
Lawrence Berkeley National Laboratory
LBL Publications

Title

GASP! A Standardized Performance Analysis Tool Interface for Global Address Space 
Programming Models

Permalink

https://escholarship.org/uc/item/1z07m1gz

ISBN

978-3-540-75754-2

Authors

Su, Hung-Hsun
Bonachea, Dan
Leko, Adam
et al.

Publication Date

2006

DOI

10.1007/978-3-540-75755-9_54
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1z07m1gz
https://escholarship.org/uc/item/1z07m1gz#author
https://escholarship.org
http://www.cdlib.org/


GASP! A Standardized Performance
Analysis Tool Interface for Global

Address Space Programming Models

Lawrence Berkeley National Lab Tech Report LBNL-61659

Hung-Hsun Su1, Dan Bonachea2, Adam Leko1,
Hans Sherburne1, Max Billingsley III1, and Alan D. George1

1 HCS Research Lab, Dept. of Electrical and Computer Engineering
University of Florida, Gainesville, FL 32611-62001

2 Dept. of Electrical Engineering and Computer Sciences,
University of California at Berkeley, Berkeley, CA 94720-1770

Abstract. The global address space (GAS) programming model pro-
vides important potential productivity advantages over traditional par-
allel programming models. Languages using the GAS model currently
have insufficient support from existing performance analysis tools, due
in part to their implementation complexity. We have designed the Global
Address Space Performance (GASP) tool interface that is flexible enough
to support instrumentation of any GAS programming model implemen-
tation, while simultaneously allowing existing performance analysis tools
to leverage their tool’s infrastructure and quickly add support for pro-
gramming languages and libraries using the GAS model. To evaluate the
effectiveness of this interface, the tracing and profiling overhead of a pre-
liminary Berkeley UPC GASP implementation is measured and found to
be within the acceptable range.

1 Introduction

Parallel performance analysis tools (PATs) such as KOJAK [1] and TAU [2]
have proven to be useful in tuning time-critical applications. By simplifying the
instrumentation process, organizing performance data into informative visualiza-
tions, and providing performance bottleneck detection capabilities, these tools
greatly reduce the time needed to analyze and optimize the parallel program
under investigation. However, the majority of these tools support only a limited
set of parallel programming models, focusing primarily on the message-passing
model. As a result, programmers using newer parallel models are often forced to
manually perform tedious and time-consuming ad-hoc analyses if they wish to
optimize the performance of their parallel application.

While some work has been done in this area, the great majority of newer
programming models remain unsupported by performance analysis tools due
to the amount of effort that must be traditionally invested to fully support a



2

new model. In particular, models providing a global address space (GAS) ab-
straction to the programmer have been gaining popularity, but are currently
underrepresented in performance analysis tool support. These models include
Unified Parallel C (UPC) [3], Titanium [4], SHMEM, and Co-Array Fortran
(CAF) [5]. Due to the wide range of compilers and techniques used to support
execution of parallel applications using the GAS model, performance analysis
tool writers face many challenges when incorporating support for these models
into their tools. Among these problems are the technical issues associated with
instrumenting code that may be highly transformed during compilation (e.g. by
parallel compiler optimizations), and the challenge of adequately instrumenting
parallel applications without perturbing their performance characteristics. The
latter is especially challenging in the context of GAS languages where commu-
nication is one-sided and locality of access might not be linguistically explicit,
such that statically indistinguishable accesses may differ in runtime performance
by orders of magnitude.

In this paper, we present a Global Address Space Performance (GASP) tool
interface [6] that is flexible enough to be adapted into current GAS compilers
and runtime infrastructures with minimal effort, while allowing performance
analysis tools to efficiently and portably gather valuable information about the
performance of GAS programs. The paper is organized as follows. Section 2
provides the background and motivation in specifying such an interface. Section
3 gives a high-level overview of the interface, and Sect. 4 presents the preliminary
results of the first implementation of the GASP interface. Finally, in Sect. 5,
conclusions and future directions are given.

2 Background and Motivation

The traditional message-passing model embodied by the Message Passing In-
terface (MPI) currently dominates the domain of large-scale production HPC
applications, however its limitations have been widely recognized as a significant
drain on programmer productivity and consequently GAS models are gaining
acceptance [7]. By providing a shared address space abstraction across a wide
variety of system architectures, these models allow programmers to express inter-
process communication in a way that is similar to traditional shared-memory
programming, but with an explicit semantic notion of locality that enables high-
performance on distributed-memory hardware. GAS models tend to heavily em-
phasize the use of one-sided communication operations, whereby data commu-
nication does not have to be explicitly mapped into two-sided send and receive
pairs, a tedious and error-prone process that can significantly impact program-
mer productivity. As a result, programs written under these models can be easier
to understand than the message-passing version while delivering comparable or
even superior parallel performance [8, 9].

Most large-scale parallel systems employ communication hardware that re-
quires explicit interaction with networking components in software, and conse-
quently the compilers and libraries that support the execution of GAS programs



3

often need to perform a non-trivial mapping to convert user-specified one-sided
communication operations into hardware-level communication operations. As a
result, it can be challenging to determine the appropriate location for insertion
of instrumentation code to track performance data. Furthermore, the one-sided
nature of GAS model communication inherently biases available information to
the initiator, making it more complicated for PATs to infer the state of the com-
munication system and observe communication bottlenecks that may be incurred
on passive participants. Finally, the instrumentation process has the potential
to interfere with compiler optimization that normally takes place, which may
perform aggressive rearrangement and scheduling of communication.

Several instrumentation techniques are used by existing parallel PATs. Un-
fortunately, none of these techniques provide a fully effective approach for GAS
programming models. Source instrumentation may prevent compiler optimiza-
tion and reorganization and lacks the means to handle relaxed memory models,
where some semantic details of communication are intentionally underspecified
at source level to allow for aggressive optimization. Binary instrumentation is
unavailable on some architectures of interest, and with this method it is often
difficult to correlate the performance data back to the relevant source code, es-
pecially for systems employing source-to-source compilation. An intermediate
library approach that intersperses wrappers around functions implementing op-
erations of interest does not work for compilers that generate code which directly
targets hardware instructions or low-level proprietary interfaces.

Finally, different compilers and runtime systems may use wildly different
implementation strategies (even for the same source language), which further
complicates the data collection process. For example, existing UPC implemen-
tations include direct, monolithic compilation systems (GCC-UPC, Cray UPC)
and source-to-source translation complemented with extensive runtime libraries
(Berkeley UPC, HP UPC, and MuPC). These divergent approaches imply suffi-
cient differences in compilation and execution such that no single existing instru-
mentation approach would be effective for all implementations. A näıve way to
resolve this issue is to simply select an existing instrumentation technique that
works for one particular implementation. Unfortunately, this approach forces
the writers of performance analysis tools to be deeply versed in the internal
and often fluid or proprietary details of the implementation, and can result in
system-dependent tools that lack portability, to the detriment of the user expe-
rience.

It is clear that a new instrumentation approach must be found to handle these
GAS models. The alternative we have pursued is to define a standardized perfor-
mance interface between the compiler and the performance analysis tool. With
this approach, the responsibility of adding appropriate instrumentation code is
left to the compiler writers who have the best knowledge about the execution
environment. By shifting this responsibility from tool writer to compiler writ-
ers, the chance of instrumentation altering the program behavior is minimized.
The simplicity of the interface minimizes the effort required from the compiler
writer to add performance analysis tool support to their system. Concomitantly,



4

this simple interface makes it easy for performance analysis tool writers to add
support for new GAS languages into existing tools with a minimum amount of
effort.

3 GASP Interface Overview

The Global Address Space Performance interface is an event-based interface
which specifies how GAS compilers and runtime systems communicate with per-
formance analysis tools (Fig. 1). Readers are referred to the GASP specifica-
tion [6] for complete details on the interface – this paper restricts attention to a
high-level overview for space reasons.

Fig. 1. High-level system organization of a GAS application executing in a GASP-
enabled implementation

The most important entry point in the GASP interface is the event callback
function named gasp_event_notify (Fig. 2), whereby GAS implementations
notify the measurement tool when events of potential interest occur at runtime,
providing an the event ID, source code location, and event-related arguments
to the performance analysis tool. The tool is then free to decide how to han-
dle the information and what additional metrics to record. In addition, the tool
is permitted to make calls to routines that are written in the source language
or that use the source library to query model-specific information that may not
otherwise be available. Tools may also consult alternative sources of performance
information, such as CPU hardware counters exposed by PAPI [10] for moni-
toring serial aspects of computational and memory system performance in great
detail.



5

typedef enum {

GASP_START,

GASP_END,

GASP_ATOMIC,

} gasp_evttype_t;

void gasp_event_notify(gasp_context_t context,

unsigned int event_id,

gasp_evttype_t event_type,

const char *source_file,

int source_line, int source_col, ...);

Fig. 2. Structure of GASP event notification

The gasp_event_notify callback includes a per-thread, per-model context
pointer to an opaque tool-provided object created at initialization time, where
the tool can store thread-local performance data; the GASP specification is de-
signed to be fully thread-safe, supporting model implementations where arbitrary
subsets of GAS model threads may be implemented as threads within a single
process and virtual address space.

3.1 GASP Events

The GASP event interface is designed to be highly extensible, allowing language-
and implementation-specific events that capture performance-relevant informa-
tion at varying levels of detail. Additionally, the interface allows tools to intercept
just the subset of events relevant to the current analysis task.

A comprehensive set of events has been defined for capturing performance
information from the UPC programming model and includes the following ba-
sic categories. Shared variable access events capture one-sided communication
operations occurring implicitly (through shared variable manipulation) and ex-
plicitly (through bulk transfer and asynchronous communication library calls).
Synchronization events, such as fences, barriers, and locks, serve to record syn-
chronization operations between threads. Work-sharing events handle the explic-
itly parallel regions defined by the user. Start-up and shutdown events deal with
initialization and termination of each thread. There are also collective events
which capture broadcast, scatter, and similar operations, and events which cap-
ture memory management operations on the shared and private heaps.

The GASP interface provides a generic framework for the programming
model implementation to interact with the performance analysis tool, and the
GASP approach is extensible to new GAS models through the definition of
model-appropriate sets of events. The GASP interface is also designed to sup-
port mixed-model applications whereby a single performance analysis tool can
record and analyze performance information generated by each GAS model in
use and present the results in a unified manner.



6

Finally, GASP provides facilities for user-defined, explicitly-triggered per-
formance events to allow the user to give context to performance data. This
facilitates phase profiling and customized instrumentation of specific code seg-
ments.

3.2 GASP Instrumentation and Measurement Control

Several user-tunable knobs are recommended by the GASP specification to pro-
vide finer control over instrumentation and measurement overheads. First, the
--inst and --inst-local compilation flags are used to request instrumentation
of operations excluding or including events generated by shared local accesses
(i.e. one-sided accesses to local data which are not statically known to be local).
Because shared local accesses are often as fast as normal local accesses, instru-
menting these events can add a significant runtime overhead to the application.
By contrast, shared local access information is useful in some analyses, particu-
larly those that deal with optimizing data locality and performing privatization
optimizations, and thus may be worth the additional overhead. Instrumentation
#pragma directives are provided, allowing the user to instruct the compiler to
avoid instrumentation overheads for particular lexical regions of code at compile
time. Finally, a programmatic control function is provided to toggle performance
measurement for selected program phases at runtime.

4 Preliminary Results

A preliminary GASP implementation was added to Berkeley UPC [11] to test
the effectiveness of the GASP interface. To test this implementation, we ran the
UPC implementation of the NAS parallel benchmark suite version 2.4 (“class
B” workload) under varying instrumentation and measurement conditions. For
the CG, MG, FT, and IS benchmarks, we first compiled each benchmark using
an installation of Berkeley UPC version 2.3.16 with all GASP code disabled. We
used the best runtime for each benchmark as a baseline, and then recompiled
each application against the same version of Berkeley UPC with GASP support
enabled. We subsequently re-ran each benchmark under the following scenarios:

Instrumentation: a trivial GASP tool was linked to each benchmark that in-
tercepted all gasp_event_notify calls and immediately returned. This scenario
records the absolute minimum overhead that results as a consequence of GASP
instrumentation being inserted into a program.

Instrumentation, local : the same trivial GASP tool used in the previous sce-
nario was linked to each benchmark, and the --inst-local flag was also passed
to the compiler. This scenario demonstrates the absolute minimum overhead im-
posed by GASP instrumentation that tracks both remote and local references in
the global address space.

Measurement (profiling): we linked each benchmark against an actual per-
formance analysis tool named Parallel Performance Wizard (PPW) [12] that
records statistical information about each benchmark’s runtime characteristics.



7

In particular, the total amount of time spent executing one-sided memory oper-
ations is collected and stored relative to the source line in which the operation
was initiated. This scenario does not include local data accesses in the instru-
mentation.

Measurement (profiling with PAPI): this scenario used the same tool as the
profiling scenario, but in addition to raw temporal data the PAPI hardware
counter library was used to collect the total number of cycles and number of
floating-point instructions consumed by each profiled entity. This scenario does
not include local data accesses in the instrumentation.

Measurement (tracing): in this scenario, the same performance analysis tool
recorded a full trace of the program’s activity, storing information about each
UPC operation such as byte count and source/destination threads in one-sided
memory operations. This scenario does not include local data accesses in the
instrumentation.

Each benchmark was run under each scenario a total of ten times, and an
average was used to determine the percentage increase in overall execution time
against the baseline after any data outliers were discarded. The measured vari-
ance for the data set was low, with standard deviation peaking at less than a
few percent of overall runtime for the MG benchmark.

Figure 3 presents the results from our profiling and tracing experiments,
giving a breakdown of the overheads obtained from each scenario listed above.
In all cases, the overhead imposed by profiling was less than 5%, and the worst
overhead for tracing (which is typically more expensive than profiling due to
the disk I/Os needed to capture a complete record of events) was less than 9%.
These overheads are well within acceptable limits for obtaining representative
performance data.

Figure 4 compares the overhead of the “Instrumentation” and “Instrumen-
tation, local” scenarios showing the minimum incremental cost of profiling local
memory accesses in addition to remote accesses. It is encouraging that the in-
strumentation overhead alone for each benchmark was under 1.5% and 3.0% for
remote and remote+local instrumentation (respectively), even in this relatively
untuned GASP implementation. This outcome shows that the overall design of
GASP is sound enough to accurately capture the fine-grained performance data
typically associated with GAS models.

5 Conclusions and Future Directions

This paper introduces the Global Address Space Performance (GASP) inter-
face that specifies a standard event-based performance interface for global ad-
dress space languages and libraries. This interface shifts the responsibility of
where to add instrumentation code from the tool writer to the GAS com-
piler/library writer, which improves the accuracy of the data collection process
and reduces measurement perturbation. In addition, any performance analysis
tool can quickly add support for GAS models by simply defining the body of
a single, generic gasp_event_notify function when corresponding GASP im-



8

Class B

0.0 %

0.5 %

1.0 %

1.5 %

2.0 %

2.5 %

3.0 %

CG MG FT IS
Benchmark

Pe
rc

en
t o

ve
rh

ea
d

Instrumentation, local

Instrumentation

0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

8 %

9 %

CG
profile

CG
trace

MG
profile

MG
trace

FT
profile

FT
trace

IS
profile

IS
trace

Benchmark

Pe
rc

en
t o

ve
rh

ea
d

Measurement (tracing)

PAPI

Measurement (profiling)

Instrumentation

Page 8Fig. 3. Berkeley UPC GASP overhead for NAS benchmark 2.4 class B on a 32-node,

2-GHz Opteron/Linux cluster with a Quadrics QsNetII interconnect

Class B

0.0 %

0.5 %

1.0 %

1.5 %

2.0 %

2.5 %

3.0 %

CG MG FT IS
Benchmark

Pe
rc

en
t o

ve
rh

ea
d

Instrumentation, local

Instrumentation

0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

8 %

9 %

CG
profile

CG
trace

MG
profile

MG
trace

FT
profile

FT
trace

IS
profile

IS
trace

Benchmark

Pe
rc

en
t o

ve
rh

ea
d

Measurement (tracing)

PAPI

Measurement (profiling)

Instrumentation

Page 8

Fig. 4. Incremental raw instrumentation cost for profiling remote and local GAS ac-
cesses in the Berkeley UPC GASP implementation



9

plementations are available. To evaluate the effectiveness of such an interface, a
preliminary version of the GASP interface was implemented in Berkeley UPC
and overhead was measured and was found to be within an acceptable range.

To further evaluate and improve the interface, we’re currently working to
define GASP event sets for additional GAS models and plan to integrate GASP
instrumentation into several GAS implementations including the Titanium com-
piler and several UPC and SHMEM implementations. In doing so, we aim to
encourage more compiler developers to adopt the GASP interface in their own
implementations. In addition, we are currently developing a new comprehensive
parallel performance analysis tool called Parallel Performance Wizard (PPW)
that makes full use of GASP. Figure 5 shows a screenshot of the tool’s user in-
terface, and Fig. 6 shows our tool integrating with the Jumpshot timeline viewer
to allow the user to browse a visualization of trace data. Finally, we hope to
extend the GASP interface to support other parallel programming models such
as MPI-2, OpenMP, Chapel, Fortress, and X10.

Fig. 5. Parallel Performance Wizard interface displaying performance data for the NPB
MG benchmark

References

1. Mohr, B., Wolf, F.: KOJAK - A Tool Set for Automatic Performance Analysis of
Parallel Applications. Proceedings of the International Conference on Parallel and
Distributed Computing (Euro-Par 2003). Klagenfurt, Austria (September 2003)

2. Shende, S., Malony, A.D.: TAU: The TAU Parallel Performance System. Interna-
tional Journal of High Performance Computing Applications. 20:2 (2006) 287-331



10

Fig. 6. Jumpshot timeline view of NPB CG benchmark

3. UPC Consortium: UPC Language Specifications v1.2. Lawrence Berkeley National
Lab Tech Report LBNL-59208 (2005)

4. Yelick, K.A., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A.,
Hilfinger, P.N., Graham, S.L., Gay, D., Colella, P., Aiken, A.: Titanium: A High-
Performance Java Dialect. Concurrency: Practice and Experience, 10:11-13 (1998)

5. Numrich, B., Reid, J.: Co-Array Fortran for Parallel Programming. ACM Fortran
Forum. 17:2 (1998) 1-31

6. Leko, A., Bonachea, D., Su, H., George, A.D.: GASP: A Performance Analysis Tool
Interface for Global Address Space Programming Models, Specification Version 1.5.
Lawrence Berkeley National Lab Tech Report LBNL-61606 (2006)

7. DARPA High Productivity Computing Systems (HPCS) Language Effort
http://www.highproductivity.org/

8. Bell, C., Bonachea, D., Nishtala, R., Yelick. K.: Optimizing Bandwidth Limited
Problems Using One-Sided Communication and Overlap. 20th International Parallel
& Distributed Processing Symposium (IPDPS), 2006

9. Datta, K., Bonachea, D., Yelick K.: Titanium Performance and Potential: an NPB
Experimental Study. Languages and Compilers for Parallel Computing (LCPC),
2005

10. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable Programming
Interface for Performance Evaluation on Modern Processors. International Journal
of High Performance Computing Applications (IJHPCA), 14:3 (2000) 189-204

11. Berkeley UPC Project: University of California at Berkeley and Lawrence Berkeley
National Lab. http://upc.lbl.gov/

12. Parallel Performance Wizard Project: University of Florida, HCS Research Lab.
http://www.hcs.ufl.edu/upc/




