Skip to main content

Multi-level μ-Finite Element Analysis for Human Bone Structures

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4699))

Abstract

Using microarchitectural bone imaging, it is now possible to assess both the apparent density and the trabecular microstructure of intact bones in a single measurement. In combination with microstructural finite element (μFE) analysis this could provide a powerful tool to improve strength assessment and individual fracture risk prediction. However, the resulting μFE models are very large and require dedicated solution techniques. Therefore, in this paper we investigate the efficient solution of the resulting large systems of linear equations by the preconditioned conjugate gradient algorithm. We detail the implementation strategies that lead to a fully parallel finite element solver. Our numerical results show that a human bone model of about 5 million elements can be solved in about a minute. These short solution times will allow to assess the mechanical quality of bone in vivo on a routine basis. Furthermore, our highly scalable solution methods make it possible to analyze the very large models of whole bones measured in vitro, which can have up to 1 billion degrees of freedom.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.: Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics. Internat. J. Numer. Methods Engrg. 55(5), 519–534 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adams, M.F., Bayraktar, H.H., Keaveny, T.M., Papadopoulos, P.: Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom. In: ACM/IEEE Proceedings of SC 2004: High Performance Networking and Computing (2004)

    Google Scholar 

  3. Adams, M., Brezina, M., Hu, J., Tuminaro, R.: Parallel multigrid smoothing: polynomial versus Gauss–Seidel. J. Comput. Phys. 188(2), 593–610 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boutroy, S., Bouxsein, M.L., Munoz, F., et al.: In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 90(12), 6508–6515 (2005)

    Article  Google Scholar 

  5. Ciarlet, P.G.: Three-dimensional elasticity. Studies in mathematics and its applications, vol. 20. North Holland, Amsterdam (1988)

    Google Scholar 

  6. HDF5: Hierarchical Data Format. Reference Manual and User’s Guide are available from http://hdf.ncsa.uiuc.edu/HDF5/doc/

  7. Heroux, M.A., et al.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karypis, G., Kumar, V.: METIS: Unstructured graph partitioning and sparse matrix ordering system. Technical Report, University of Minnesota, Department of Computer Science (1998)

    Google Scholar 

  9. Khosla, S., Riggs, B.L., Atkinson, E.J., et al.: Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J. Bone Miner. Res. 21(1), 124–131 (2006)

    Article  Google Scholar 

  10. Lin, P.T., Sala, M., Shadid, J.N., Tuminaro, R.S.: Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport. Internat. J. Numer. Meth. Engrg. 67, 208–225 (2006)

    Article  MATH  Google Scholar 

  11. Melton III, L., Chrischilles, E., Cooper, C., Lane, A., Riggs, B.: Perspective. How many women have osteoporosis? J. Bone Miner. Res. 7, 1005–1010 (1992)

    Article  Google Scholar 

  12. Mennel, U.: A multilevel PCG algorithm for the μ-FE analysis of human bone structures. Master thesis, ETH Zürich, Institute of Computational Science (2006)

    Google Scholar 

  13. van Rietbergen, B., Weinans, H., Huiskes, R., Polman, B.J.W.: Computational strategies for iterative solutions of large FEM applications employing voxel data. Internat. J. Numer. Methods Engrg. 39(16), 2743–2767 (1996)

    Article  MATH  Google Scholar 

  14. Ruge, J., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S. (ed.) Multigrid Methods, Frontiers in Applied Mathematics, vol. 3, SIAM, Philadelphia (1987)

    Google Scholar 

  15. Sala, M.: Amesos 2.0 reference guide. Technical Report SAND-4820, Sandia National Laboratories (2004)

    Google Scholar 

  16. Sala, M., Heroux, M.: Robust algebraic preconditioners with IFPACK 3.0. Technical Report SAND-0662, Sandia National Laboratories (2005)

    Google Scholar 

  17. Sala, M., Hu, J., Tuminaro, R.: ML 3.1 smoothed aggregation user’s guide. Technical Report SAND-4819, Sandia National Laboratories (2004)

    Google Scholar 

  18. Smith, I.M., Griffiths, D.V.: Programming the Finite Element Method. John Wiley, New York (1998)

    Google Scholar 

  19. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London (2000)

    Google Scholar 

  20. Tuminaro, R., Heroux, M., Hutchinson, S., Shadid, J.: Official Aztec user’s guide: Version 2.1. Technical Report Sand99-8801J, Sandia National Laboratories (1999)

    Google Scholar 

  21. Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math. 88(3), 559–579 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bo Kågström Erik Elmroth Jack Dongarra Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arbenz, P., van Lenthe, G.H., Mennel, U., Müller, R., Sala, M. (2007). Multi-level μ-Finite Element Analysis for Human Bone Structures. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2006. Lecture Notes in Computer Science, vol 4699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75755-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75755-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75754-2

  • Online ISBN: 978-3-540-75755-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics