arXiv:cs/0509003v1 [cs.CE] 31 Aug 2005

COMODI: Architecture for a Component-Based
Scientific Computing System

Zsolt |. Lazar, Lehel Istvan Kovacs, Bazil Parv
Babes-Bolyai University, Cluj-Napoca, Romania
zlazar@phys.ubbcluj.rd klehel,bpany @cs.ubbcluj.ro

Abstract

The COmputational MODule Integrator (COMODI) [1] is an iattve aiming at a component based framework, component
developer tool and component repository for scientific cotimg. We identify the main ingredients to a solution thatudbbe
sufficiently appealing to scientists and engineers to dansilternatives to their deeply rooted programming tiawét The overall
structure of the complete solution is sketched with spemmphasis on the Component Developer Tool standing at tHe bas
COMODI.

I. INTRODUCTION

In the last decades computer science has undergone a spectdevelopment that has left its marks on most aspects of
our everyday life while truly revolutionizing a number of ain specific human activities. However, brute computingdo
growing at exponential rate was not the answer to the prolofecomplexity as signaled already in the late sixties when th
term “software crisis” got coined [2]. Thanks to a dynamicniiirket marked by fierce competition, software developmaast h
been constantly maturing ever since. Unfortunately, caatpnal science remained immune to all those environnhéattors
that drive the development of the software industry. Eveigih it has always made much better use of the improving renew
capabilities by squeezing every last drop of performandeobthe available computing resources, in terms of efficyead
software quality it has fallen much behind modern trendseR#y, almost forty years later, scientists realized tomdbstacles
standing in the way of large scale scientific software pitsjé], [4]. The two papers send a clear message to the cotigndaa
science communitya change of paradigm is necessafy![5] and [6] this message is reinforced in the context of smad
medium size projects that make up the bulk of the activityhe tommunity. It is pointed out that there is an acute need
for shifting towards a reuse oriented paradigm which wouigiiove dramatically the efficiency and quality of compwtaéil
research.

Component software [7] is a relatively recent buzzword ia #oftware industry many viewing it as the holy grail of
software reuse. These ideas found a fertile soil in comjmumak science thanks to grid computing that enjoys highrpgion
the research agenda of most developed regions such as Etl-Aoerica and Japan. Grid computing, even though stily ver
much in its infancy, has been preparing the path for composaitware for some years.

[I. BABEL AND THE SCIENTIFIC INTERFACE DEFINITION LANGUAGE (SIDL)

Driven by the challenges of grid computing the fundamemtahs from component software have quickly been taken up by
a few groups and a recommendation for a Common Componenitéctire (CCA) emerged [8][9]. The dominance of this
approach is secured by the Common Component Architectunaraan organization backed by several US based univeysitie
[10]. At the core of CCA stands a language interoperabitigl,tcalled Babel, and the Scientific Interface Definitiomgaage
(SIDL)[11]. Starting from a manually written SIDL file Babebn generate stub and skeleton source code for a number of
programming languages commonly used in scientific comgufline programmer can include the implementation part and
after compilation the functions can seamlessly commueiaatoss the boundaries of programming languages. Sewgraht
production frameworks have been developed based on BaPglBl[14]. They provide a visual programming environment
for assembling components into computational project&erdhs no doubt that this approach can be viable on the long run
yet presently it is not much more than an intellectual experit as the amount of training for a developer trying to poeda
CCA compliant component represents a threshold that arbigdofor most to consider the solution. The developer is iregu
to learn SIDL and the constituting object-oriented progmang concepts. Existing numeric libraries cannot be turiméol a
component without carrying out changes in the function aigres. Beside the involved extra work, another reason wéryym
would not take this step is because, as long as CCA is not abls$sted standard, “spoiling” the code’s compliance with
previous prescriptions would not pay off. Especially nat éonatural scientists or engineers who want the “most bang fo
the buck” in their own research and do not share the excitemfecomputer scientists over using a well designed but fresh
standard that apparently makes life only more difficult foite a few years to come. No wonder that the associated public
component repository, Alexandria, is still empty seversédng after project launch.

http://arxiv.org/abs/cs/0509003v1

Ill. IRIS EXPLORER

Another notable solution is the IRIS Explorer of the Numatidlgorithms Group (NAG)[15]. Apart from the wide-spread
flow-based visual programming environment on the user sidethe component development side the author is assisted by
a module builder application that, after collecting suéfidi information on the input and output ports via self-erplary
GUI forms, it wraps and builds the code into an IRIS moduleweer, documenting the code in terms of its interface is
completely manual and avoiding mismatches between thecsaund its description is the responsibility of the authaing
custom datatypes constitutes another challenge for thelajger. The two main reasons, though, why the NAG solutids fa
to have the impact we envision for the future computatioratiework is that, on the one hand it is limited to mathemhtica
problems and data visualization, on the other it is a comialepcoduct. As a result, in spite of the IRIS Explorer Centfe
Excellence initiative [16] the public repository has noteed new modules since 2002. Nevertheless, since the MAGE
is endowed with a multitude of deasirable features, we cenghat its user base should have an important word to say in
conceiving the new high impact solution.

IV. COMODI: PREMISES AND COMMANDMENTS

Determined to avoid the aforementioned pitfalls the COMOQimitiative is meant to be a pragmatic approach with well-
defined objectives formulated in view of the ultimate goalnedving computational science out of its nadir and giving it a
hand in starting on the road towards modern programmingtipescwhile harvesting along the way all the efficiency and
quality benefits of a new reuse oriented paradigm. COMODIrgegefrom a set of premises that are not exclusively its own.
Even though not always explicitly formulated by the authoir®ther solutions yet stand at the basis of these approathes
following premises are the distilled conclusions of a pnifiary survey made with a mixed group of computational gSen
on the occasions of conferences, workshops and via an dioiineon the COMODI website [1]:

1) computational science is not computer science: the mfatemputational science are in natural sciences and esginge

not in computer science;

2) computational science demands a new paradigm. The efficend quality of the scientific software development pssce

and the reproducibility of virtual computer “experimentsged major improvements.

3) computational science will not take up any new techn@sgn the short run unless simpler than those that are in use

today;

4) the community itself should decide on the new paradigmesgtricted group of promoters can only set the process off

and catalyze it;

5) a few, relatively homogeneous groups make up the bulk@ftttmmunity. The new solution should target these groups

instead of trying to be fully comprehensive.

Out of the above five points the last three are COMODI specifictbe extra emphasis on point 3 is the one that makes
COMODI essentially different from the rest. This latter pdate translates into a fundamental requirement that weteam
as‘“zero effort threshold” We can make it more specific by formulating a series of conumants that will guide the design
process. A clear distinction needs to be made between wh@M®@ means to end-users on the one hand, and to component
developers or authors on the other. The former group is pifiyriavolved in assembling components into projects anelceting
them while component authors design and implement new coergs. Since the two activities require different skilldan
work methods the requirements set for the employed toolsdh €ase also differ. For user satisfaction the solutionthde
endowed with the following features:

« user friendly graphical interface;

« intuitive representation of data and processes such thaiéments of low-level programming, C and Fortran progransm

are accustomed to, can be clearly identified;

« high-level flow-based visual programming environment;

« possibility for low-level control;

« platform independence of the framework and of the companent

« comprehensive component repository;

« FREE!

In order to fully support developers it is imperative thatemmpliance criteria are set for the computational codeheeiin
terms of structure nor used data types. In other words, aliy eade written in the supported programming languagesiisho
automatically be ready for COMODI. Therefore the followirastrictions apply to adapting regular code to COMODI:
« no change in the source code. Neither in the interface ndnerirhplementation;
« No extra coding. Connectivity is achieved by supplemenginthor provided source-code with automatically generated
glue-code;
« no need for the author to know other languages/standardsttieeones used for implementing the code;

« no platform dependence. The capabilities of the system évweldpment is carried out on is extended by on-line servers
providing compilation as web service;

« no language dependence. C/C++, Fortran, Java, Python hadmesent and future languages should be able to commu-
nicate seamlessly;

« low performance overhead;

« support for both open source and commercial components.

For closely matching the low-level approach of computatl@tientist's to programming, components need to be thedow
possible granularity units of code, namely functions andcpdures. In [5] and [18] they are also referred tolagical
componentso that they could be clearly distinguished from higher gharity physical componentsr packageshat are units
of deployment. A physical component can contain a large rarnalb logical components that are packed together and then
uploaded as one file into the repository.

Clearly, the above commandments are easier to state thamiply with. Communicating data across, language and platfo
boundaries represents a serious technical challenge.iflod the iceberg includes the following issues:

« language dependence: e.g. Pascal uses the call staclediffer

« architecture dependence: file systems, little endian vebdjan;

« compiler dependence: the same data type may be repressfieedrdly. e.g. 16 bits vs 32 bits;
« exporting type definitions.

For bridging over languages there are several solutionarat buch as translating all types of source code into a siagigiage,

e.g. C, or compile them to an intermediate language similatava bytecodes or the Microsoft IL for .NET. Alternatively
following the design of IRIS Explorer one can provide an ABt the different languages or create stub and skeleton code
based on some interface description as done with Babel é&Ctmmon Component Architecture (CCA). However, none of
the above can fully live up to the expectations formulatethencommandments from the previous section as they eithairse
extra care from the developer or interfere with his/her sewrode or induce a significant performance overhead. Weestigg
that the responsibility of all wiring related issues shobkl assumed by generated glue-code. Similarly to IRIS aniteunl
Babel, interface glue-code is generated after the impléatien which apparently is not a healthy programming pcacas

this would prescribe defining all interfaces first and therifisig the implementation into the code. However, Babel glude

is generated from an SIDL file written manually by the develoghis means a new language to be mastered which would
make COMODI much less appealing. Besides, the target sdgoig@dOMODI are scientists that already have programmed
for a few years and ready to try COMODI in view of the zero dffiireshold. These either already have their implementatio
ready or will develop it using their own familiar programrginvironment. IRIS does a better job in this respect bus fall
short of effectively minimizing the effort of the developend when it comes to user defined datatypes the developerdsump
into APIs and an involved type definition procedure.

Thus, the problem of interoperability in itself is not imgdde to circumvent. The question remains though — at what
cost? By “cost” we mean the compromises that need to be made Wiere are no available alternatives for simultaneously
respecting all of the above formulated general requiresmtmtheir full extent. Our small prototypes arm us with coefide
but complete certainty is conditioned by a solution that xasn tested against a wide range of different computatiasék.

Merging the reuse oriented paradigm with that of distridutmmputing represents a double effort threshold for the
community, on the user and developer side alike. Both aremsnaan experimental stage. Therefore we recommend that
COMODI should focus on providing a viable solution for theolplems it is targeting, namely efficiency and quality of
scientific software development, without getting invohiadhe problem of efficient computing and storage resouregis.
Nevertheless, all design decisions should be taken in vietheorequirements for adapting the framework to the gridhia t
near future.

V. ARCHITECTURE
The complete solution is made up of the following major elatae

« high-level visual programming environment for computasibprojects;
« standardized scientific component descriptor language JCD

« component developer tools for adapting regular code to rdmmdwork;
« distributed component repository;

« compilation web service.

As it has already been suggested in the previous sectiorgndépy on the programming activities the above software
elements support they can be divided into two fundamentaligg: theuser sideand thedeveloper sideOn figure[d we can
see the sketch of the COMODI architecture. The respontisilof each part are summarized in Table I. The developerlay
contains a user friendlgraphical User Interfac€GUI), a Component Developer To¢CDT) with a Parser The CDT, after
semi-automatically collecting information pertainingth® content, behavior, and representation of the comppgenerates a

Role of the framework | Role of the component developer tool

component assembling

project verification and validation
project execution

runtime user interaction

assist the developer in documenting the code
generate glue-code

assist the developer in compiling the component
register the component with the global repository

TABLE |
RESPONSIBILITIES OF THE TWO MAJOR PARTS OEOMODI

component descriptor filECDF) in the XML basedComponent Desciptor Langua@€DL) and the source of thglue-codehat

will intermediate the communication of the component wittie COMODI framework. At this stage the CDF will contain all
communication related information such as exported fonstiand data types. It describes both syntactically and rstcaly

the component, supports the programming style of commutatiscientists as far as data structures, and it is extenstb
complexity is expected to grow together with the user comityuand the number of application areas. By semi-automiatiea
mean that théarser, which stands at the basis of the tool, inspects the souecardil generates a primary CDF. Using the GUI,
the developer only has to confirm the exported ports, prokigdman readable documentation for the component, set defaul
values and add representation related information. The @ contacts on-lineompilation server&énd returns ready-made
binaries for the platforms of the developer’s choice. Thmpibed library together with the descriptor file is uploadsdthe
developer to a place where it can be accessed publicly widleCDT registers the component in tbemponent repository

USER side:
FRAMEWORK
guiltl—in
External Modules Gul |CLE l Repr';silow
LCLL
10 | XML) WV B R PM ul . L Local
Component H—
RCLL Repository
KERNEL
T N Remote
r Component
Rey Y
DEVELOFER side:
COMPONENT DEVELOPER TOOL {CDT}
External Modules Gul ICLE
Local - o
i LCS Reg.
Compilers 10 | xmfpars.|ces| Pm | u .
Compilai —t=H RCB il
ompilation CORE LCLL
Servers T

Fig. 1. On the user side: IQnput/Output SystemXML: Extended Markup Language Parséf. Validator, B: Binding SystemR: Running SystenPM:
Project Managey Ul: User Interface GUI: Graphical User Interface CLE: Command Line EditorLCLL: Local Component Locater and LoadeéRCLL:
Remote Component Locater and Load@n the developer side: LC%iocal Compilation ServiceRCB: Remote Compilation BrokePars.:Parser, GCG:
Glue-Code GeneratoiReg.: Registrar

The deployed component is a package containing the comgsreurce code - if the developer chooses to make the
source open - the component descriptor file, the binariebdtin the computational- and the generated glue-code, atfuefu
resources. Components are packed into standard ZIP or TAR@at and registered in thRemote Component Repository
Upon use within the COMODI framework, the component is dmadled and stored in tHeocal Component Repositary

The sources provided by the component developer suffer aogas whatsoever during the component creation process.
All glue-code comes as additional functions in a separage flot touching the source of the developer has the benefit of
the compiled component being usable both within and outdideCOMODI framework making COMODI components fully
compatible with traditional programming environments.

In order to make COMODI itself easily extensible it has to mponent-based. This requires the separation of the
framework into akernel layerand several other modules built on the top of it. It is posstbl enforce a very general view on

this component architecture and deal uniformly with comfiahal components and components that are intimatelyectks
the framework itself. In this approach, anything apart fritn@ kernel is a component, be it a simple numerical componeat
heavyweight GUI. However, this uniformity, while simplifig the integration of components vital to the proper funitng of
COMODI, will come dear as it compromises the postulated Baity of wiring computational components by users. Theref
it is sensible not to sacrifice the support of user and commiasie/eloper activities in favor of those related to the tgwment
of COMODI [5].

VI. GLUE-CODE AND CONNECTOR COMPONENTS

In the previous section we pointed out that “clever” glugleds the key to following the COMODI commandments. It can
come in two flavors depending on whether it mediates an inegriunction call through a provides port or an outgoing call
via a uses port. We shall prepend the term glue-code with thelsv’uses” or "provides” whenever this aspect will be of
relevance. Connectors represent a similar concept irgisneglated to component software. There is no fundameitftatence
between connectors and glue-code. Both are meant to bridgydérecompatibilities that are not essential from the poiiwiew
of the composed client-server system. As such they can baldghautomatically or semi-automatically. The most impott
difference between the two consists in the fact that glueds generated while connectors, as components in gereeal,
hand-made. Glue-code is tightly associated with a compomigiin the boundaries of the same physical component (el
unit). Glue-code is a kind of integrated connector that cammunicate with anybody at one end but it only connects to a
well-defined component located in the same physical comtone

Glue-code is included into the component instead being qfattie framework for a number of reasons:

« there are functionalities that can only be set staticalypahding on the content of the source code;

« it can be better optimized for performance: in order to fatise requirement of low overhead it is necessary that the
framework does not intermediate the communication betwssnponents. Instead, it will wire up the connections by
setting direct component-to-component references [18];

« freedom of the component author to further optimize it;

« keeps the framework platform independent;

« in view of the approaching era of grid computing the autonahgomponents should be increased.

The obvious disadvantage of this solution is the compohémtseased size. However, this increase is not expecteceta b
relevant problem.
Since glue-code takes over all the burden of making regude @onnectible it has several responsibilities:

« call stack managemenhtridge the difference in handling the call stack in varioaisguages

« parameter passing managemewhen the two involved languages can’t automatically do ithgmselves. For example,
when calling Fortran from C, parameters can only be passegfeyence.

« linking: by linking we mean the process of setting all call referensesveen components. These references are set
according to parameter strings extracted from an XML enddde containing the description of the assembled compu-
tational application. They are stored in static variablegloe-code segments and are passed to the computational cod
during runtime (see figurd 2). The runtime entry point is emlbnce also during link-time and the children references
are requested from the glue-code function in charge withingirAs a result, the wiring function can be completely
avoided during runtime. The actual computational codesrretl to as “business logic” in figuké 2, will be in the body of
a function that receives all necessary information, iniclgdhe child references, as parameters. This has the auigiti
benefit of self-containment. The function is also fully ftinoal outside the context of the framework without configsi
extra arguments. A more detailed discussion on the wiringhmeism can be found in [18].

« handling data and code aggregatesanslates between data structures of different graruldfor example, structures
records and objects can be decomposed into a set of variahdesice versa. This is especially important when binding
C++ code to C.

o managing default values and referencéise author of a component is encouraged to provide defalltesafor the
parameters of both uses and provide ports. There are attleadienefits to this feature. For once, users can gradually
explore the capabilities of a component by using a reducedfggarameters at each port. Secondly, default parameters
endow a given port with the flexibility of connecting to pottst require a different number of parameters.

« managing global naming conventiorsince the components are autonomous, authors must resggdhe rules of the
programming language in which the component is developeshl®ns may arise with the identifiers (names of functions,
procedures, types, variables, constants, parameterdyve ibr more authors give the same name to two or more entities.
The glue-code generator translates the identifiers bethogah and global naming conventions.

« managing remote callst realizes astub-skeletorarchitecture for local and remote component calls.

The details implementing connectors in COMODI is a topic tnawn right and it is beyond the scope of this paper. The
reader can refer to chapter 10. in [7] and [19].

GHILD LEVEL

BL linktime
A
10 GR
h
wiring
runtime PS
linktime
[0
runtime+ linktime A linktinne
© " 'PARENTLEVEL

Fig. 2. Glue-code aided linking of components. Notation:PSaramString, 10 = input/output, BL = business logic, CR d#dslen references

VII. THE PARSER

One of the particularities of the COMODI solution is that fhecess of converting the source code into a component is
automated to the maximum possible extent. Therefore thepooent developer tool must “gain insight” into the the seurc
code with the help of the parser. The aim of ferseris to extract the necessary information from the progranuscgocode
in order to elaborate a full documentation of the compon€hé output of the parser is an XML document that is piped into
the glue code generator and also serves as raw materialdayoffitent of the component descriptor file. The parser aealyz
lexically and syntactically the source of the developenmspotational code. The semantic analysis is outside theesobghe
parser.

The used information is:

« identifiers

« types

o variables

e constants

« functions

o procedures

o parameters

o comments for the documentation
« special directives

The architecture of the COMODI parser consists of two blotke programming language description and recognition
part (EBNF parser) andhe program recognition partwhich carries out the lexical and the syntactical analpsised on a
self-constructive automata-system (Fijy. 3).

The description of the programming languages is given in EBdbrmat (Standard: ISO/IEC 14977). TiEBNF parser
reads the EBNF description of the programming languagér@marC, C++, Pascal, Java, etc.), and builds an automataray
responsible for the lexical and the syntactical analysithefsource code.

The automata-system contains a set of modified push-dovemeaté, interconnected into a network, each automaton each
possessing an inner stack. This system is equivalent togéesion-deterministic push-down automaton, capable afgeizing
context-free languages. The lexical elements and the swiftde majority of the used imperative programming langgg@nd
also their recognition rules, can be defined with contese-fgrammars. So, our automata-system can recognize theitynajo
of imperative programming language, once their EBNF défini are available.

The automata-system receives as input the program soud=-e@ach token is an element of the alphabet — starts from
an initial state, and after reading the symbol next in the,lib changes the inner-state according to the transitifuraition.
During this transition it modifies the stack. After readidfthe input symbols, if the automata-system is in one of tinalfi

EBNF description PARSER
of the
progr. ing
1 .
— ”| EBNF parser and N Lexical analyzer
building -+ lexical atom-table 'L CDF
o EgE P g
source code system S t|.1|_15|t||onnllml)le5 (XML format)
{pregram in y“mc,‘]l]i%_‘:-l:;:gzel
the given N ¥ N
language) *
-~
additional
information
(provided
by the authon)

Fig. 3. Structure of the parser

states, and the stack is empty, the automata-system reesgtiie input source code and builds correctly the tablesllin
other cases it fails.
Our prototype show that the above algorithm seems to work feelanguages such as C or Fortran.

VIII. CONCLUSIONS AND OUTLOOK

We have presented the general requirements and a few desigeliges for a complete reuse oriented solution for
computational scientists. The lack of impact of presenutimis is blamed on the involved high effort threshold, innma
cases made worse by a closed source and restrictive cofsyriiherefore, the corner stone of COMODI is the zero effort
threshold requirement for component developers. We atgatalie community needs a solution that allows a smoothrteffs
transition to the new paradigm. Once there, high-tech molatwill automatically be accepted by the community. Wepals
claim that a change of paradigm requires a solution that telyiused and supported, situation that is only conceivable
within an OpenSource project. COMODI should be a joint effifrcomputer scientists assuring the quality of the code and
computational scientists collectively and actively ciémiting to refining the requirements. If the contributionesther of the
two sides gets out of balance COMODI ends up as just anothieresting case study in computer science or, conversely,
becomes an unreliable pile of code impossible to maintai. gPototypes indicate that the suggested architectureasilble.
Thus, the main challenge is not of technical nature but ratbasists in sparking the interest of the community in depielg
and using COMODI.

ACKNOWLEDGMENT
This work is supported by the National University Researclui@il of Romania with grant no. 27687/14.03.2005.

REFERENCES

[1] COMODI homepagehttp://phys.ubbcluj.ro/comodi/

[2] P. Naur and B. RandellSoftware Engineering: Report on 1968 NATO Confereho&TO, 1969

[3] D. Post, The Coming Crisis in Computational Sciené&roceedings of the IEEE International Conference on HigtioPmance Computer Architecture:
Workshop on Productivity and Performance in High-End Cotimgy Madrid, Spain, February 14, 2004

[4] D.E. Post and L.G. VottaComputational Science Demands a New Paradigimys. Today, January 2005, p.35

[5] Zs.l. Lazar, B. Parv, J.R. Heringa, S.W. de Lee@®MODI: Guidelines for a Component Based Framework for i&iie Computing,Studia Babes-
Bolyai, Series Informatica, Vol. XLIX, No. 2 (2004) 91

[6] Zs.l. Lazar, J.R. Heringa, B. Parv, and S.W. de Lee@@MODI: Component Based Programming in Scientific Compguti Practical Approach,
submitted to Computers in Science & Engineering

[7] C. Szyperski, D. Gruntz and S. MureZomponent Software; Beyond Object Oriented Programpngl edition, Addison-Wesley (2002)

[8] R. Armstrong, Dennis Gannon, A. Geist, K. Keahey, S. KahnMclnnes, S. Parker and, B. Smolinskipward a Common Component Architecture for
High-Performance Scientific ComputinBroceedings of the 8th IEEE International Symposium orhHigrformance Scientific Distributed Computing,
August (1999)

[9] R. Bramley, K. Chiu, S. Diwan and D. Gannolh,Component Based Services Architecture for Building bisted ApplicationsNinth IEEE International
Symposium on High Performance Distributed Computing, Atd@ii-04, 2000 (http://www.extreme.indiana.edu/cca#ps/hpdc2000.pHf)

[10] Common Component Architecture (CCA) Forum homeghtip;//www.cca-forum.org

[11] Babel homepagehttp://www.linl.gov/CASC/components/babel.h:ml

[12] CCAFE homepagehttp://www.cca-torum.orgtbaallan/ccafz

[13] XCAT homepagehttp://www.extreme.indiana.edu/xcat

[14] SCIRun homepaghittp://www.scl.utah.ecu

[15] Numerical Algorithms Group homepagettp://www.nag.co.uk/

[16] IRIS Explorer Centre of Excellence homepelgtp://www.comp.leeds.ac.uk/iecoe/

[17] Open Data Explorer homepaghttp://www.opendx.or¢/

[18] Zs.l. Lazar, B. ParyiCOMODI: Component Wiring in a Framework for Scientific Conipg; Studia Babes-Bolyai, Series Informatica, Vol. XLIX, No.
2 (2004) 103

[19] A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stantd®, Newhouse, J. DarlingtoriMeaning and Behaviour in Grid Oriented Components
Proceedings of the Third International Workshop on Grid @aotimg, Springer-Verlag (2002) (www.lesc.ic.ac.uk/igpdf/Grid2002.pdf)

http://phys.ubbcluj.ro/comodi/
http://www.extreme.indiana.edu/ccat/papers/hpdc2000.pdf
http://www.cca-forum.org
http://www.llnl.gov/CASC/components/babel.html
http://www.cca-forum.org/~baallan/ccafe
http://www.extreme.indiana.edu/xcat
http://www.sci.utah.edu
http://www.nag.co.uk/
http://www.comp.leeds.ac.uk/iecoe/
http://www.opendx.org/

	Introduction
	Babel and the Scientific Interface Definition Language (SIDL)
	IRIS Explorer
	COMODI: Premises and commandments
	Architecture
	Glue-code and connector components
	The parser
	Conclusions and outlook
	References

