003-07848-C02-01 and WEST/FAST TIN2006-15578-C02-01,
the Junta de Castilla-La Mancha project PAC06-0008, the Comunidad de Madrid
project to fund research groups CAM-910606, and the Marie Curie project MRTN-
CT-2003-505121/TAROT.

F. Arbab and M. Sirjani (Eds.): FSEN 2007, LNCS 4767, pp. 160–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Formal Testing of Systems Presenting Soft and Hard Deadlines 161

respect to a specification or the fulfillment of a specific set of required condi-
tions, to check the semantic equivalence of two systems, to analyze the preference
of a system to another with respect to a given criterion, to predict the possi-
bility of incorrect behaviors, to establish the performance level of a system, etc.
In this line, formal testing techniques allow to test the correctness of a system
with respect to a specification. Formal testing originally targeted the functional
behavior of systems, such as determining whether the tested system can, on the
one hand, perform certain actions and, on the other hand, does not perform
some unexpected ones. The application of formal testing techniques to check
the correctness of a system requires to identify the critical aspects of the system,
that is, those aspects that will make the difference between correct and incorrect
behaviors. While the relevant aspects of some systems only concern what they
do, in some other systems it is equally relevant how they do what they do. Thus,
formal testing techniques are recently also dealing with non-functional proper-
ties such as the probability of an event to happen or the time that it takes to
perform a certain action (for example, [9,10,11,12,13,14,15,16]).

One of the problems when specifying timed systems is that it is not always easy
to precisely establish the time bounds associated with the tasks that the system
performs. Thus, it is sometimes useful to allow some degree of indecision in such
specifications. In this line, stochastic models (for example, [17,18,19,20,21,22,23])
allow to specify constraints such as with probability p the task must finish before
t time units have passed. So, the specifier does not need to provide the precise
point of time associated with a task, but a probabilistic estimation of the time
value(s). However, there are situations where the specifier either does not have
such probabilistic information or does not want to provide such information
because it might unnecessarily complicate the model. In this case, it seems that
the most appropriate way to specify time constraints is to use time intervals,
that is, the specifier provides a set of possible time values, instead of just one, but
without quantifying the probability that each value of the interval has. Moreover,
it may happen that while testing the correctness of a system the tester allows
some imprecision in the temporal behavior of the system. For example, if the
specifier cannot precisely define the temporal constraints of a system, the tester
can also have problems to determine what is the exact notion of passing a test on
time. Moreover, it can be admissible that the execution of a task sometimes lasts
more than expected: If most of the times the task is performed on time, a couple
of delays can be tolerated. This is the idea of a soft deadline, in contrast with
hard deadlines that have to be always met on time. Finally, another reason for
the tester to allow imprecisions, it may happen that the artifacts measuring time
while testing a system are not as precise as desirable. In this case, an apparent
wrong behavior due to bad timing can be in fact correct since it may happen
that the watches are not working properly.

In this paper we propose a formal framework to specify and test systems where
time considerations can fall in some of the cases commented in the previous
paragraph. Time will be introduced in specifications by extending classical finite
state machines with time intervals associated to the performance of actions.

162 M.G. Merayo, M. Núñez, and I. Rodrguez

Intuitively, transitions in finite state machines indicate that if the machine is in
a state s and receives and input i then it will produce and output o and it will
change its state to s′. An appropriate notation for such a transition could be

s
i/o−→ s′. If we consider our timed extension of finite state machines, a transition

such as s
i/o−→ [t1,t2]s′ means that if the machine is in state s and receives the

input i, it will perform the output o and reach the state s′, and it will take a
time greater than or equal to t1 but smaller than or equal to t2.

Testing, as well as the definition of implementation relations, will depend
on measuring time values and accepting the performance of the system if the
time behavior is correct up to an admissible error. The possible definition of
admissible will give raise to several alternative implementation relations and
several notions of passing a test. However, there is still a last issue that must
be taken into account when dealing with systems where time requirements are
given by means of intervals. Since we assume a black-box testing framework, we
cannot check that the intervals governing the behavior of the implementation
are correctly related with the ones corresponding to the implementation. In
fact, the execution of a test will return the time that it took to be performed,
not the associated time interval. As a consequence, since we assume that time
intervals are non-negative real numbers, we would need an infinite number of
observations from a transition of the implementation (with an unknown time
interval) to assure that its time interval is correct with the respect to the one of
the specification (which it is accessible).

Even though there are several papers devoted to formal testing of timed sys-
tems [10,9,11,12,15,16], we are aware of only one work where the topic of non-
strict deadlines is considered in a testing framework. In [24], a probabilistic for-
malism is used to approximate the idea of soft deadline. However, their approach
is not very related to ours since, on the one hand, they are based on [25,26], and,
on the other hand, they use a probabilistic approach, based on [27], to deal with
soft deadlines. Testing relations to compare processes are based on the responses
of the processes to all the tests, while we apply tests, derived from specifications,
to implementations to determine whether the implementation is somehow cor-
rect with respect to the specification. As we mentioned before, stochastic models
allow to partially simulate soft deadlines. In this line, there are two proposals
to test stochastic systems [28,29]. Since they are also inspired by [25,26], these
contributions are not related to the one presented in this paper.

The rest of the paper is organized as follows. In Section 2 we introduce our
notion of timed finite state machine and give some auxiliary notation. In Sec-
tion 3 we give our timed conformance relations. In Section 4 we show how tests
are defined and applied to implementations. Finally, in Section 5 we give our
conclusions and some lines for future work.

2 Extending Finite State Machines with Time Intervals

In this section we introduce our notion of timed finite state machine, that we call
IFSM, and some concepts that will be used along the paper. The main difference

Formal Testing of Systems Presenting Soft and Hard Deadlines 163

with respect to usual FSMs consists in the addition of time to indicate the lapse
between offering an input and receiving an output. First we introduce notation
related to time intervals, sets, and multisets.

Definition 1. We say that d = [a1, a2] is a time interval if a1 ∈ IR+, a2 ∈
IR+ ∪ {∞}, and a1 ≤ a2. From now on we assume that for all r ∈ IR+ we have
r < ∞, r + ∞ = ∞, and r

∞ = 0. We consider that IIR+ denotes the set of time
intervals. We write πi(d), for i ∈ {1, 2}, to denote the value ai.

Given two time intervals d1 = [a11, a12] and d2 = [a21, a22], d1+d2 denotes the
time interval [a11+a21, a12+a22]. Addition of time intervals can be generalized to
n summands in the expected way. Given n time intervals d1 = [a11, a12], . . . , dn =
[an1, an2], we have that

∑
di denotes the time interval [

∑
ai1,

∑
ai2].

Given a set S, we consider that |S| denotes the cardinal of S, P(S) denotes
the powerset of S, and ℘(S) denotes the powermultiset of S, that is, the set of
multisets conformed from elements belonging to S. We will use the symbols {| and
|} to denote multisets. Given a multiset M, we write r ∈ M if r appears in M
(that is, r has multiplicity greater than 0). We write ||M|| to denote the cardinal
of M including multiplicity of its elements. For example, ||{|1, 2, 3, 1, 2|}|| = 5. ��

A temporal requirement such as [t1, t2] indicates that the associated task should
take at least t1 time units and at most t2 units to be performed. Intervals like
[0, t2], [t1, ∞], or [0, ∞] denote the absence of a temporal lower/upper bound and
the absence of any bound, respectively. Let us note that in the case of [t1, ∞]
and [0, ∞] we are abusing the notation since these intervals represent, in fact,
the intervals [t1, ∞) and [0, ∞), respectively.

Definition 2. An Interval Finite State Machine, in the following IFSM, is a
tuple M = (S, I, O, T r, sin) where S is a finite set of states, I is the set of input
actions, O is the set of output actions, Tr is the set of transitions, and sin is the
initial state.

A transition belonging to Tr is a tuple (s, s′, i, o, d) where s, s′ ∈ S are the
initial and final states of the transition, i ∈ I and o ∈ O are the input and output
actions, and d ∈ IIR+ is the time interval associated with the transition.

We say that the IFSM M is input-enabled if for all state s ∈ S and input
i ∈ I, there exist s′, o, and d such that (s, s′, i, o, d) ∈ Tr. We say that the IFSM
M is observable if there do not exist two different transitions (s, s1, i, o, d1) and
(s, s2, i, o, d2). ��

Intuitively, a transition (s, s′, i, o, d) indicates that if the machine is in state s
and receives the input i then, after a time belonging to the interval d has passed,
the machine emits the output o and moves to s′. In Figure 1 we give a graphical
example of an IFSM.

Next, we introduce the notion of trace. As usual, a trace is a sequence of
input/output pairs. In addition, we have to record the possible time values, that
is a time interval, where the trace can be performed. An evolution is a trace
starting at the initial state of the machine.

164 M.G. Merayo, M. Núñez, and I. Rodrguez

1

2 3

a1/b1 a2/b2

a3/b3

a4/b4

M1

a1/b1

I = {a1, a2, a3, a4}, O = {b1, b2, b3, b4}
t12 = (s1, s2, a1, b1, [1, 3])
t13 = (s1, s3, a2, b2, [2, 6])
t32 = (s3, s2, a3, b3, [1, 2])
t21 = (s2, s1, a4, b4, [3, 9])
t22 = (s2, s2, a1, b1, [4, 5])

Fig. 1. Example of IFSM

Definition 3. Let M = (S, I, O, T r, sin) be an IFSM. A timed trace, or simply
trace, of M is a tuple (s, s′, (i1/o1, . . . , ir/or), d) if we have that there exist
transitions (s, s1, i1, o1, d1),. . ., (sr−1, s

′, ir, or, dr) ∈ Tr, such that d =
∑

di. We
say that (i1/o1, . . . , ir/or) is a non-timed evolution, or simply evolution, of M if
we have that (sin, s′, (i1/o1, . . . , ir/or), d) is a trace of M for some d ∈ IIR+

and
s′ ∈ S. We denote by NTEvol(M) the set of non-timed evolutions of M .

We say that the pair ((i1/o1, . . . , ir/or), d) is a timed evolution of M if we
have that (sin, s′, (i1/o1, . . . , ir/or), d) is a trace of M . We denote by TEvol(M)
the set of timed evolutions of M . ��

Let us consider again the IFSM depicted in Figure 1 and its transitions t13,
t32, and t21. We can build the trace (s1, s1, (a2/b2, a3/b3, a4/b4), [6, 17]) based
on these transitions. This trace represents that from state 1 the machine can
accept the sequence of inputs (a2, a3, a4) and it will emit the sequence of outputs
(b2, b3, b4) after a time belonging to the interval [6, 17] has passed.

3 Implementation Relations

In this section we introduce our implementation relations. Following the classical
pattern, we consider that an implementation conforms to a specification if for
all possible sequence of inputs that the specification can perform, the outputs
emitted by the implementation are a subset of those for the specification. Intu-
itively, this means that the implementation cannot invent a behavior (that is, an
output) for those traces that the specification can perform. This pattern is bor-
rowed from ioco [30] and was introduced in the context of finite state machines
in [31].

A specification is an IFSM. Regarding implementations, we consider that they
are also given by means of IFSMs. Besides, we assume that input actions are
always enabled in any state of the implementation, that is, implementations
are input-enabled according to Definition 2. This is a usual condition to assure
that the implementation will react (somehow) to any input appearing in the
specification. In order to simplify the presentation, we will consider that both
specifications and implementations are given by observable IFSMs (see Defini-
tion 2). Let us note that even restricting to this kind of machines we may still

Formal Testing of Systems Presenting Soft and Hard Deadlines 165

1

2

a2/b3a1/b4

a1/b4

M1

1

2

a2/b3a1/b4

a1/b4

a2/b4

M2

Fig. 2. Examples of non-timely conformance

have two transitions (s, s1, i, o1, d1) and (s, s2, i, o2, d2), as far as o1 	= o2. Thus,
we allow some degree of non-determinism.

Definition 4. Let S and I be two IFSMs. We say that I non-timely conforms to
S, denoted by IconfntS, if for all e = (i1/o1, . . . , ir−1/or−1, ir/or) ∈ NTEvol(S),
with r ≥ 1, we have that

e′ = (i1/o1, . . . , ir−1/or−1, ir/o′r) ∈ NTEvol(I) =⇒ e′ ∈ NTEvol(S)

��

In the previous definition, let us note that if the specification would have also
the property of input-enabled then we may remove the condition “for all e =
(i1/o1, . . . , ir−1/or−1, ir/or) ∈ NTEvol(S), with r ≥ 1 ”, so that we simply have
to check trace inclusion.

Example 1. Let us consider the systems M1 and M2 depicted in Figure 2 where
time information has been omitted. We have M2 confnt M1. Let us note that
the non-timed evolutions of M2 having as prefix the sequence (a2/b3, a2/b4) are
not checked because M1 (playing the role of specification) cannot perform those
evolutions.

Let us now consider that M1 is extended with the transition (2, 2, a2, null, d)
so that M1 is input-enabled. Then, M1 does not conform to M2. For example, M2
may perform the non-timed evolution e = (a2/b3, a2/b4), M1 has the non-timed
evolution e′ = (a2/b3, a2/null), but e′ does not belong to the set of non-timed
evolutions of M2. Note that e and e′ share the common prefix a2/b3, a2. ��

Next we introduce our first timed implementation relation. In addition to the
non-timed conformance of the implementation, we require a time condition to
hold: The time intervals of the implementation correspond to those of the spec-
ification.

Definition 5. Let I and S be IFSMs. We say that I conforms in time to S,
denoted by I confint S, if I confnt S and for all e ∈ NTEvol(I) ∩ NTEvol(S) we
have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ (e, d) ∈ TEvol(S)

��

166 M.G. Merayo, M. Núñez, and I. Rodrguez

Despite its neat definition, this relation suffers from practical problems due to
our assumption that the implementation under test is a black box. Even though
this is a very reasonable notion of conformance, the fact that we assume a black-
box testing framework disallows us to check whether the corresponding intervals
coincide indeed. In fact, since we are considering that time intervals are defined
over the set of non-negative real numbers, we would need an infinite number
of observations from a transition of the implementation (with an unknown time
interval) to assure that its time interval coincides with the one from the specifica-
tion (which it is accessible). Thus, we have to give more realistic implementation
relations that are less accurate but are checkable. We only need to suppose that
we can actually record the time that the implementation needs to perform a
given sequence. In order to that, we introduce the concept of timed execution.
They are simply input/output sequences together with the time that it took to
perform the sequence. In a certain sense, timed executions can be seen as in-
stances of the timed evolutions that the implementation can perform. Regarding
the definition of observed time values, we just associate with each evolution the
corresponding time values.

Definition 6. Let I be an IFSM. We say that ((i1/o1, . . . , in/on), t) is an ob-
served timed execution of I, or simply timed execution, if the observation of I
shows that the sequence (i1/o1, . . . , in/on) is performed in time t.

Let H = {|(e′1, t1), . . . , (e′n, tn)|} be a multiset of observed timed executions
and Φ = {e | ∃ t : (e, t) ∈ H} be a set of input/output sequences. We say that
Obs TimeH : Φ −→ ℘(IR+) is the multiset of observed time values of H for Φ if
for all e ∈ Φ we have Obs TimeH(e) = {|t | (e, t) ∈ H |}. ��

Next, we introduce several conformance relations where we check that the ob-
served time values fulfill, in each case, certain conditions with respect to the
appropriate time intervals. The purpose of this paper is to introduce implemen-
tation relations where the time behavior of the implementation does not exactly
correspond to what we expect, that is, it partially deviates from the behavior
defined in the specification. In this case, we have to take into account this pos-
sible divergence. Intuitively, we will determine whether the amount of incorrect
time values is relevant to ensure the possible conformance of the implementa-
tion to the specification. Moreover, we measure the degree of the deviation of
the observed time values, with respect to the interval. So, by considering that
there cannot be any error we test a hard deadline; soft deadlines will allow a
certain error, as long as it is kept under a certain bound. First, we introduce
some notation to relate a set of observed time values and a time interval.

Definition 7. Let d = [a1, a2] ∈ IIR+ be a time interval, R be a non-empty
multiset of non-negative real numbers, and 0 ≤ α ≤ 1.

– We write R ⊆α d if we have

||{|r | r ∈ R ∧ (r < a1 ∨ r > a2)|}||
||R|| ≤ 1 − α

Formal Testing of Systems Presenting Soft and Hard Deadlines 167

– We write R �α d if we have

||{|r | r ∈ R ∧ r < a1|}||
||R|| ≤ 1 − α and ||{|r | r ∈ R ∧ r > a2|}|| = 0

– We write R �α d if we have

||{|r | r ∈ R ∧ a1 ≤ r ≤ a2|}||
||R|| ≤ 1 − α and ||{|r | r ∈ R ∧ r > a2|}|| = 0

– We define three notions of distance of an observed time value r ∈ IR+ to an
interval d = [a1, a2] ∈ IIR+ , and their generalization to sets of values as

dist(r, d) =

����
���

0 if r ∈ d

r − a2 if r > a2

a1 − r if r < a1

dist(C, d) =
�

r∈C dist(r, d)2

dist up(r, d) =

�
0 if r ≤ a2

r − a2 if r > a2
dist up(C, d) =

�
r∈C dist up(r, d)2

dist low(r, d) =

�
0 if r < a1

r − a1 if r ≥ a1
dist low(C, d) =

�
r∈C dist low(r, d)2

��

Let us remark that bigger values of α denote smaller tolerance to have unex-
pected values. The first relation, ⊆α, denotes that the number of values outside
the considered interval is not big. There is no distinction between values being
smaller/greater than the lower/upper bound of the interval. The second relation,
�α, can be used to indicate that we do not allow values greater than the upper
bound and that the number of values smaller than the lower bound is acceptable.
Finally, �α is useful in situations where most of the values have to be smaller
than the lower bound of the interval, while values greater than the upper bound
are again not allowed. This last relation will be used to check that the system
is fast. The previous relations count the number of errors but do not quantify
how big the errors are. Regarding distance functions, they measure the error
degree of wrong values. The first one, dist, considers both time values greater
and smaller than the bounds of the interval. The dist up function considers as
wrong only values greater than the upper bound of the interval. Finally, we will
use the dist low function for measuring the values that are not fast enough, that
is, bigger than the lower bound of the interval. By combining inclusion relations
and distance functions, we can evaluate the conformance of the implementation
with respect to the specification in different ways.

Definition 8. Let I and S be two IFSMs, H be a multiset of timed executions
of I, Φ = {e | ∃ t : (e, t) ∈ H} ∩ NTEvol(S), 0 ≤ α ≤ 1, and β ∈ IR+. We define
the following implementation relations:

168 M.G. Merayo, M. Núñez, and I. Rodrguez

– I (H, α)-timely conforms to S, denoted by I conf
(H,α)
int S, if I confnt S and

for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ Obs TimeH(e) ⊆α d

– I (H, α)-preferable timely conforms to S, denoted by Iconf
(H,α)
intp S, if Iconfnt

S and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ Obs TimeH(e) �α d

– I (H, α)-fast timely conforms to S, denoted by I conf
(H,α)
intf S, if I confnt S

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ Obs TimeH(e) �α d

– I (H, β)-global timely conforms to S, denoted by I conf
(H,β)
intgb S, if I confnt S

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ dist(Obs TimeH(e), d) ≤ β

– I (H, β)-up-timely conforms to S, denoted by I conf
(H,β)
intup S, if I confnt S

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ dist up(Obs TimeH(e), d) ≤ β

– I (H, β)-low-timely conforms to S, denoted by I conf
(H,β)
intlw S, if I confnt S

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ dist low(Obs TimeH(e), d) ≤ β

– I (H, α, β)-timely conforms to S, denoted by I conf
(H,α,β)
int S, if I confnt S

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒
(
Obs TimeH(e) ⊆α d ∧ dist(Obs TimeH(e), d) ≤ β

)

– I (H, α, β)-preferable timely conforms to S, denoted by I conf
(H,α,β)
intp S, if

I confnt S and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒

⎛

⎝
Obs TimeH(e) �α d

∧
dist low(Obs TimeH(e), d) ≤ β

⎞

⎠

– I (H, α, β)-fast timely conforms to S, denoted by Iconf
(H,α,β)
intf S, if IconfntS

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒

⎛

⎝
Obs TimeH(e) �α d

∧
dist low(Obs TimeH(e), d) ≤ β

⎞

⎠

��

Formal Testing of Systems Presenting Soft and Hard Deadlines 169

Intuitively, the new relations establish that the implementation must conform
to the specification in the usual way (that is, I confnt S). In addition, the ob-
served execution time values corresponding to an evolution must mostly belong
to the time interval indicated by the specification for that evolution (timely
conforms), or be less than or equal to the lower/upper bound (fast timely
conforms/preferable timely conforms) respectively. The relations global timely,
up-timely, and low-timely require that the errors presented by the observed ex-
ecution time values do not exceed a established threshold. Finally, in the last
three relations, we consider both requests simultaneously, that is, the relations
demand conditions both over the number of observed time values out of the
interval and over the allowed deviation.

Let us remark that to have the previously defined relations parameterized by
the set H is somehow similar to consider the, widely used, fairness assumption in
formal testing: If we test a system enough, we can be sure that we go through all
the possible paths of the tested machine. In the case of the fairness assumption,
we would have something like H = TEvol(I) while in our setting we have that
an implementation is correct up to the submultiset of TEvol(I) that we consider.

4 Definition and Application of Tests

A test represents a sequence of inputs applied to the implementation. After
applying each input, we check whether the received output is expected or not. In
the latter case, a fail signal is produced. In the former case, either a pass signal
is emitted (indicating successful termination) or the testing process continues
by applying another input. If we are testing an implementation with input and
output sets I and O, respectively, tests are deterministic acyclic I/O labelled
transition systems (i.e. trees) with a strict alternation between an input action
and the set of output actions. After an output action we may find either a
leaf (indicating either failure or successful termination) or another input action.
Leaves are labelled either by pass or by fail. In the first case we add a time
stamp. The time stamp will be a time interval. The idea is that we will record
the time that the implementation takes to arrive to that point and compare it
with the time stamp.

Definition 9. A test is a tuple T = (S, I, O, T r, s0, SI , SO, SF , SP , CT) where
S is the set of states, I and O are disjoint sets of input and output actions,
respectively, Tr ⊆ S × (I ∪ O) × S is the transition relation, s0 ∈ S is the
initial state, and the sets SI , SO, SF , SP ⊆ S are a partition of S. The transition
relation and the sets of states fulfill the following conditions:

– SI is the set of input states. We have that s0 ∈ SI . For all input state s ∈ SI

there exists a unique outgoing transition (s, a, s′) ∈ Tr. For this transition
we have that a ∈ I and s′ ∈ SO.

– SO is the set of output states. For all output state s ∈ SO we have that
for all o ∈ O there exists a unique state s′ such that (s, o, s′) ∈ Tr. In this
case, s′ /∈ SO. Moreover, there do not exist i ∈ I and s′ ∈ S such that
(s, i, s′) ∈ Tr.

170 M.G. Merayo, M. Núñez, and I. Rodrguez

– SF and SP are the sets of fail and pass states, respectively. We say that these
states are terminal. That is, for all state s ∈ SF ∪ SP we have that there do
not exist a ∈ I ∪ O and s′ ∈ S such that (s, a, s′) ∈ Tr.

Finally, CT : SP −→ IIR+ is a function associating time stamps, that is, a time
intervals, with passing states.

Let e = i1/o1, . . . , ir/or. We write T
e=⇒ s if s ∈ SF ∪ SP and there exist

states s12, s21, s22, . . . sr1, sr2 ∈ S such that {(s0, i1, s12), (sr2, or, s)} ⊆ Tr, for
all 2 ≤ j ≤ r we have (sj1, ij, sj2) ∈ Tr, and for all 1 ≤ j ≤ r − 1 we have
(sj2, oj , s(j+1)1) ∈ Tr.

We say that a test case T is valid if the graph induced by T is a tree with
root at the initial state s0. We say that a set of tests T = {T1, . . . , Tn} is a test
suite. ��

From now on we will assume that when we talk about tests we refer only to valid
tests. Next we define the application of a test to an implementation. We will say
that the test suite T is passed if, for all test, the terminal states reached by the
composition of implementation and test belong to the set of passing states. Let
us remark that since we are assuming that implementations are input-enabled,
the testing process will conclude only when the test reaches either a fail or a
success state.

Definition 10. Let I be an implementation under test and T be a test. We
denote the application of the test T to the implementation I by I ‖ T .

Let I be a IFSM, T be a test, and s be a state of T . We write I ‖ T
e=⇒ s if

T
e=⇒ s and e ∈ NTEvol(I).

We say that I passes the test suite T , denoted by pass(I, T), if for all test
T = (S, I, O, T r, s, SI , SO, SF , SP , CT) ∈ T and e ∈ NTEvol(I) there do not exist
s ∈ SF such that I ‖ T

e=⇒ s. ��

The previous definition of passing tests did not take into account the time values
that will be collected during the application of tests. We apply time conditions
to the set of observed timed executions. In fact, we need a set of test executions
associated to each evolution in order to evaluate if they match, in a certain
sense, the time interval associated to the corresponding state of the test. In
order to increase the reliability degree, we will not take the classical approach
where passing a test suite is defined according only to the results for each test.
In our approach, we will put together all the observations, for each test, so that
we have more samples for each evolution. In particular, some observations will
be used several times. In other words, an observation from a given test may be
used to check the validity of another test sharing the same observed sequence.

Definition 11. Let I be an IFSM, T be a test, and s be a state of T . We write
I ‖ T

e=⇒t s if T
e=⇒ s and (e, t) is an observed timed execution of I. In this

case we say that (e, t) is a test execution of I and T . Let I be an IFSM and
T = {T1, . . . , Tn} be a test suite. Let H1, . . . , Hn be sets of test executions of
I and T1, . . . , Tn, respectively. Let H =

⋃n
i=1 Hi, Φ = {e | ∃ t : (e, t) ∈ H},

β ∈ IR+, and 0 ≤ α ≤ 1. We say that

Formal Testing of Systems Presenting Soft and Hard Deadlines 171

– I (H, α)-timely passes the test suite T if pass(I, T) and for all e ∈ Φ and
all T ∈ T such that I ‖ T

e=⇒ s, we have that

Obs TimeH(e) ⊆α CT (s)

– I (H, α)-preferable passes the test suite T if pass(I, T) and for all e ∈ Φ and
all T ∈ T such that I ‖ T

e=⇒ s, we have that

Obs TimeH(e) �α CT (s)

– I (H, α)-fast passes the test suite T if pass(I, T) and for all e ∈ Φ and all
T ∈ T such that I ‖ T

e=⇒ s, we have that

Obs TimeH(e) �α CT (s)

– I (H, β)-global timely passes the test suite T if pass(I, T) and for all e ∈ Φ

and all T ∈ T such that I ‖ T
e=⇒ s, we have that

dist(Obs TimeH(e), CT (s)) ≤ β

– I (H, β)-up-timely passes the test suite T if pass(I, T) and for all e ∈ Φ and
all T ∈ T such that I ‖ T

e=⇒ s, we have that

dist up(Obs TimeH(e), CT (s)) ≤ β

– I (H, β)-low-timely passes the test suite T if pass(I, T) and for all e ∈ Φ

and all T ∈ T such that I ‖ T
e=⇒ s, we have that

dist low(Obs TimeH(e), CT (s)) ≤ β

– I (H, α, β)-timely passes the test suite T if pass(I, T) and for all e ∈ Φ and
all T ∈ T such that I ‖ T

e=⇒ s, we have that

Obs TimeH(e) ⊆α CT (s) ∧ dist(Obs TimeH(e), CT (s)) ≤ β

– I (H, α, β)-preferable passes the test suite T if pass(I, T) and for all e ∈ Φ

and all T ∈ T such that I ‖ T
e=⇒ s, we have that

Obs TimeH(e) �α CT (s) ∧ dist low(Obs TimeH(e), CT (s)) ≤ β

– I (H, α, β)-fast passes the test suite T if pass(I, T) and for all e ∈ Φ and
all T ∈ T such that I ‖ T

e=⇒ s, we have that

Obs TimeH(e) �α CT (s) ∧ dist low(Obs TimeH(e), CT (s)) ≤ β
��

Let us remark that an observed timed execution does not return the time interval
associated with performing the evolution (that is, the addition of all the intervals
corresponding to each transition of the implementation) but the time that it took

172 M.G. Merayo, M. Núñez, and I. Rodrguez

to perform the evolution. Let us also note that in a fix time values framework,
these two notions (addition of time values corresponding to the transitions of
the implementation and observed time) do in fact coincide.

Intuitively, an implementation passes a test if there does not exist an evolu-
tion leading to a fail state. Once we know that the functional behavior of the
implementation is correct with respect to the test, we need to check time con-
ditions. The set H corresponds to the observations of the (several) applications
of the tests belonging to the test suite T to I. Thus, we have to decide whether,
for each evolution e, the observed time values (that is, Obs TimeH(e)) match
the definition of the time intervals appearing in the successful state of the tests
corresponding to the execution of that evolution (that is, CT (s)).

Due to space limitations, we cannot include in this paper the algorithm that
we propose to derive tests from a specification. In spite of the differences, our
algorithm is an adaptation of that in [32]. We get a test suite extracted from the
specification S. We denote this test suite by tests(S).

Next, we present a result to establish the application of the test suite tests(S)
for determining whether an implementation, for a sample H , conforms to a
specification with respect to the relations given in Definition 8.

Theorem 1. (Soundness and Completeness) Let I and S be IFSMs. Given a
multiset of timed executions H , β ∈ IR+, and 0 ≤ α ≤ 1 we have

– I conf
(H,α)
int S iff I (H, α)-timely passes tests(S).

– I conf
(H,α)
intf S iff I (H, α)-fast passes tests(S).

– I conf
(H,α)
intp S iff I (H, α)-preferable passes tests(S).

– I conf
(H,β)
intgb S iff I (H, β)-global timely passes tests(S).

– I conf
(H,β)
intup S iff I (H, β)-up-timely passes tests(S).

– I conf
(H,β)
intlw S iff I (H, β)-low-timely passes tests(S).

– I conf
(H,α,β)
int S iff I (H, α, β)-timely passes tests(S).

– I conf
(H,α,β)
intf S iff I (H, α, β)-fast passes tests(S).

– I conf
(H,α,β)
intp S iff I (H, α, β)-preferable passes tests(S).

��

5 Conclusions and Future Work

In this paper we have presented a novel framework to specify and test timed
systems showing both soft and hard deadlines. We have defined nine conformance
relations that take into account the different considerations of what a slightly
erroneous system is, that is, that soft deadlines are almost always met. We have
also developed a testing theory by introducing a notion of test and by defining
how tests are applied to implementations and what is the meaning of passing a
test. Finally, we have stated that testing a system with the appropriate test suite
is equivalent to establish that it is related with the specification from which the
test suite was extracted.

Formal Testing of Systems Presenting Soft and Hard Deadlines 173

There is still some room for future work. First, it would be interesting to
study the precise relation between the different implementation relations that
we define in this paper. Second, we would like to take this paper as a first step,
together with [33], to define a testing theory for systems presenting both time
and probabilistic information expressed by means of intervals.

References

1. Sifakis, J.: Use of Petri nets for performance evaluation. In: 3rd Int. Symposium
on Measuring, Modelling and Evaluating Computer Systems, pp. 75–93. North-
Holland, Amsterdam (1977)

2. Zuberek, W.: Timed Petri nets and preliminary performance evaluation. In: 7th
Annual Symposium on Computer Architecture, pp. 88–96. ACM Press, New York
(1980)

3. Reed, G., Roscoe, A.: A timed model for communicating sequential processes.
Theoretical Computer Science 58, 249–261 (1988)

4. Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In:
Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer,
Heidelberg (1992)

5. Glabbeek, R.v., Smolka, S., Steffen, B.: Reactive, generative and stratified models
of probabilistic processes. Information and Computation 121(1), 59–80 (1995)

6. Baeten, J., Middelburg, C.: Process algebra with timing. EATCS Monograph.
Springer, Heidelberg (2002)

7. Bravetti, M., Aldini, A.: Discrete time generative-reactive probabilistic processes
with different advancing speeds. Theoretical Computer Science 290(1), 355–406
(2003)

8. Núñez, M.: Algebraic theory of probabilistic processes. Journal of Logic and Alge-
braic Programming 56(1–2), 117–177 (2003)

9. Higashino, T., Nakata, A., Taniguchi, K., Cavalli, A.: Generating test cases for a
timed I/O automaton model. In: IWTCS 1999. 12th Int. Workshop on Testing of
Communicating Systems, pp. 197–214. Kluwer Academic Publishers, Boston, MA
(1999)

10. Springintveld, J., Vaandrager, F., D’Argenio, P.: Testing timed automata. Theoret-
ical Computer Science 254(1-2), 225–257 (2001) Previously appeared as Technical
Report CTIT-97-17, University of Twente (1997)

11. Fecko, M., Uyar, M., Duale, A., Amer, P.: A technique to generate feasible tests
for communications systems with multiple timers. IEEE/ACM Transactions on
Networking 11(5), 796–809 (2003)

12. En-Nouaary, A., Dssouli, R.: A guided method for testing timed input output
automata. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS, vol. 2644, pp.
211–225. Springer, Heidelberg (2003)

13. Núñez, M., Rodŕıguez, I.: Towards testing stochastic timed systems. In: König, H.,
Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp. 335–350. Springer,
Heidelberg (2003)

14. Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic automata. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 464–477. Springer, Heidelberg (2003)

15. Brandán Briones, L., Brinksma, E.: Testing real-time multi input-output systems.
In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 264–279.
Springer, Heidelberg (2005)

174 M.G. Merayo, M. Núñez, and I. Rodrguez

16. Merayo, M., Núñez, M., Rodŕıguez, I.: Extending EFSMs to specify and test timed
systems with action durations and timeouts. In: Najm, E., Pradat-Peyre, J.F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 372–387. Springer,
Heidelberg (2006)

17. Götz, N., Herzog, U., Rettelbach, M.: Multiprocessor and distributed system de-
sign: The integration of functional specification and performance analysis using
stochastic process algebras. In: Donatiello, L., Nelson, R. (eds.) SIGMETRICS
1993 and Performance 1993. LNCS, vol. 729, pp. 121–146. Springer, Heidelberg
(1993)

18. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

19. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoretical Computer Sci-
ence 202(1-2), 1–54 (1998)

20. Harrison, P., Strulo, B.: SPADES – a process algebra for discrete event simulation.
Journal of Logic Computation 10(1), 3–42 (2000)

21. Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evalua-
tion. Theoretical Computer Science 274(1-2), 43–87 (2002)

22. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov pro-
cesses. Theoretical Computer Science 282(1), 5–32 (2002)

23. López, N., Núñez, M., Rubio, F.: An integrated framework for the analysis of asyn-
chronous communicating stochastic processes. Formal Aspects of Computing 16(3),
238–262 (2004)

24. Cleaveland, R., Lee, I., Lewis, P., Smolka, S.: A theory of testing for soft real-time
processes. In: SEKE 1996. 8th Int. Conf. on Software Engineering and Knowledge
Engineering, pp. 474–479 (1996)

25. de Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34, 83–133 (1984)

26. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
27. Yuen, S., Cleaveland, R., Dayar, Z., Smolka, S.: Fully abstract characterizations

of testing preorders for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.)
CONCUR 1994. LNCS, vol. 836, pp. 497–512. Springer, Heidelberg (1994)

28. Bernardo, M., Cleaveland, W.: A theory of testing for markovian processes. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 305–319. Springer,
Heidelberg (2000)

29. López, N., Núñez, M.: A testing theory for generally distributed stochastic pro-
cesses. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
321–335. Springer, Heidelberg (2001)

30. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware – Concepts and Tools 17(3), 103–120 (1996)

31. Núñez, M., Rodŕıguez, I.: Encoding PAMR into (timed) EFSMs. In: Peled, D.A., Vardi,
M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 1–16. Springer, Heidelberg (2002)

32. Núñez, M., Rodŕıguez, I.: Conformance testing relations for timed systems. In:
Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 103–117.
Springer, Heidelberg (2006)

33. López, N., Núñez, M., Rodŕıguez, I.: Specification, testing and implementation
relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1–
3), 228–248 (2006)

	Formal Testing of Systems Presenting Soft and Hard Deadlines
	Introduction
	Extending Finite State Machines with Time Intervals
	Implementation Relations
	Definition and Application of Tests
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

