Skip to main content

Protein Folding Properties from Molecular Dynamics Simulations

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4699))

Abstract

Protein folding simulations have contributed significantly to our understanding of the problem, since it is difficult to study individual molecules during the folding process. We have recently performed folding simulations of Chignolin, a decapeptide (Seibert et al., J. Mol. Biol. 354 (2006) p. 173) and introduced a new algorithm for deriving kinetics information as well as thermodynamics from the trajectories (Van der Spoel & Seibert, Phys. Rev. Lett. 96 (2006), p. 238102). Here we investigate the algorithm further and show that the folding reaction for Chignolin is a two-state folding reaction, in accord with experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hukushima, K., Nemoto, K.: J. Phys. Soc. Jpn. 65, 1604–1608 (1996)

    Google Scholar 

  2. Okabe, T., Kawata, M., Okamoto, Y., Mikami, M.: Chem. Phys. Lett.  335, 435–439 (2001)

    Google Scholar 

  3. Okamoto, Y.: J. Molec. Graph. Model, 22, 425–439 (2004)

    Google Scholar 

  4. Zhou, R., Berne, B.J., Germain, R.: Proc. Natl. Acad. Sci. U.S.A. 98, 14931–14936 (2001)

    Google Scholar 

  5. Garcia, A.E., Onuchic, J.N.: Proc. Natl. Acad. Sci. U.S.A. 100, 13898–13903 (2003)

    Google Scholar 

  6. Zhou, R.: Proc. Natl. Acad. Sci. U.S.A. 100, 13280–13285 (2003)

    Google Scholar 

  7. Gront, D., Kolinski, A., Skolnick, J.: J. Chem. Phys. 115, 1569–1574 (2001)

    Google Scholar 

  8. Pitera, J.W., Swope, W.: Proc. Natl. Acad. Sci. U.S.A. 100, 7587–7592 (2003)

    Google Scholar 

  9. Rao, F., Caflisch, A.: J. Chem. Phys. 119(7), 4035–4042 (2003)

    Google Scholar 

  10. Paschek, D., Garcia, A.E.: Phys. Rev. Lett. 93, 238105 (2004)

    Google Scholar 

  11. Seibert, M., Patriksson, A., Hess, B., van der Spoel, D.: J. Mol. Biol. 354, 173–183 (2005)

    Google Scholar 

  12. Snow, C.D., Sorin, E.J., Rhee, Y.M., Pande, V.S.: Annu. Rev. Biophys. Biomol. Struct. 34, 43–69 (2005)

    Google Scholar 

  13. van der Spoel, D., Seibert, M.M.: Phys. Rev. Lett. 96, 238102 (2006)

    Google Scholar 

  14. Honda, S., Yamasaki, K., Sawada, Y., Morii, H.: Structure Fold. Des. 12, 1507–1518 (2004)

    Google Scholar 

  15. Jorgensen, W.L.: Encyclopedia of Computational Chemistry, vol. 3, pp. 1986–1989. Wiley, New York (1998)

    Google Scholar 

  16. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: J. Chem. Phys. 79, 926–935 (1983)

    Google Scholar 

  17. Berendsen, H.J.C., Postma, J.P.M., DiNola, A., Haak, J.R.: J. Chem. Phys. 81, 3684–3690 (1984)

    Google Scholar 

  18. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: J. Chem. Phys. 103, 8577–8592 (1995)

    Google Scholar 

  19. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: J. Comp. Chem. 18, 1463–1472 (1997)

    Google Scholar 

  20. Miyamoto, S., Kollman, P.A.: J. Comp. Chem. 13, 952–962 (1992)

    Google Scholar 

  21. Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: Comp. Phys. Comm. 91, 43–56 (1995)

    Google Scholar 

  22. Lindahl, E., Hess, B.A., van der Spoel, D.: J. Mol. Mod. 7, 306–317 (2001)

    Google Scholar 

  23. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: J. Comp. Chem. 26, 1701–1718 (2005)

    Google Scholar 

  24. Nelder, J.A., Mead, R.: Computer J. 7, 308–315 (1965)

    Google Scholar 

  25. Luzar, A., Chandler, D.: Nature 379, 55–57 (1996)

    Google Scholar 

  26. Luzar, A.: J. Chem. Phys. 113, 10663–10675 (2000)

    Google Scholar 

  27. van der Spoel, D., van Maaren, P.J., Larsson, P., Timneanu, N.: J. Phys. Chem. B 110, 4393–4398 (2006)

    Google Scholar 

  28. Shirts, M.R., Pande, V.S.: Phys. Rev. Lett. 86, 4983–4986 (2001)

    Google Scholar 

  29. Snow, C.D., Nguyen, H., Pande, V.S., Gruebele, M.: Nature 420, 102–106 (2002)

    Google Scholar 

  30. Rhee, Y.M., Sorin, E.J., Jayachandran, G., Lindahl, E., Pande, V.S.: Proc. Natl. Acad. Sci. U.S.A. 101, 6456–6461 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bo Kågström Erik Elmroth Jack Dongarra Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Spoel, D., Patriksson, A., Seibert, M.M. (2007). Protein Folding Properties from Molecular Dynamics Simulations. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2006. Lecture Notes in Computer Science, vol 4699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75755-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75755-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75754-2

  • Online ISBN: 978-3-540-75755-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics