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1 Introduction

Dense linear algebra (DLA) forms the core of many scientific computing appli-
cations. Consequently, there is continuous interest and demand for the devel-
opment of increasingly better algorithms in the field. Here ’better’ has a broad
meaning, and includes improved reliability, accuracy, robustness, ease of use, and
most importantly new or improved algorithms that would more efficiently use
the available computational resources to speed up the computation. The rapidly
evolving high end computing systems and the close dependence of DLA algo-
rithms on the computational environment is what makes the field particularly
dynamic.

A typical example of the importance and impact of this dependence is the
development of LAPACK [1] (and later ScaLAPACK [2]) as a successor to the
well known and formerly widely used LINPACK [3] and EISPACK [3] libraries.
Both LINPACK and EISPACK were based, and their efficiency depended, on
optimized Level 1 BLAS [4]. Hardware development trends though, and in par-
ticular an increasing Processor-to-Memory speed gap of approximately 50% per
year, started to increasingly show the inefficiency of Level 1 BLAS vs Level 2
and 3 BLAS, which prompted efforts to reorganize DLA algorithms to use block
matrix operations in their innermost loops. This formed LAPACK’s design phi-
losophy. Later ScaLAPACK extended the LAPACK library to run scalably on
distributed memory parallel computers.

There are several current trends and associated challenges that influence the
development of DLA software libraries. The main purpose of this work is to
identify these trends, address the new challenges, and consequently outline a
prospectus for new releases of the LAPACK and ScaLAPACK libraries.

2 Motivation

LAPACK and ScaLAPACK are widely used software libraries for numerical lin-
ear algebra. LAPACK provides routines for solving systems of simultaneous lin-
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ear equations, least-squares solutions of linear systems of equations, eigenvalue
problems, and singular value problems. The ScaLAPACK (Scalable LAPACK)
library includes a subset of LAPACK routines redesigned for distributed mem-
ory MIMD parallel computers. There have been over sixty-eight million web hits
at www.netlib.org (for the associated libraries LAPACK, ScaLAPACK, CLA-
PACK and LAPACK95). LAPACK and ScaLAPACK are used to solve leading
edge science problems and they have been adopted by many vendors and software
providers as the basis for their own libraries, including AMD, Apple (under Mac
OS X), Cray, Fujitsu, HP, IBM, Intel, NEC, SGI, several Linux distributions
(such as Debian), NAG, IMSL, the MathWorks (producers of MATLAB), In-
teractiveSupercomputing.com, and PGI. Future improvements in these libraries
will therefore have a large impact on the user communities and their ability to
advance scientific and technological work.

The ScaLAPACK and LAPACK development is mostly driven by

– algorithm research
– the result of the user/vendor survey
– the demands and opportunities of new architectures and programming lan-

guages
– the enthusiastic participation of the research community in developing and

offering improved versions of existing Sca/LAPACK codes [5].

The user base is both large and diverse, ranging from users solving the largest
and most challenging problems on leading edge architectures to the much larger
class of users solving smaller problems of greater variety.

The rest of this paper is organized as follows.

Sec. 3 discusses challenges in making current algorithms run efficiently, scal-
ably, and reliably on future architectures.

Sec. 4 discusses two kinds of improved algorithms: faster ones and more ac-
curate ones. Since it is hard to improve both simultaneously, we choose to
include a new faster algorithm if it is about as accurate as previous algo-
rithms, and we include a new more accurate algorithm if it is at least about
as fast as the previous algorithms.

Sec. 5 describes new linear algebra functionality that will be included in the
next Sca/LAPACK release.

Sec. 6 describes our proposed software structure for Sca/LAPACK.
Sec. 7 describes a few initial performance results.

3 Challenges of Future Architectures

Parallel computing is becoming ubiqitous at all scales of computation: It is no
longer just exemplified by the TOP 500 list of the fastest computers in the world,
where over 400 have 513 or more processors, and over 100 have 1025 or more
processors. In a few years typical laptops are predicted to have 64 cores per
multicore processor chip, and up to 256 hardware threads per chip. So unless
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all algorithms (not just numerical linear algebra!) can exploit this parallelism,
they will not only cease to speed up, but in fact slow down compared to machine
peak.

Furthermore, the gap between processor speed and memory speed continues
to grow exponentially: processor speeds are improving at 59% per year, main
memory bandwidth at only 23%, and main memory latency at a mere 5.5% [6].
This means that an algorithm that is efficient today, because it does enough
floating point operations per memory reference to mask slow memory speed,
may not be efficient in the near future. The same story holds for parallelism,
with communication network bandwidth improving at just 26%, and network
latency unimproved since the Cray T3E in 1996 until recently.

The large scale target architectures of importance for LAPACK and ScaLA-
PACK include platforms like the Cray X1 at Oak Ridge National Laboratory, the
Cray XT3 (Red Storm) at Sandia National Laboratory, the IBM Blue Gene/L
system at Lawrence Livermore National Laboratory, a large Opteron cluster at
Lawrence Berkeley National Laboratory (LBNL), a large Itanium-2 cluster at
Pacific Northwest National Laboratory, the IBM SP3 at LBNL, and near term
procurements underway at various DOE and NSF sites.

Longer term the High Productivity Computing Systems (HPCS) program
[7] is supporting the construction of petascale computers. At the current time
two vendors are designing hardware and software platforms that should scale
to a petaflop by 2010: Cray’s Cascade system (with the Chapel programming
language), and IBM’s PERCS system (with X10). Sun is also building a language
called Fortress for petascale platforms. Other interesting platforms include IBM’s
Blue Planet [8], and vector extensions to IBM’s Power systems called ViVA and
ViVA-2.

As these examples illustrate, LAPACK and ScaLAPACK will have to run
efficiently and correctly on a much wider array of platforms than in the past. It
will be a challenge to map LAPACK’s and ScaLAPACK’s current software hier-
archy of BLAS/BLACS/PBLAS/LAPACK/ScaLAPACK efficiently to all these
platforms. For example, on a platform with multiple levels of parallelism (multi-
cores, SMPs, distributed memory) would it be better to treat each SMP node as
a ScaLAPACK process, calling BLAS which are themselves parallel, or should
each processor within the SMP be mapped to a process, or something else? At a
minimum the many tuning parameters (currently hard-coded within ILAENV)
will have to be tuned for each platform; see sec. 6.

A more radical departure from current practice would be to make our al-
gorithms asynchronous. Currently our algorithms are block synchronous, with
phases of computation followed by communication with (implicit) barriers. But
on networks than can overlap communication and computation, or on multi-
threaded shared memory machines, block synchrony can leave a significant frac-
tion of the platform idle at any time. For example, the LINPACK benchmark
version of LU decomposition exploits such asynchrony and can runs 2x faster
than its block synchronous ScaLAPACK counterpart. See section 6.3.
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Future platform are also likely to be heterogeneous, in performance and pos-
sibly floating point semantics. One example of heterogeneous performance is a
cluster purchased over time, with both old, slow processors and new, fast proces-
sors. Varying user load can also cause performance heterogeneity. But there is
even performance heterogeneity within a single processor. The best known exam-
ples are the x86/x86-64 family of processors with SSE and 3DNow! instruction
sets, PowerPC family chips with Altivec extensions such as IBM Cell, scalar
versus vector units on the Cray X1, X1E and XD1 platforms, and platforms
with both GPUs and CPUs. In the case of Cell, single precision runs at 10x
the speed of double precision. Speed differences like this motivate us to consider
using rather different algorithms than currently in use, see sec.4.

Heterogeneities can also arise in floating point semantics. This is obvious in
case of clusters of different platforms, but also within platforms. To illustrate one
challenge imagine that one processor runs fastest when handling denormalized
numbers according to the IEEE 754 floating point standard [9, 10], and another
runs fastest when flushing them to zero. On such a platform sending a message
containing a denormalized number from one processor to another can change its
value (to zero) or even lead to a trap. Either way, correctness is a challenge, and
not just for linear algebra.

4 Better Algorithms.

Three categories of routines are going to be addressed in Sca/LAPACK: (1) im-
proved algorithms for functions in LAPACK, which also need to be put in ScaLA-
PACK (discussed here) (2) functions now in LAPACK but not ScaLAPACK
(discussed in section 5), and (3) functions in neither LAPACK nor ScaLAPACK
(also discussed in section 5).

There are a number of faster and/or more accurate algorithms that are going
to be incorporated in Sca/LAPACK. The following is a list of each set of future
improvements.

4.1 Algorithmic improvements for the solution of linear systems

1. The recent developments of extended precision arithmetic [11–13, 4] in the
framework of the new BLAS standard allow the use of higher precision itera-
tive refinement to improve computed solutions. Recently, it has been shown
how to modify the classical algorithm of Wilkinson [14, 15] to compute not
just an error bound measured by the infinity (or max) norm, but also a
component-wise, relative error bound, i.e. a bound on the number of correct
digits in each component. Both error bounds can be computed for a tiny
O(n2) extra cost after the initial O(n3) factorization [16].

2. As mentioned in sec. 3, there can be a large speed difference between different
floating point units on the same processor, with single precision running 10x
faster than double precision on an IBM Cell, and 2x faster on the SSE
unit than the x86 unit on some Intel platforms. We can exploit iterative
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refinement to run faster in these situations. Suppose we want to solve Ax = b
where all the data types are double. The idea is to round A to single, perform
its LU factorization in single, and then do iterative refinement with the
computed solution x̂ and residual r = Ax̂− b in double, stopping when the
residual is as small as it would be had the LU decomposition been done in
double. This mean that the O(n3) work of LU decomposition will run at the
higher speed of single, and only the extra O(n2) of refinement will run in
double. This approach can get a factor of 2x speedup on a laptop with x86
and SSE units, and promises more on Cell. Of course it only converges if A’s
condition number is less than about 1/

√
ε, where ε is machine precision, but

in this common case it is worthwhile. For algorithms beyond solving Ax = b
and least squares, such as eigenvalue problems, current iterative refinement
algorithms increase the O(n3) work by a small constant factor. But if there
is a factor of 10x to be gained by working in single, then they are still likely
to be worthwhile.

3. Gustavson, K̊agström and others have recently proposed a new set of recur-
sive data structures for dense matrices [17–19]. These data structures repre-
sent a matrix as a collection of small rectangular blocks (chosen to fit inside
the L1 cache), which are stored using one of several “space filling curve”
orderings. The idea is that the data structure and associated recursive ma-
trix algorithms are cache oblivious [20], that is they optimize cache locality
without any explicit blocking such as conventionally done in LAPACK and
ScaLAPACK, or any of the tuning parameters (beyond the L1 cache size).
The reported benefits of these data structures and associated algorithms
to which they apply are usually slightly higher peak performance on large
matrices and a faster increase towards peak performance as the dimension
grows. Sometimes, slightly modified, tuned BLAS are used for operations
on matrices assumed to be in L1 cache. The biggest payoff by far is for
factoring symmetric matrices stored in packed format, where the current
LAPACK routines are limited to the performance of Level 2 BLAS, which
do O(1) flops per memory reference. Whereas the recursive algorithms can
use the faster Level 3 BLAS, which do O(n) flops per memory reference and
can be optimized to hide slower memory bandwidth and latencies.
The drawback of these algorithms is their use of a completely different and
rather complicated data structure, which only a few expert users could be
expected to use. That leaves the possibility of copying the input matrices
in conventional column-major (or row-major) format into the recursive data
structure. Furthermore, they are only of benefit for “one-sided factoriza-
tions” (LU , LDLT , Cholesky, QR), but none of the “two-sided factoriza-
tions” needed for the eigenvalue decomposition (EVD) or SVD (there is a
possibility they might be useful when no eigenvectors or singular vectors are
desired).
The factorization of symmetric packed matrices will be incorporated into LA-
PACK using the recursive data structures, copying the usual data structure
in-place to the recursive data structure. The copying costs O(n2) contrast to
the overall O(n3) operation count, so the asymptotic speeds should be the
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same. Even if the recursive data structures will be used for other parts of
LAPACK, the same column-major interface data structures will be kept for
the purpose of ease of use.

4. Ashcraft, Grimes and Lewis [21] proposed a variation of Bunch-Kaufman
factorization for solving symmetric indefinite systems Ax = b by factoring
A = LDLT with different pivoting. The current Bunch-Kaufman factoriza-
tion is backward stable for the solution of Ax = b but can produce unbounded
L factors. Better pivoting provides better accuracy for applications requiring
bounded L factors, like optimization and the construction of preconditioners
[15, 22].

5. A Cholesky factorization with diagonal pivoting [23, 15] that avoids a break-
down if the matrix is nearly indefinite/rank-deficient is valuable for op-
timization problems (and has been requested by users) and is also use-
ful for the high accuracy solution of the symmetric positive definite EVD,
see below. For both this pivoting strategy and the one proposed above by
Ashcraft/Grimes/Lewis, published results indicate that, on uniprocessors
(LAPACK), the extra search required (compared to Bunch-Kaufman) has a
small impact on performance. This may not be the case for distributed mem-
ory (ScaLAPACK) in which the extra searching and pivoting may involve
nonnegligible communication costs.

6. Progress has been made in the development of new algorithms for comput-
ing or estimating the condition number of tridiagonal [24, 25] or triangular
matrices [26]. These algorithms play an important role in obtaining error
bounds in matrix factorizations, and the most promising algorithms should
be evaluated and incorporated in the future release.

4.2 Algorithmic improvements for the solution of eigenvalue
problems

Algorithmic improvements to the current LAPACK eigensolvers concern both
accuracy and performance.

1. Braman, Byers, and Mathias proposed in their SIAM Linear Algebra Prize
winning work [27, 28] an up to 10x faster Hessenberg QR-algorithm for the
nonsymmetric EVD. This is the bottleneck of the overall nonsymmetric
EVD, for which significant speedups should be expected. Byers recently spent
a sabbatical with James Demmel where he did much of the software engineer-
ing required to convert his prototype into LAPACK format. An extension
of this work with similar benefits will be extended to the QZ algorithm for
Hessenberg-triangular pencils, with collaboration from Mehrmann. Similar
techniques will be exploited to accelerate the routines for (block) companion
matrices; see Sec. 5.2.

2. An early version of an algorithm based on Multiple Relatively Robust Repre-
sentations (MRRR) [29–32] for the tridiagonal symmetric eigenvalue prob-
lem (STEGR) was incorporated into LAPACK version 3. This algorithm
promised to replace the prior O(n3) QR algorithm (STEQR) or ≈ O(n2.3)
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divide & conquer (STEDC) algorithm with an O(n2) algorithm. It should
have cost O(nk) operations to compute the nk entries of k n-dimensional
eigenvectors, the minimum possible work, in a highly parallel way. In fact,
the algorithm in LAPACK v.3 did not cover all possible eigenvalue distribu-
tions and resorted to a slower and less accurate algorithm based on classical
inverse iteration for “difficult” (highly clustered) eigenvalue distributions.
The inventors of MRRR, Parlett and Dhillon, have continued to work on
improving this algorithm. Very recently, Parlett and Vömel have proposed a
solution for the last hurdle [33] and now pass the Sca/LAPACK tests for the
most extreme examples of highly multiple eigenvalues. (These arose in some
tests from very many large “glued Wilkinson matrices” constructed so that
large numbers of mathematically distinct eigenvalues agreed to very high
accuracy, much more than double precision. The proposed solution involves
randomization, making small random perturbations to an intermediate rep-
resentation of the matrix to force all eigenvalues to disagree in at least 1 or
2 bits.) Given the solution to this last hurdle, this algorithm may be prop-
agated to all the variants of the symmetric EVD (eg., banded, generalized,
packed, etc.) in LAPACK. A parallelized version of this algorithm will be
available for the corresponding ScaLAPACK symmetric EVD routines. Cur-
rently ScaLAPACK only has parallel versions of the oldest, least efficient
(or least accurate) LAPACK routines. This final MRRR algorithm requires
some care at load balancing because the Multiple Representations used in
MRRR represent subsets of the spectrum based on how clustered they are,
which may or may not correspond to a good load balance. Initial work in
this area is very promising [34].

3. The MRRR algorithm should in principle also be applied to the SVD, re-
placing the current O(n3) or ≈ O(n2.3) bidiagonal SVD algorithms with an
O(n2) algorithm. Associated theory and a preliminary prototype implemen-
tation have been developed [35], but some potential obstacles to guaranteed
stability remain [36].

4. There are three phases in the EVD (or SVD) of a dense or band matrix:
(1) reduction to tridiagonal (or bidiagonal) form, (2) the subsequent tridiag-
onal EVD (or bidiagonal SVD), and (3) backtransforming the eigenvectors
(or singular vectors) of the tridiagonal (or bidiagonal) to correspond to the
input matrix. If many (or all) eigenvectors (or singular vectors) are desired,
the bottleneck had been phase 2. But now the MRRR algorithm promises
to make phase 2 cost just O(n2) in contrast to the O(n3) costs of phases 1
and 3. In particular, Howell and Fulton [37] recently devised a new variant
of reduction to bidiagonal form for the SVD that has the potential to elimi-
nate half the memory references by reordering the floating point operations
(flops). Howell and Fulton fortunately discovered this algorithm during the
deliberations of the recent BLAS standardization committee, because its im-
plementation required new BLAS routines (routines GEMVT and GEMVER
[4]) which were then added to the standard. These routines are called “Level
2.5 BLAS” because they do many more than O(1) but fewer than O(n) flops
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per memory reference. Preliminary tests indicate speedups of up to nearly
2x.

5. For the SVD, when only left or only right singular vectors are desired, there
are other variations on phase 1 to consider that reduce both floating point
operations and memory references [38, 39]. Initial results indicate reduced
operation counts by a ratio of up to .75, but at the possible cost of numerical
stability for some singular vectors.

6. When few or no vectors are desired, the bottleneck shifts entirely to phase
1. Bischof and Lang [40] have proposed a Successive Band Reduction (SBR)
algorithm that will asymptotically (for large dimension n) change most of
the Level 2 BLAS operations in phase 1 to Level 3 BLAS operations. They
report speedups of almost 2.4x. This approach is not suitable when a large
number of vectors are desired because the cost of phase 3 is much larger per
vector. In other words, depending on how many vectors are desired, either
the SBR approach will be used or the one-step reduction (the Howell/Fulton
variant for the SVD and the current LAPACK code for the symmetric EVD).
And if only left or only right singular vectors are desired, the algorithms
described in bullet 5 might be used. This introduces a machine-dependent
tuning parameter to choose the right algorithm; see tuning of this and other
parameters in Sec. 6.2. It may also be possible to use Gustavson’s recursive
data structures to accelerate SBR.

7. Drmač and Veselić have made significant progress on the performance of
the one-sided Jacobi algorithm for computing singular values with high rel-
ative accuracy [41, 42]. In contrast to the algorithms described above, their’s
can compute most or all of the significant digits in tiny singular values when
these digits are determined accurately by the input data and when the above
algorithms return only roundoff noise. The early version of this algorithm in-
troduced by James Demmel in [43, 41] was quite slower than the conventional
QR-iteration-based algorithms and much slower than the MRRR algorithms
discussed above. But recent results reported by Drmač at [44] show that a
combination of clever optimizations have finally led to an accurate algorithm
that is faster than the original QR-iteration-based algorithm. Innovations in-
clude preprocessing by QR factorizations with pivoting, block application of
Jacobi rotations, and early termination. Two immediate applications include
the (full matrix) SVD and the symmetric positive-definite EVD, by first re-
ducing to the SVD using the Cholesky-with-pivoting algorithm discussed
earlier.

8. Analogous, high accuracy algorithms for the symmetric indefinite EVD have
also been designed. One approach by Slapničar [45, 46] uses a J-symmetric
Jacobi algorithm with hyperbolic rotations, and another one by Dopico/
Molera/ Moro [47] does an SVD, which “forgets” the signs of the eigenval-
ues and then reconstructs the signs. The latter can directly benefit by the
Drmač/Veselič algorithm above.
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5 Added Functionality

5.1 Putting more of LAPACK into ScaLAPACK.

Table 1 compares the available data types in the latest releases of LAPACK and
ScaLAPACK. After the data type description, the prefixes used in the respec-
tive libraries are listed. A blank entry indicates that the corresponding type is
not supported. The most important omissions in ScaLAPACK are as follows:
(1) There is no support for packed storage of symmetric (SP,PP) or Hermitian
(HP,PP) matrices, nor the triangular packed matrices (TP) resulting from their
factorizations (using ≈ n2/2 instead of n2 storage); these have been requested
by users. The interesting question is what data structure to support. One pos-
sibility is recursive storage as discussed in Sec. 5.2 [48, 17–19]. Alternatively the
packed storage may be partially expanded into a 2D array in order to apply
Level 3 BLAS (GEMM) efficiently. Some preliminary ScaLAPACK prototypes
support packed storage for the Cholesky factorization and the symmetric eigen-
value problem [49]. (2) ScaLAPACK only offers limited support of band matrix
storage and does not specifically take advantage of symmetry or triangular form
(SB,HB,TB). (3) ScaLAPACK does not support data types for the standard
(HS) or generalized (HG, TG) nonsymmetric EVDs; see further below.

Table 2 compares the available functions in LAPACK and ScaLAPACK. The
relevant user interfaces (’drivers’)are listed by subject and acronyms are used for
the software in the respective libraries. Table 2 also shows that,in the ScaLA-
PACK library, the implementation of some driver routines and their specialized
computational routines are currently missing.

For inclusion in ScaLAPACK:

1. The solution of symmetric linear systems (SYSV), combined with the use of
symmetric packed storage (SPSV), will be a significant improvement with
respect to both memory and computational complexity over the currently
available LU factorization. It has been requested by users and is expected
to be used widely. In addition to solving systems it is used to compute
the inertia (number of positive, zero and negative eigenvalues) of symmetric
matrices.

2. EVD and SVD routines of all kinds (standard for one matrix and general-
ized for two matrices) are missing from ScaLAPACK. For SYEV, ScaLA-
PACK has p syev (QR algorithm), p syevd (divide and conquer), p syevx
(bisection and inverse iteration); a prototype code is available for MRRR
(p syevr). For SVD, ScaLAPACK has p gesvd (QR algorithm). And for
NEV, ScaLAPACK has p gehrd (reduction to Hessenberg form), p lahqr
(reduction of a Hessenberg matrix to Schur form). This two routines enable
users to get eigenvalues of a nonsymmetric matrix but not (easily) the eigen-
vectors. The MRRR algorithm is expected to be exploited for the SVD and
symmetric EVD as are new algorithms of Braman/Byers/Mathias for the
nonsymmetric EVD (see Sec. 4), work is under way to get the QZ algorithm
for the nonsymmetric generalized eigenvalue problem.
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LAPACK SCALAPACK

general band GB GB, DB
general (i.e., unsymmetric, in some cases rectangular) GE GE
general matrices, generalized problem GG GG
general tridiagonal GT DT
(complex) Hermitian band HB
(complex) Hermitian HE HE
upper Hessenberg matrix, generalized problem HG
(complex) Hermitian, packed storage HP
upper Hessenberg HS LAHQR only
(real) orthogonal, packed storage OP
(real) orthogonal OR OR
positive definite band PB PB
general positive definite PO PO
positive definite, packed storage PP
positive definite tridiagonal PT PT
(real) symmetric band SB
symmetric, packed storage SP
(real) symmetric tridiagonal ST ST
symmetric SY SY
triangular band TB
generalized problem, triangular TG
triangular, packed storage TP
triangular (or in some cases quasi-triangular) TR TR
trapezoidal TZ TZ
(complex) unitary UN UN
(complex) unitary, packed storage UP

Table 1. Data types supported in LAPACK and ScaLAPACK. A blank entry indicates
that the corresponding format is not supported in ScaLAPACK.

3. LAPACK provides software for the linearly constrained (generalized) least
squares problem, and users in the optimization community will benefit from
a parallel version. In addition, algorithms for rank deficient, standard least
squares problems based on the SVD are missing from ScaLAPACK; it may
be that a completely different algorithm based on the MRRR algorithm (see
Sec. 4) may be more suitable for parallelism instead of the divide & conquer
(D&C) algorithm that is fastest for LAPACK.

4. Expert drivers that provide error bounds, or other more detailed structural
information about eigenvalue problems, should be provided.

5.2 Extending current functionality.

This subsection outlines possible extensions of the functionalities available in
LAPACK and ScaLAPACK. These extensions are mostly motivated by users
but also by research progress.
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LAPACK SCALAPACK

Linear Equations GESV (LU) PxGESV
POSV (Cholesky) PxPOSV
SYSV (LDLT ) missing

Least Squares (LS) GELS (QR) PxGELS
GELSY (QR w/pivoting) missing
GELSS (SVD w/QR) missing
GELSD (SVD w/D&C) missing

Generalized LS GGLSE (GRQ) missing
GGGLM (GQR) missing

Symmetric EVD SYEV (QR) PxSYEV
SYEVD (D&C) PxSYEVD
SYEVR (RRR) missing

Nonsymmetric EVD GEES (HQR) missing driver
GEEV (HQR + vectors) missing driver

SVD GESVD (QR) PxGESVD (missing complex C/Z)
GESDD (D&C) missing

Generalized Symmetric EVD SYGV (inverse iteration) PxSYGVX
SYGVD (D&C) missing

Generalized Nonsymmetric EVD GGES (HQZ) missing
GGEV (HQZ + vectors) missing

Generalized SVD GGSVD (Jacobi) missing
Table 2. LAPACK codes and the corresponding parallel version in ScaLAPACK. The
underlying LAPACK algorithm is shown in parentheses. “Missing” means both drivers
and computational routines are missing. “Missing driver” means that the underlying
computational routines are present.

1. Several updating facilities are planned to be included in a new release. While
updating matrix factorizations like Cholesky, LDLT , LU, QR [50] have a
well established theory and unblocked (i.e. non cache optimized) implemen-
tations exist, e.g. in LINPACK [3], the efficient update of the SVD is a
current research topic [51]. Furthermore, divide & conquer based techniques
are promising for a general framework of updating eigendecompositions of
submatrices.

2. Semi-separable matrices are generalizations of the inverses of banded matri-
ces, with the property that any rectangular submatrix lying strictly above or
strictly below the diagonal has a rank bounded by a small constant. Recent
research has focused on methods exploiting semiseparability, or being a sum
of a banded matrix and a semiseparable matrix, for better efficiency [52, 53].
The development of such algorithms is being considered in a future release.
Most exciting are the recent observations of Gu, Bini and others [54] that
a companion matrix is banded plus semiseparable, and that this structure
is preserved under QR iteration to find its eigenvalues. This observation let
us accelerate the standard method used in MATLAB and other libraries for
finding roots of polynomials from O(n3) to O(n2). An initial rough prototype
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of this code becomes faster than the highly tuned LAPACK eigensolver for n
between 100 and 200 and then becomes arbitrarily faster for larger n. While
the current algorithm has been numerically stable on all examples tested so
far, more work needs to be done to guarantee stability in all cases. The same
technique should apply to finding eigenvalues of block companion matrices,
i.e. matrix polynomials, yielding speedups proportional to the degree of the
matrix polynomial.

3. Eigenvalue problems for matrix polynomials [55] are common in science and
engineering. The most common case is the quadratic eigenvalue problem
(λ2M + λD + K)x = 0, where typically M is a mass matrix, D a damping
matrix, K a stiffness matrix, λ a resonant frequency, and x a mode shape.
The classical solution is to linearize this eigenproblem, asking instead for the

eigenvalues of a system of twice the size: λ·
[

0 I
M D

]
·
[

y1

y2

]
+

[
I 0
0 K

]
·
[

y1

y2

]
= 0

where y2 = x and y1 = λx. But there are a number of ways to linearize, and
some are better at preserving symmetries in the solution of the original
problem or saving more time than others. There has been a great deal of
recent work on picking the right linearization and subsequent algorithm for
its EVD to preserve desired structures. In particular, for the general problem∑k

i=0 λi ·Ai · x = 0, the requested cases are symmetric (Ai = AT
i , arising in

mechanical vibrations without gyroscopic terms), its even (Ai = (−1)iAT
i )

and odd (Ai = (−1)i+1AT
i ) variations (used with gyroscopic terms), and

palindromic (Ai = AT
k−i, arising in discrete time periodic and continuous

time control). Recent references include [56–65].

4. Matrix functions (square root, exponential, sign function) play an important
role in the solution of differential equations in both science and engineering,
and have been requested by users. Recent research progress has led to the
development of several new algorithms [66–75] that could be included in a
future release.

5. The eigenvalue and singular value decomposition of products and quotients
of matrices play an important role in control theory. Such functionalities, in-
corporated from the software library SLICOT [76] are being considered, using
the improved underlying EVD algorithms. Efficient solvers for Sylvester and
Lyapunov equations that are also currently in SLICOT could be incorpo-
rated.

6. Multiple user requests concern the development of out-of-core versions of
matrix factorizations. ScaLAPACK prototypes [49] are under development
that implement out-of-core data management for the LU, QR, and Cholesky
factorizations [77, 78]. Users have asked for two kinds of parallel I/O: to a
single file from a sequential LAPACK program (possible with sequential I/O
in the reference implementation), and to a single file from MPI-based parallel
I/O in ScaLAPACK.
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6 Software

6.1 Improving Ease of Use

“Ease of use” can be classified as follows: ease of programming (which includes
the possibility to easily convert from serial to parallel, form LAPACK to ScaLA-
PACK and the possiblity to use high level interfaces), ease of obtaining pre-
dictable results in dynamic environments (for debugging and performance), and
ease of installation (including performance tuning). Each will be discussed in
turn.

There are tradeoffs involved in each of these subgoals. In particular, ultimate
ease of programming, exemplified by typing x = A\b in order to solve Ax = b
(paying no attention to the data type, data structure, memory management or
algorithm choice) requires an infrastructure and user interface best left to the
builders of systems like MATLAB and may come at a significant performance
and reliability penalty. In particular, many users now exercise, and want to
continue to exercise, detailed control over data types, data structures, memory
management and algorithm choice, to attain both peak performance and relia-
bility (eg., not running out of memory unexpectedly). But some users also would
like Sca/LAPACK to handle work space allocation automatically, make it pos-
sible to call Sca/LAPACK on a greater variety of user-defined data structures,
and pick the best algorithm when there is a choice.

To accomodate these “ease of programming” requests as well as requests to
make the Sca/LAPACK code accessible from other languages than Fortran, the
following steps are considered:

1. Produce new F95 modules for the LAPACK drivers, for work-space alloca-
tion and algorithm selection.

2. Produce new F95 modules for the ScaLAPACK drivers, which convert, if
necessary, the user input format (eg., a simple block row layout across pro-
cessors) to the optimal one for ScaLAPACK (which may be a 2D block
cyclic layout with block sizes that depend on the matrix size, algorithm and
architecture). Allocate memory as needed.

3. Produce LAPACK and ScaLAPACK wrappers in other languages. Based on
current user surveys, these languages will tentatively be C, C++, Python
and MATLAB.

See section 6.2 for details on the software engineering approach to these tasks.
Ease of conversion from serial code (LAPACK) to parallel code (ScaLA-

PACK) is done by making the interfaces (at least at the driver level) as similar
as possible. This includes expanding ScaLAPACK’s functionality to include as
much of LAPACK as possible (see section 5).

Another ease-of-programming request is improved documentation. The Sca/
LAPACK websites are continously developed to enable ongoing user feedback
and support and the websites employ tools like bugzilla to track reported bugs.

Obtaining predictable results in a dynamic environment is important for
debugging (to get the same answer when the code is rerun), for reproducibility,
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auditability (for scientific or legal purposes), and for performance (so that run-
times do not vary widely and unpredictably).

First consider getting the same answer when the problem is rerun. To estab-
lish reasonable expectations, consider 3 cases: (1) Rerunning on different comput-
ers with different compilers. Reproducibility here is more than one can expect.
(2) Rerunning on the same platform (or cluster) but with different data layouts
or blocking parameters. Reproducibility here is also more than the user can ex-
pect, because roundoff errors will differ as, say, matrix products are computed
in different orders. (3) Just typing “a.out” again with the same inputs. Repro-
ducibility here should be the user goal, but it is not guaranteed because asyn-
chronous communication can result in, for example, dot products of distributed
vectors being computed in different orders with different roundoff errors. Using
an existing switch in the BLACS to insist on the same order of communication
(with an unavoidable performance penalty) will address this particular prob-
lem, but investigations are underway to know whether this is the only source of
nonreproducibility (asynchrony in tuned SMP BLAS is another possible source,
even for “sequential” LAPACK). As more fully asynchronous algorithms are ex-
plored to get higher performance (see section 4), this problem becomes more
interesting. Reproducibility will obviously come with a performance penalty but
is important for debugging of codes that call Sca/LAPACK and for situations
where auditability is critical.

Now consider obtaining predictable performance, in the face of running on a
cluster where the processor subset that actually performs the computation may
be chosen dynamically, and have a dynamically varying load of other jobs. This
difficult problem is discussed further in section 6.2.

Ease of installation, which may include platform-specific performance tuning,
depends on the multiple modes of access of the Sca/LAPACK libraries: (1) Some
users may use vendor-supplied libraries prebuilt (and pretuned) on their plat-
forms, so their installation needs are already well addressed. (2) Some users may
use netlib to download individual routines and the subroutines they call (but
not the BLAS, which must be supplied separately). These users have decided to
perform the installations on their own (perhaps for educational purposes). For
these users, it can be made possible to select an architecture from a list, so that
the downloaded code has parameter values that are quite likely to optimize the
user’s performance. (3) Other users may download the entire package from netlib
and install and tune it on their machines. The use of autoconf and automatic
performance tuning should be expected.

Different users will want different levels of installation effort since complete
testing and performance tuning can take a long time. For performance tuning, a
database of pretuned parameters for various computing platforms will be built,
and if the user indicates that he is happy with the pretuned parameters, per-
formance tuning can be sidedstepped. As discussed in section 6.2, there is a
spectrum of tuning effort possible, depending on what fraction of peak perfor-
mance one seeks and how long one is willing to take to tune. Similarly, testing
the installation for correctness can be done at at least 4 levels (and differently
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for each part of the library): (1) No test cases need be run at all if the user
does not want to. (2) A few small test cases can be run to detect a flawed in-
stallation but not failures on difficult numerical cases. (3) The current test set
can be run, which is designed for a fairly thorough numerical testing, and in
fact not infrequently indicates error bounds exceeding tight thresholds on some
problems and platforms. Some of these test cases are known failure modes for
certain algorithms. For example, inverse iteration is expected to sometimes fail
to get orthogonal eigenvectors on sufficiently clustered eigenvalues, but it de-
pends on the vagaries of roundoff. (4) More extensive “torture test” sets are
used internally for development, which the most demanding users (or compet-
ing algorithm developers) should use for testing. If only for the sake of future
algorithm developers, these extensive test sets should be easily available.

6.2 Improved Software Engineering

The following is a description of the Sca/LAPACK software engineering (SWE)
approach. The main goals are to keep the substantial code base maintainable,
testable and evolvable into the future as architectures and languages change.
Maintaining compatibility with other software efforts and encouraging 3rd party
contributions to the efforts of the Sca/LAPACK team are also goals [5].

These goals involve tradeoffs. One could explore starting “from scratch”,
using higher level ways to express the algorithms from which specific imple-
mentations could be generated. This approach yields high flexibility allowing
the generation of code that is optimized for future computing platforms with
different layers of parallelism, different memory hierarchies, different ratios of
computation rate to bandwidth to latency, different programming languages and
compilers, etc. Indeed, one can think of the problem as implementing the follow-
ing meta-program:

(1) for all linear algebra problems
(linear systems, eigenproblems, ...)

(2) for all matrix types
(general, symmetric, banded, ...)

(3) for all data types
(real, complex, single, double, higher precision)

(4) for all machine architectures
and communication topologies

(5) for all programming interfaces

(6) provide the best algorithm(s) available in terms of
performance and accuracy (‘‘algorithms’’ is plural
because sometimes no single one is always best)

The potential scope can appear quite large, requiring a judicious mixture of
prioritization and automation. Indeed, there is prior work in automation [79], but
so far this work has addressed only part of the range of algorithmic techniques
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Sca/LAPACK needs (eg., not eigenproblems), it may not easily extend to more
asynchronous algorithms and still needs to be coupled to automatic performance
tuning techniques. Still, some phases of the meta-program are at least partly
automatable now, namely steps (3) through (5) (see below).

Note that line (5) of the meta-program is “programming interfaces” not “pro-
gramming languages,” because the question of the best implementation language
is separate from providing ways to call it (from multiple languages). Currently
Sca/LAPACK is written in F77. Over the years, the Sca/LAPACK team and
others have built on this to provide interfaces or versions in other languages:
LAPACK95 [80] and LAPACK3E [81] for F95 (LAPACK3E providing a straight-
forward wrapper, and LAPACK95 using F95 arrays to simplify the interfaces at
some memory and performance costs), CLAPACK in C [82] (translated, mostly
automatically, using f2c [83]), LAPACK++ [84], TNT [85] in C++, and JLA-
PACK in Java [86] (translated using f2j).

First is the SWE development plan and then the SWE research plan.

1. the core of Sca/LAPACK will be maintained in Fortran, adopting those fea-
tures of F95 that most improve ease-of-use and ease-of-development, but do
not prevent the most demanding users from attaining the highest perfor-
mance and reliable control over the run-time environment. Keeping Fortran
is justified for cost and continuity reasons, as well as the fact that the most
effective optimizing compilers still work best on Fortran (even when they
share “back ends” with the C compiler, because of the added difficulty of
discerning the absence of aliasing in C) [87].
The F95 features adopted include recursion (to support new matrix data
structures and associated algorithms discussed in section 4), modules (to
support production of versions for different precisions, beyond single and
double), and environmental enquiries (to replace xLAMCH), but not auto-
matic workspace allocation (see the next bullet).

2. F95 versions of the Sca/LAPACK drivers will be provided (which will usually
be wrappers) to improve ease-of-use, possibly at some performance and relia-
bility costs. For example, automatically allocating workspace using assumed-
size arrays (as in the more heavily used LAPACK95, as opposed to LA-
PACK3E), and performing algorithm selection when appropriate (based on
performance models described below) may be done.

3. ScaLAPACK drivers will be provided that take a variety of parallel matrix
layouts and automatically identify and convert to the optimal layout for the
problem to be solved. Many users have requested accomodation of simpler
or more general input formats, which may be quite different from the more
complicated performance-optimized 2D block-cycle (and possibly recursive)
layouts used internally. Using the performance models described below, these
drivers will determine the optimal layout for the input problem, estimate the
cost of solving “in-place” versus converting to the optimal layout, solving,
and converting back, and choose the fastest solution. Separate layout con-
version routines will be provided to help the user identify and convert to
better layouts.
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4. Wrappers for the Sca/LAPACK drivers in other languages will be provided,
with interfaces that are “natural” for those languages, chosen based on im-
portance and demand from the user survey. Currently this list includes C,
Python and MATLAB.
In particular, no native implementations in these languages will be provided,
depending instead on interoperability of these languages with the F95 subset
used in (1).

5. The new Sca/LAPACK routines will be converted to use the latest BLAS
standard [88, 4, 12], which also provides new high precision functionality nec-
essary for new routines required in section 4 [12, 16], systematically ensure
thread-safety, and deprecate superseded routines.

6. Appropriate tools will be used (eg., autoconf, bugzilla, svn, automatic overnight
build and test, etc.) to streamline installation and development and encour-
age third party contributions. Appropriate source control and module tech-
niques will be used to minimize the number of versions of each code, reducing
the number of versions in the cross product {real,complex} × {single, double,
quad, ...} to one or two.

7. Performance tuning will be done systematically. Initial experiments are show-
ing up to 10x speedups using different communication schemes that can
be applied in the BLACS [89, 90]. In addition to tuning the BLAS [91, 92]
and BLACS, there are over 1300 calls to the ILAENV routine in LAPACK,
many of which return tuning parameters that have never been systematically
tuned. Some of these parameters are block sizes for blocked algorithms, some
are problem size thresholds for choosing between different algorithms, and
yet others are numerical convergence thresholds. ScaLAPACK has yet more
parameters associated with parallel data layouts and communication algo-
rithms.
As described in section 6.1, there are different levels of effort possible for
performance tuning, and it may also be done at different times. For example,
as part of the development process, a database of pretuned parameters and
performance models will be built for various computing platforms, which
will be good enough for many users [93]. Still, a tool is needed that at user-
install time systematically searches a very large parameter space of tuning
parameters to pick the best values, where users can “dial” the search effort
from quick to exhaustive and then choose different levels of search effort
for different routines depending on which are more important. Sophisticated
data modeling techniques may be used to minimize search time [94].

Beyond these development activities, the following research tasks are being
performed, which should influence and improve the development.

1. As discussed in section 3 emerging architectures offer parallelism at many
different levels, from multicore chips to vector processors to SMPs to dis-
tributed memory machines to clusters, many of which will appear simultane-
ously in one computing system. Alongside these layers is the current software
hierarchy in ScaLAPACK: BLAS, BLACS, PBLAS, LAPACK and ScaLA-
PACK. An investigation needs to be done to decide how to best map these
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software layers to the hardware layers. For example, should a single BLAS
call use all the parallelism available in an SMP and its multicore chips, or
should the BLAS call just use the multicore chips with individual ScaLA-
PACK processes mapping to different SMP nodes? The number of possible
combinations is large and growing. These mappings have to be explored to
identify the most effective ones, using performance modeling to both measure
progress (what fraction of peak is reached?) and limit the search space.

2. There is extensive research in other high performance programming lan-
guages funded by DOE, NSA and the DARPA HPCS program. UPC [95],
Titanium [96], CAF [97], Fortress [98], X10 [99] and Cascade [100] are all
languages under active development, and are being designed for high pro-
ductivity SWE on high peformance machines. It is natural to ask if these
are appropriate programming languages for ScaLAPACK, especially for the
more asynchronous algorithms that may be fastest and for more fine-grained
architectures like Blue Gene. Prototype selected ScaLAPACK codes will be
provided in some of these languages to assess their utility.

3. Further automating the production of the Sca/LAPACK software is a wor-
thy goal. One can envision expressing each algorithm once in a sufficiently
high level language and then having a compiler (or source-to-source trans-
lator) automatically produce versions for any architecture or programming
interface. Work in this direction includes [79]. The hope is that by limiting
the scope to dense linear algebra, the translation problem will be so sim-
plified that writing the translator pays off in being able to create the many
needed versions of the code. But there are a number of open research prob-
lems that need to be solved for such an approach to work. First, it has been
demonstrated for one-sided factorizations (eg LU, Cholesky and QR) but
not on more complex algorithms like some two-sided ones needed by eigen-
problems, including the successive-band-reduction (SBR) schemes discussed
in section 4. Secondly, much if not most of Sca/LAPACK involves iterative
algorithms for eigenproblems with different styles of parallelism, and it is not
clear how to extend to these cases. Third, it is not clear how to best express
the more asynchronous algorithms that can achieve the highest performance;
this appears to involve either more sophisticated compiler analysis of more
synchronous code (which this approach hoped to avoid) or a different way
of expressing dependencies. In particular, one may want to use one of the
programming languages mentioned above. Finally, it is not clear how to best
exploit the multiple levels of parallelism discussed above, i.e. which should
be handled by the high-level algorithm, the programming language, the com-
piler, the various library levels (BLAS, PBLAS) and so on. These are worthy
research goals to solve before using this technique for development.

4. Performance tuning may be very time consuming if implemented in a brute
force manner, by running and timing many algorithms for all parameter
values in a large search space. A number of users have already expressed
concern about installation time and difficulty, when this additional tuning
may occur. Based on earlier experience [94], it is possible to use statistical
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models to both limit the search space and more accurately determine the
optimal parameters at run time.

5. In a dynamically changing cluster environment, a call to Sca/LAPACK might
be run locally and sequentially, or remotely on one or more processors chosen
at call-time. The use of performance models will be available with dynami-
cally updated parameters (based on system load) to choose the right subset
of the cluster to use, including the cost of moving the problem to a differ-
ent subset and moving the answer back. This will help achieve performance
predictability.

6.3 Multicore and Multithreading

With the number of cores on multicore chips expected to reach tens or potentially
hundreds in a few years, efficient implementations of numerical libraries using
shared memory programming models is of high interest. The current message
passing paradigm used in ScaLAPACK and elsewhere introduces unnecessary
memory overhead and memory copy operations, which degrade performance,
along with the making it harder to schedule operations that could be done in
parallel. Limiting the use of shared memory to fork-join parallelism (perhaps
with OpenMP) or to its use within the BLAS does not address all these issues.

On the other hand, a number of goals can be achieved much more easily in
shared memory than on distributed memory systems. The most striking simplifi-
cation is no need for data partitioning, which can be replaced by work partition-
ing. Still, cache locality has to be preserved and, in this aspect, the locality of the
two dimensional block cyclic (or perhaps recursive) layout cannot be eliminated.

There are several established programming models for shared memory sys-
tems appropriate for different levels of parallelism in the applications with the
the client/server, work-crew, and pipeline being the most established ones. Since
matrix factorizations are rich in data dependencies, the pipeline seems to be the
most applicable model. Another advantage of pipelining is its match to hard-
ware for streaming data processing, like the IBM Cell Broadband Engine. To
achieve efficiency we must avoid pipeline stalls (also called bubbles) when data
dependencies block execution. The next paragraph illustrates this approach for
LU factorization.

LU and other matrix factorization have left-looking and right-looking formu-
lations [101]. It has even been observed that transition between the two can be
done by automatic code transformations [102], although more powerful methods
than simple dependency analysis is necessary. It is known that lookahead can
be used to improve performance, by performing panel factorizations in parallel
with the update to the trailing matrix from the previous step of the algorithm
[103]. The lookahead can be of arbitrary depth; this fact is exploiting by the
LINPACK benchmark [104].

We observe that the right-looking and the left-looking formulations are two
extremes of a spectrum of possible execution paths, with the lookahead providing
a smooth transition between them. We regard the right-looking formulation as
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having zero lookahead, and the left-looking formulation as having maximum
lookahead; see figure 1.

Fig. 1. Different possible factorization schemes: right-looking with no lookahead, right-
looking with a lookahead of 1, left-looking (right-looking with maximum lookahead).
Arrows show data dependencies.

The deeper the lookahead, the faster panels can be factorized and the more
matrix multiplications are accumulated at the end of a factorization. Shallow
lookaheads introduce pipeline stalls, or bubbles, at the end of a factorization.
On the other hand, deep lookaheads introduce bubbles at the beginning of a
factorization. Any fixed depth lookahead may stall the pipeline at both the
beginning and at the end of execution.

Recent experiments show that pipeline stalls can be greatly reduced if unlim-
ited lookahead is allowed and the lookahead panel factorizations are dynamically
scheduled in such a way that their issues do not stall the pipeline. Dynamic work
scheduling can easily and elegantly be implemented on shared memory, whereas
it is a much more complex undertaking in a distributed memory arrangements.
It is also worth observing that distributed memory implementations do not fa-
vor deep lookaheads due to storage overhead, which is not a problem in shared
memory environments.

7 Performance

We give a few recent performance results for ScaLAPACK driver routines on
recent architectures. We discuss strong scalability, i.e. we keep the problem size
constant while increasing the number of processors.
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Figure 2 gives the time to solution for a factoring a linear system of equations
of size n = 8, 000 on a cluster of dual processor 64 bit AMD Opterons intercon-
nected with a Gigabit ethernet. As the number of processors increases from 1 to
64, the time decreases from 110 sec (3.1 GFlops) to 9 sec (37.0 GFlops4.)
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Fig. 2. Scalability of the LU factorization for ScaLAPACK (pdgetrf) for a matrix of
size n = 8, 000.

Figure 3 gives the time to solution to find the eigenvalue and eigenvectors
of two symmetric matrices, one of size n = 4, 000, the other of size 12, 000. The
number of processors grows from 1 to 16 in the n = 4000 case and from 4 to 64
in the n = 12000 case. The machine used a cluster of dual processor 64 bit Intel
Xeon EMTs interconnected with a Myrinet MX interconnect. The matrices are
generated randomly using the same generator as in the Linpack Benchmark, and
so have random eigenvalue distributions with no tight clusters.

4 Thanks to Emmanuel Jeannot for sharing the result.
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Fig. 3. Scalability of the Symmetric Eigenvalue Solver routines in ScaLAPACK
(pdsyev) with a matrix of size 4,000 (left) and one of size 12,000 (right). Four dif-
ferent methods for the tridiagonal eigensolve have been tested: the BX (pdsyevx), QR
(pdsyev), DC (pdsyevd) and MRRR (pdsyevr).
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